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1. Introduction 
 

Alleviating the dynamic response of civil engineering 

structures against earthquakes and winds has drawn the 

interest of many researchers in recent decades. Many 

passive, semi-active, active, and hybrid control devices 

have been developed. The core components of purely active 

control include a certain amount of external power or 

energy requirement and a decision-making process based on 

the sensed data on the actual vibration states of structures. 

For super-tall buildings, however, if the purely active 

control system is taken into account, then a large control 

force must be created and the power limitation of actuator 

prevents this system from being implemented. Among the 

passive devices available, the tuned mass damper (TMD) is 

one of the simplest and most reliable, typically consisting of 

an auxiliary mass (i.e., a SDOF mass block), a spring, and a 

viscous damper attached to the structure to be controlled. 

The TMD is a purely passive device by which the structural 

vibration energy is transferred to the TMD, without the 

need of any external power and with the low cost 

implementation. The resonance-based design criterion 

ensures that significant kinetic energy is transferred from 

the primary structure to the attached mass block and is 

eventually dissipated at the dashpot. To this end, the TMD 

tuning simultaneously involves a proper selection of the 

dashpot coefficient to ensure efficient energy dissipation, as 

a result, achieving the target of the structural dynamic 
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response reduction. Basically, the TMD is tuned near the 

target resonance frequency of the mode generalized system 

in the specific vibration mode being controlled (referred 

here to as the structure, in practical terms, the SDOF 

structure), thus only damping one mode of the vibration. In 

the light of intensive researches and developments in recent 

years, the TMD has been recognized as one of the most 

widely used and accepted wind response control systems for 

super-tall buildings and bridges (Chung et al. 2013, Lu and 

Chen 2011a, 2011b, Casciati and Giuliano 2009). There is 

not a general agreement, instead, on the TMD effectiveness 

in reducing the earthquake-induced responses of structures. 

Effectively, under the narrow band excitations, such as 

winds and earthquakes with limited band frequency, the 

TMD is capable of enhancing performances of the protected 

structures; hence, when employing the TMD, the band of 

tuning frequency in which the structural vibration can be 

suppressed, or intitule the band of suppression frequency, is 

very narrow. This effectively also means that it is very 

important to accurately identify the natural frequency of the 

TMD or to provide tracking with an updating scheme 

because the control performance of the TMD depends 

extensively on how it is properly tuned to the natural 

frequency of a structure. Naturally, the high sensitivity to 

tuning poses a serious concern of the TMD. Due to 

mistuned frequency, the vibration suppression performance 

of the TMD will be impaired significantly, in practical 

terms, meaning that the TMD is not all robust.  

In an attempt to remedy the narrow effective bandwidth 

of the TMD, one of the feasible alternatives is to employ the 

multiple tuned mass dampers (MTMD) with distributed 

natural frequencies which have been investigated by, for 
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example, Xu and Igusa (1992), Jangid (1995, 1999), Li 

(2000), Li and Liu (2003), Li and Qu (2006), Lin et al. 

(2010), Lin et al. (2010, 2017), Fu and Johnson (2011), 

Jokic et al. (2011), Li and Han (2011), Daniel et al. (2012), 

Li (2012), Mohebbi et al. (2013), Daniel and Lavan (2014), 

Dinh and Basu (2015), Leandro et al. (2016), Bozer and 

Özsarıyıldız (2018). These studies show that the MTMD 

can flatten the frequency response curve of a structure over 

the increasingly widened frequency range with the increase 

of the optimum frequency spacing through suppression of 

the secondary peaks induced by the MTMD by resorting to 

the larger optimum average damping ratio and/or the larger 

total number. Simultaneously, the semi-active tuned mass 

damper is seen to be a promising solution to the detuning 

problem of the TMD due to the unique feature that it in 

real-time updates the stiffness or damping of the TMD 

based on the sensed data on the actual vibration state of the 

structure. Moreover, the nonlinear tuned mass damper 

(NTMD) investigated by, for example, Sun et al. (2013), 

Eason et al. (2013), Luo et al. (2014), is also one of the 

feasible alternatives to overcome the above limitation. In 

comparison with the TMD, the NTMD is provided with the 

cubic stiffness nonlinearity rather than linear stiffness, 

thereby being capable of broadening the suppression 

bandwidth and providing a wider-band frequency-response 

amplitude reduction. 

