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1. Introduction 
 

Functionally graded beams have attracted increasing 

attention of researchers in recent years. The material 

properties of functionally graded beams vary along the 

thickness direction or/and the length direction. For 

functionally graded beams with thickness wise gradient 

variation, great progress has been made. For example, 

Zhong and Yu (2007) formulated an analytical solution of a 

static cantilever functionally graded beam with the 

assumption that all the elastic moduli of the material have 

the same variations along the beam-thickness direction. 

Lu et al. (2007) presented a semi-analytical elasticity 

solution for static problems of bidirectional functionally 

graded beams with exponential gradient distribution within 

the framework of two-dimensional elasticity theory. 

Aydogdu and Taskin (2007) investigated free vibration of 

simply-supported functionally graded beams where Young’s 

modulus vary in the thickness direction according to power 

law and exponential law. Simsek (2010) employed different 

higher-order beam theories to compute the fundamental 

frequencies. Li et al. (2010) studied the static and dynamic 

analyses of functionally graded beams using the a higher-

order theory, Ould Larbi Latifa et al. (2013) used an 

efficient shear deformation beam theory based on neutral 

surface position for bending and free vibration of 

functionally graded beams. Tounsi et al. (2013) used a 
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refined trigonometric shear deformation theory for 

thermoelastic bending of functionally graded sandwich 

plates. Trinh et al. (2016) investigated an analytical method 

for the vibration and buckling of functionally graded beams 

under mechanical and thermal loads. Mahi et al. (2015) 

used a new hyperbolic shear deformation theory for bending 

and free vibration analysis of isotropic, functionally graded, 

sandwich and laminated composite plates. Zemri et al. 

(2015) developed a mechanical response of functionally 

graded nanoscale beam: an assessment of a refined nonlocal 

shear deformation theory beam theory. Ahouel et al. (2016), 

“Size-dependent mechanical behavior of functionally 

graded trigonometric shear deformable nanobeams 

including neutral surface position concept. Bousahla et al. 

(2016) investigated the thermal stability of plates with 

functionally graded coefficient of thermal expansion. 

Abdelaziz et al. (2017) used an efficient hyperbolic shear 

deformation theory for bending, buckling and free vibration 

of FGM sandwich plates with various boundary conditions. 

Ayache et al. (2018) analysis the wave propagation and free 

vibration of functionally graded porous material beam with 

a novel four variable refined theory. Youcef et al. (2018), 

“Dynamic analysis of nanoscale beams including surface 

stress effects. Zine et al. (2018) presented a novel higher-

order shear deformation theory for bending and free 

vibration analysis of isotropic and multilayered plates and 

shells. Yazid et al. (2018) used a novel nonlocal refined 

plate theory for stability response of orthotropic single-layer 

graphene sheet resting on elastic medium. Belabed et al. 

(2018) investigated a new 3-unknown hyperbolic shear 

deformation theory for vibration of functionally graded 
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sandwich plate. Recently, Younsi et al. (2018) developed a 

novel quasi-3D and 2D shear deformation theories for 

bending and free vibration analysis of FGM plates. 

In order to model FGM precisely, it is essential to know 

the effective or bulk material properties as a function of 

individual material properties and geometry, in particular at 

micromechanics level.  

In recent years, different models have been proposed to 

estimate the effective properties of FGMs with respect to 

reinforcement volume fractions (Shen and Wang 2012, Jha 

et al. 2013). Consequently, several micromechanical models 

have been used to study and analyze the behavior of FGM 

structures under different loading conditions. We cite as an 

example the work of Gasik (1998) in which he proposed a 

micromechanical model to study FGMs with a random 

distribution of constituents. Using an appropriate 

micromechanical model, Yin et al. (2004) and Yin et al. 

(2007) have determined the expressions of the linear 

coefficient of thermal expansion, the Young’s moduli and 

the Poisson’s ratio. Mahmoudi et al. (2018) studied the 

effect of the micromechanical models on the free vibration 

of rectangular FGM plate resting on elastic foundation. 

In the present study, static of simply supported FG 

beams was investigated by using a new hyperbolic shear 

deformation beam theory. The effect of different 

micromechanical models on the bending response of these 

beams is studied. Various micromechanical models are used 

to evaluate the mechanical characteristics of the FG beams 

whose properties vary continuously across the thickness 

according to a simple power law. Then, the present theory 

together with Hamilton’s principle, are employed to extract 

the motion equations of the functionally graded beams. 