It has been above stated that the TMD is effective for 

the structures in the case of the long-distance narrow band 

earthquake excitations with long durations, namely the 

far-field (FF) earthquakes. Here lies in the explanation for 

this general recognition. The long-distance earthquake 

excitations are long-period (low frequency) motions with a 

predominant period closer to or longer than the natural 

period of the structure, usually produced by subduction 

faults or soft soil conditions. The long-distance earthquake 

excitations may result in large displacements in the 

structure due to resonance, thereby enabling one to regard 

base excitations of this kind as harmonic excitations. But 

the effectiveness of the TMD decreases as the input 

duration shortens. As a result, the effectiveness of the TMD 

is greatly less for near-fault (NF), especially pulse-like 

near-fault ground motion than for far-field (FF) one. The 

pulse-like NF ground motion includes the low-frequency 

component, broadband or high-frequency component, thus 

with the impulsive and multi-frequency characters. The 

pulse-like NF may result in large-amplitude, long-period 

pulses in the velocity and displacement time histories, 

which are particularly challenging for the structural safety 

of long-period structures. Therefore, in recent years, besides 

detuning, this challenging issue also has triggered the latest 

development of improving the performance of structures 

exposed to both the FF and NF ground motions using the 

TMD, such as studies by Lin et al. (2010), Matta (2013), 

Bekdas and Nigdeli (2013), Lucchini et al. (2014). 

In order to confront such ground motions, a general 

observation is that the mass ratio of the TMD needs to be 

much higher (beyond 5%), since the TMD vibration control 

efficacy and robustness to detuning effects depend on its 

inertia property. The larger the attached TMD mass, the 

more effective the TMD will be. For seismically excited 

buildings, a large attached mass needs to be taken into 

account so as to achieve a satisfactory performance. 

Employing a large mass ratio boosts the cost of the TMD 

and simultaneously increases the weight of the structure, 

but contrary to increasing the seismic action. What’s more, 

in tall (low-frequency) buildings, the TMD requires 

occupying a large space, usually at a top floor, to 

accommodate the large displacement of the TMD mass 

block (i.e., the relative displacement of the TMD mass 

block with respect to its attachment point, called the stroke). 

Therefore, the mass ratio of the TMD must be kept in 

minimum levels for tall buildings. From here, we see that 

the requirement of a large mass ratio appeared to be a 

serious bottleneck in the TMD for controlling seismic 

vibrations of structures. 

In order to surmount this large mass ratio restriction, a 

very promising alternative is to take advantage of the active 

tuned mass damper (ATMD) which have been investigated 

by, for example, Chang and Soong (1980), Chang and Yang 

(1995), Collins et al. (2006), Guclu and Yazici (2008), Li et 

al. (2010), Amini et al. (2013), Li and Cao (2015), Cao and 

Li (2018), to achieve better mitigation in the structural 

displacement and/or acceleration against the NF ground 

motions. The ATMD shares the advantages of the active 

control, needing a lower actuation power with respect to the 

purely active systems, with the capability of working as 

passive systems when power supply is missing. Due to 

applying a direct driving force, the ATMD remarkably 

enhances both the effectiveness and robustness of the TMD 

with a smaller mass ratio. Likewise, what is worth 

mentioning is that in order to design a structural seismic 

control system that is effective in reducing displacements 

while simultaneously decreasing accelerations, the ATMD 

is a cost-effective alternative. For super-tall buildings, 

however, in order to achieve the required levels of response 

reduction during moderate and strong earthquakes, while 

admitting that the ATMD may be taken into account, but a 

large control force must be created and simultaneously, a 

big mass ratio is needed. For the structures which permit 

behaving nonlinearly under large earthquakes, the ATMD 

simultaneously necessitates both high power and high mass 

ratio. Both the power limitation of actuator and the mass 

ratio restriction, taking physical and economic conditions 

into account, prevent this system from being implemented 

in such super-tall buildings. Evidently, it is imperative and 

of practical interest to seek for the control systems, which 

can simultaneously relax the requirements for masses and 

control forces delivered by actuators, and furthermore 

reduce the large stroke demand. The control system with 

this peculiar ability easily is implemented and thereby, 

reducing the capital and long-standing maintenance costs. 

In the very last years, the light TMD through the 

incorporation of an inerter into a TMD, named the tuned 

mass damper inerter (TMDI), which may attain 

approximate or even better performances of the TMD, have 

been developed. The TMDI have been investigated by, for 

example, Marian and Giaralis (2014), Pietrosanti et al. 

(2017), Giaralis and Petrini (2017), Domenico and Ricciardi 

(2018), Giaralis and Taflanidis (2018). They concluded that 

the TMDI can lighten the weight of the TMD and improve  
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Fig. 1(a) Modeling of the SDOF structure-ATMDI system 

 