Analytical solutions for static are obtained. The effects of 

various variables, such as span-to-depth ratio, gradient 

index, and micromechanical models on bending of FG 

beam are all discussed. 

 

 
2. Effective properties of FGMs 
 

Unlike traditional microstructures, in FGMs the material 

properties are spatially varying, which is not trivial for a 

micromechanics model (Jaesang and Addis 2014). 

A number of micromechanics models have been 

proposed for the determination of effective properties of 

FGMs. In what follows, we present some micromechanical 

models to calculate the effective properties of the FG beam. 

 
2.1 Voigt model 
 

The Voigt model is relatively simple; this model is 

frequently used in most FGM analyses estimates Young’s 

modulus E of FGMs as (Mishnaevsky 2007) 

 cmc VEEzE  1 V)( c
           (1)  

 

2.2 Reuss model 
 

Reuss assumed the stress uniformity through the 

material and obtained the effective properties as 

(Mishnaevsky 2007, Zimmerman 1994) 
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2.3 Tamura model  
 

The Tamura model uses actually a linear rule of 

mixtures, introducing one empirical fitting parameter 

known as “stress-to-strain transfer” (Gasik 1995)  
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Estimate for q=0 correspond to Reuss rule and with 

q=100 to the Voigt rule, being invariant to the consideration 

of with phase is matrix and which is particulate. The 

effective Young’s modulus is found as 
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2.4 Description by a representative volume element 

(LRVE) 

 

The local representative volume element (LRVE) is 

based on a “mesoscopic” length scale which is much larger 

than the characteristic length scale of particles 

(inhomogeneities) but smaller than the characteristic length 

scale of a macroscopic specimen (Ju and Chen 1994). The 

LRVE is developed based on the assumption that the 

microstructure of the heterogeneous material is known. The 

input for the LRVE for the deterministic micromechanical 

framework is usually volume average or ensemble average 

of the descriptors of the microstructures. 

Young’s modulus is expressed as follows by the LRVE 

method (Akbarzadeh et al. 2015) 
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2.5 Mori-Tanaka model  
 

The locally effective material properties can be provided 

by micromechanical models such as the Mori-Tanaka 

estimates. This method based on the assumption that a two-

phase composite material consisting of matrix reinforced by 

spherical particles, randomly distributed in the plate. 
According to Mori-Tanaka homogenization scheme, the 

Young’s modulus is given as  

 
    














 33/11/)1(1
)(

mcc

c
mcm

EEV

V
EEEzE  (6) 

where 
p

c
h

z
V 




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




2

1
is the volume fraction of the ceramic 

and where p is the power law index. Since the effects of the 

variation of Poisson’s ratio (v) on the response of FGM 

plates are very small (Kitipornchai 2006), this material 

parameter is assumed to be constant for convenience. 
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Fig. 1 Geometry and coordinate of a FG beam 

 

 

3. Problem formulation 
 

Consider a functionally graded beam with length L and 

rectangular cross section b×h, with b being the width and h 

being the height as shown in Fig. 1. The beam is subjected 

to a transverse distributed load q(x). 

 

 

4. Kinematics and constitutive equations 
 

The displacement field satisfying the conditions of 

transverse shear stresses (and hence strains) vanishing at 

(z=±h/2) on this outer (top) and inner (bottom) surfaces of 

the beam, is given as follows (Bousahla et al. 2016) 
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In this work, the shape function f(z) is chosen based on a 

hyperbolic function as (Ould Larbi et al. 2013)  
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and  
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Where u0(x), wb(x) and ws(x) are the three unknown 

displacement functions of the middle surface of the beam. 

The kinematic relations can be obtained as follows 

The strains associated with the displacements in Eq. (8) 

are 
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The state of stress in the beam is given by the 

generalized Hooke’s law as follows 

xx zQ   )(11  and xzxz zQ   )(55       (11a) 
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5. Equations of motion 

 

Considering the static version of the principle of virtual 

work, the following expressions can be obtained 
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Substituting Eqs. (9) and (11) into Eq. (12) and 

integrating through the thickness of the beam, we can obtain 
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where Nx, Mb, Ms and Qxz are the stress resultants defined as 
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The governing equations of equilibrium can be derived 

from Eq. (13) by integrating the displacement gradients by 

parts and setting the coefficients where δu0, δwb, 
δws, zero. 

Thus, one can obtain the equilibrium equations 

associated with the present shear deformation theory 
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Eq. (15) can be expressed in terms of displacements (u0, 

wb, ws) by using Eqs. (11) and (14) as follows 
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where A11, D11, etc., are the beam stiffness, defined by 
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6. Analytical solution 
 

The equations of motion admit the Navier solutions for 

simply supported beams. The variables u0, w0, Qx can be 

written by assuming the following variations  
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The transverse load q is also expanded in Fourier series 

as 
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The coefficients Qm are given below for some typical 

loads. 
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where q0 represents the intensity of the load at the beam 

center. 

Substituting the expansions of u0, wb, ws and q from Eqs. 

(18) and (19) into the equations of motion Eq. (16), the 

analytical solutions can be obtained from the following 

equations 
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7. Results and discussion 
 

In the present section, the effect of micromechanical 

models on bending analysis of FG beams using a refined 

hyperbolic shear deformation theory is presented for 

investigation. In order to verify the accuracy of the present 

analysis, the results of this study were verified by 

comparing them with the various existing beam theories. 

The material properties used in the present study are: 

Ceramic (Alumina, Al2O3): Ec=380 GPa; v=0.3; ρc=3960 kg/m
3
. 

Metal (Aluminium, Al): Em=70 GPa; v=0.3; ρm=2702
 
kg/m

3
. 

Table 1 Non-dimensional displacements and stresses of functionally graded beams (p=2 and L=5h) 

Theory 
Uniform load Sinusoidal load 

w  u  x  
xz  w  u  x  

xz  

 
 

Li et al. (2010) 8.0602 3.1134 6.8812 0.6787 - - - - 

Ould Larbi et al. (2013) 8.0683 3.1146 6.8878 0.6870 - - - - 

Present 

Voigt 8.0683 3.1145 6.8876 0.6867 6.3759 2.4058 5.6056 0.4482 

Reuss 10.1423 3.7132 8.9445 0.6648 8.0200 2.8664 7.2829 0.4347 

LRVE 9.3322 3.5408 7.8655 0.6461 7.3780 2.7341 6.4049 0.4223 

Tamura 
(q=0) 10.1423 3.7132 8.9445 0.6648 8.0200 2.8664 7.2829 0.4347 

(q=100) 9.3004 3.5096 7.9400 0.6583 7.3527 2.7100 6.4650 0.4302 

Mori-Tanaka 9.8656 3.6505 8.5896 0.6613 7.8007 2.8183 6.9941 0.4323 

Table 2 Non-dimensional displacements and stresses of functionally graded beams (p=2 and L=20h) 

Theory 
Uniform load Sinusoidal load 

w  u  x  
xz  w  u  x  

xz  

 
 

Li et al. (2010) 7.4415 0.7691 27.0989 0.6787 - - - - 

Ould Larbi et al. (2013) 7.4421 0.7691 27.1005 0.7005 - - - - 

Present 

Voigt 7.4421 0.7691 27.1002 0.6988 5.8684 0.5952 21.9725 0.4489 

Reuss 9.1348 0.9132 35.1277 0.6777 7.2036 0.7067 28.4820 0.4355 

LRVE 8.4641 0.8724 30.8789 0.6585 6.6746 0.6751 25.0372 0.4231 

Tamura 
(q=0) 9.1348 0.9132 35.1277 0.6777 7.2036 0.7067 28.4820 0.4355 

(q=100) 8.4442 0.8646 31.1846 0.6708 6.6589 0.6691 25.2848 0.4310 

Mori-Tanaka 8.9048 0.8983 33.7307 0.6741 7.0222 0.6952 27.3493 0.4331 
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For simplicity, the following non-dimensional 

parameters are used in the numerical examples 
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7.1 Comparison studies 
 

Firstly, the example is performed in Tables 1 and 2 for 

FG beams with power law index p=2 and two span-to-depth 

ratio L/h. The beam is subjected to uniform and sinusoidal 

transverse loads in z-direction. Effective Young’s modulus 

is calculated using the aforementioned five 

micromechanical models. The obtained results are 

compared with a higher-order theory developed by Li et al. 