 

its performance. Employing the inerter-based devices for 

structural vibration suppression has been a popular research 

topic since inerter’s first introduction in 2002 (2002). The 

inerter is able to generate a resisting force, proportional to 

the relative acceleration of its terminals, equivalent to a 

force produced with an apparent (effective) mass two orders 

of magnitude greater than its own physical mass. The 

constant of proportionality of the inerter is called the 

inertance generated from the rotation of a flywheel; it has 

the dimension of a mass and fully characterizes the 

behavior of the device. Hitherto, there are three main types 

of inerter devices: rack and pinion inerter devices (2014), 

ball and screw inerter devices (2012), and hydraulic inerter 

devices (2010). When the inerter is installed in series with 

both the spring and damper elements, a lower-mass and 

more effective alternative to the traditional TMD is 

obtained, namely the TMDI, wherein the inertance plays the 

role of the TMD mass. Thus it can be seen that the TMDI is 

using the key feature of the inerter mass amplification effect 

that makes this device as a lower-mass alternative to a 

conventional TMD without increasing its weight. This is 

achieved by connecting the TMD mass via the inerter to a 

different floor from the one that the TMD is attached to in a 

multistory building (2017). Following the TMDI research, 

the active tuned mass damper-inerter have been proposed, 

referred to as the ATMDI in order to enhance the 

effectiveness of active tuned mass damper (ATMD) and 

solve the problem of its large stroke as well as further 

promote the miniaturization of the ATMD. The 

performances of the ATMDI will be investigated and 

demonstrated by extensive simulation results. 

 

 

2. TFs of the structure-ATMDI system 
 

Fig. 1(a) presents the modeling of the active tuned mass 

damper inerter (ATMDI) located on a single degree-of 

-freedom (SDOF) structure, effectively representing the 

mode generalized system in the specific vibration mode 

being controlled of the multi-degrees-of-freedom (MDOF) 

structures, excited by the ground acceleration [ẍg(t)]. The 

present control system configuration contains both an 

ATMD and an inerter which links the ATMD mass block to 

the ground. The set of second-order differential equations of 

motion for the structure-ATMDI system can then be 

established as follows 

 

Fig. 1(b) Modeling of the MDOF structure-ATMDI system 

 

 

 

( ) ( )s g s s s s s T T T T Tm x t y c y k y c y k y u t        
 (1) 

( ) ( ) ( )T g s T T T T T T Im x t y y c y k y u t f t       
 (2) 

in which ms and mT are the mass of the structure and 

ATMDI, respectively;
 

cs 
and cT represent the viscous 

damping coefficients of the structure and ATMDI, 

respectively; ks and kT refer to the stiffness coefficients of 

the structure and ATMDI, respectively; ys 
and yT denote the 

relative displacements of the structure and ATMDI with 

reference to their respective supports, that are the ground 

and structure, respectively; whereas fI(t) stands for the 

inerter element force which can be expressed as follows 

 ( )I s Tf t b y y                  (3) 

where b is the inertance coefficient measured in mass units. 

The function of the ideal inerter can be interpreted as an 

inertial weightless element whose gain depends on b and on 

the relative acceleration of its terminals. 

And, uT(t) indicates the active control force generated 

by the actuators in the ATMDI system. Suppose that 

calculating the active control force of the ATMDI system in 

real time by resorting to feeding back the sensing signal can 

be written in a compact representation as follows 

( )T T s T T T Tu t m y c y k y             (4) 

where 
Tm  indicates the gain of the ATMDI feeding back 

the acceleration of the structure; while 
Tc

 
and 

Tk  
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correspond, respectively, to the gains of feeding back the 

velocity and displacement of the ATMDI. 

In order to render a compact formulation, we 

beforehand introduce the following new variables. 

( )s g sa x t y  , ( )T g s Ta x t y y   , T
T

s

m

m
  , 

I

s

b

m
  , 

T
T

T

m

m
  , s

s

s

k

m
  , T T

T

T

k k

m



 , 

2

s
s

s s

c

m



 , 

2

T T
T

T T

c c

m





  

Laplace transforms of the displacement, velocity, 

acceleration responses, ground acceleration, active control 

force, and inerter element force are respectively defined as a 

set of Equations as follows: 

( ) [ ( )]s sY s L y t , ( ) [ ( )]T TY s L y t , ( ) [ ( )]s ssY s L y t , 

( ) [ ( )]T TsY s L y t , 2 ( ) [ ( )]s ss Y s L y t , 2 ( ) [ ( )]T Ts Y s L y t , 

 ( ) ( )s sA s L a t ,  ( ) ( )T TA s L a t , 

( ) [ ( )]g gX s L x t ,  ( ) ( )T TU s L u t ,  ( )I IF s L f  

Employing Eqs. (3) and (4) and the above Laplace 

transforms, then Eqs. (1) and (2) can be rewritten in the 

Laplace domain under the terms of displacement as follows 

   2 2 2( ) 1 2 ( ) 2 ( ) 0g T T s s s s T T T T T TX s s s Y s s Y s                 
 

   2 2 2( ) 1 2 ( ) 2 ( ) 0g T T s s s s T T T T T TX s s s Y s s Y s                 
         (5) 