(2010) and theory of Ould Larbi et al. (2013). 

From this table two observations can be made. First, the 

results obtained from the present hyperbolic shear theory 

for the Voigt model are very close to those of Li et al. 

(2010) and Ould Larbi et al. (2013) and this for the stress or 

the deflection. Secondly, the results from the present 

method and calculated with the four other models, namely 

LRVE, Tamura, Mori-Tanaka and Reuss, are slightly 

different. This can be explained by the way who the Young's 

modulus is calculated. 

 

7.2 Parametric studies 
 

In the present paragraph some results and considerations 

about the effect of the micromechanical models on the 

bending problem of functionally beams are presented. The 

analysis has been carried out by means of numerical 

procedures illustrated above. 

In Fig. 2, the variations of the displacement w  through 

the thickness direction of FG beam with the power law 

index p are given for different micromechanical models. It 

is seen from the figure that the increase of the power law 

index p produces an increase in the values of the 

displacement and this whatever the model used. In addition, 

the Reuss model has the highest displacement values 

compared to other models. While that of Voigt has the 

lowest values. The Tamura and Reuss models have the 

practically same results. 

In Fig. 3, the axial stress x  through the thickness is 

tensile at the top surface and compressive at the bottom 

surface. The homogeneous ceramic beam p=0 or metal plate 

p=∞ yields the maximum compressive stresses at the 

bottom surface and the minimum tensile stresses at the top 

surface of the FG beams. 

In Fig. 4, we present the variation of the axial stress x  
through the thickness for different micromechanical 

models. From this figure, it can be seen that all models give 

practically the same results in terms of axial stress except 

that of Voigt, which gives minimum tensile stresses at the 

top, and minimum compressive stresses at the bottom 

surface. 
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Fig. 2 The transverse displacement w  versus the power 

law index p of FG beams for different micromechanical 

models (L/h=5) 
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Fig. 3 The variation of the axial stress 
x  through-the-

thickness of a FG beam (L/h=2) -Voigt model- 

 

-0,5

-0,4

-0,3

-0,2

-0,1

0,0

0,1

0,2

0,3

0,4

0,5

-1,5 -1,0 -0,5 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5

 Voigt

 Reuss

 LRVE

 Tamura

 Mori-Tanaka

 
 

Fig. 4 The variation of the axial stress 
x  through-the-

thickness of a FG beam for different micromechanical 

models (L/h=2, p=1) 

 

 

In Fig. 5, we have plotted the variation of the transverse 

shear stress 
xz  through-the-thickness of a FG beam using  
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Fig. 5 The variation of the transverse shear stress 
xz  

through-the-thickness of a FG beam (L/h=2) -Voigt model- 

 

 

the Voigt model. The through-the-thickness distributions of 

the transverse shear stresses are not parabolic in the case of 

non- homogenous plate as in the case of homogeneous 

beams (ceramic or metal). It can be observed that the 

homogeneous beams that are either metal or ceramic give 

the same transverse shear stress. 

The effect of the micromechanical models on the 

variation of the transverse shear stress 
xz  across the 

thickness is shown in Fig. 6. The Voigt model is the one, 

which gives the highest stresses compared with the others 

where the difference between the max stresses is minimal. 

Also, The Tamura and Reuss models have the practically 

same results. 

 
 
8. Conclusions 
 

In this paper, we have developed a new refined 

hyperbolic shear deformation beam theory for the solutions 

of static bending of FG beam. The theory accounts for 

hyperbolic distribution of the transverse shear strains and 

satisfies the zero traction boundary conditions on the 

surfaces of the functionally graded beam without using 

shear correction factors. Different micromechanical models 

were used to determine the effective properties of the FG 

beams. The Navier method is used for the analytical 

solutions of the FG beam with simply supported boundary 

conditions. The results obtained using this new theory, are 

in a good agreement with reference solutions available in 

literature. 

From these results and comparisons between different 

micromechanical models, it has been found significant 

differences between some models. This proves the need for 

a proper micromechanical modeling of FGMs to accurately 

estimate the deflection and stress. 
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