2 2 2( ) 1 ( ) 1 2 ( ) 0I I
g T s T T T T

T T

X s s Y s s s Y s
u u

 
   

    
           
    

 

2 2 2( ) 1 ( ) 1 2 ( ) 0I I
g T s T T T T

T T

X s s Y s s s Y s
u u

 
   

    
           
    

       (6) 

where 
2( ) ( ) ( )s g sA s X s s Y s  , 2 2( ) ( ) ( ) ( )T g s TA s X s s Y s s Y s    

2( ) ( ) ( ) ( )T T s T T T TU s m s Y s c sY s k Y s    , 

2 2( ) ( ) ( )I s TF s b s Y s s Y s    
 

By substituting s=iω in Eqs. (5) and (6), where 1i   , 

and through simultaneously solving Eqs. (5)-(6), the 

transfer functions in the Laplace domain of the structure 

with the attached ATMDI, active control force, and inerter 

element force can then be expressed in a compact form, 

respectively as below 

For the displacement transfer function (DTF) of the 

structure with the ATMDI 

   

       

2

2 1 0

4 3 2

4 3 2 1 0

( )

( )

s s ss

g s s s s s

C i C i CY i

X i D i D i D i D i D

 

    

 
 

   

(7) 

For the displacement transfer function (DTF) of the 

ATMDI mass block 

 

   

2

2

2 2

3

( )
1

( )( )

( ) 2

s

gT

g T T T

Y i
B i

X iY i

X i B i i






     



 
 

        (8) 

For the acceleration transfer function (ATF) of the 

structure with the ATMDI 

 
2

( )( )
1

( ) ( )

ss

g g

i Y iA i

X i X i

 

 
              (9) 

For the active control force transfer function (ACF-TF) 

of the ATMDI 

 
    

2

2 2

( )

( )

( ) ( ) ( )
= 2

( ) ( ) ( )

T

s g

s T T
T T T T TMDI TMDI T TMDI

g g g

U i

m X i

i Y i Y i Y i
i

X i X i X i





   
        

  

 
     

  

 
    

2

2 2

( )

( )

( ) ( ) ( )
= 2

( ) ( ) ( )

T

s g

s T T
T T T T TMDI TMDI T TMDI

g g g

U i

m X i

i Y i Y i Y i
i

X i X i X i





   
        

  

 
     

   

 
    

2

2 2

( )

( )

( ) ( ) ( )
= 2

( ) ( ) ( )

T

s g

s T T
T T T T TMDI TMDI T TMDI

g g g

U i

m X i

i Y i Y i Y i
i

X i X i X i





   
        

  

 
     

    

(10) 

For the inerter element force transfer function (IEF-TF) 

of the ATMDI 

 
2 ( )( ) ( )

( ) ( ) ( )

sI T
I

s g g g

Y iF i Y i
i

m X i X i X i

 
 

  

 
    

 

       (11) 

in which 

ωTMDI and ξTMDI represent the natural frequency and 

damping ratio of the TMDI (i.e., the passive counterpart of 

the ATMDI), respectively 

1 1 T TB    , 
2 1 I

T

T

B
u


   , 

3 1 I

T

B
u


   

2 3sC B ,  1 2 1s T T TC     ,   2

0 1s T TC     

4 1 3sD B B , 
3 3 1 22 2 2s s s T T T T TD B B B        

2 2 2

2 3 1 24s s s T s T T T TD B B B           , 

2 2

1 2 2s T s T s s TD        , 2 2

0s s TD    

Further, Fig. 1(b) presents the modeling of the MDOF 

structure-ATMDI system. The ATMDI can be applied to 

mitigate the vibration of an MDOF structure. In this case, 

the ATMD need to be placed at the top floor of the 

structure, whereas the inerter is linked to one storey below 

the top floor or span more than one storey down. 

 

 

3. DMFs of the structure-ATMDI system 
 

Introducing the variables: 
s





  and T

T

s

f



 , after 

some transformation, the  

Eqs. (7)-(11) take the following form. 

   
   

' 2 ' '2
2 0 1

' 4 ' 2 ' ' 3 '

4 2 0 3 1

( )

( )

s s ss s

g s s s s s

C C C iY i

X i D D D D D i

  

    

  
 

    

  (12) 

 

   

2
2

22

2 2

3

( )
1

( )( )

( ) 2

s s

gs T

g T T T

Y i
B i

X iY i

X i B i f i f

 


 

   



 
 

       (13) 

   
2 22 2( ) ( )( )

1
( ) ( ) ( )

s s s TT

g g g

i Y i i Y iA i

X i X i X i

     

  
         (14) 

   
2 2 2

2 2 2

( )

( )

( ) ( ) ( )
2

( ) ( ) ( )

T

s g

s s s T s T
T T T T T TMD TMD T T TMD

g g g

U i

m X i

Y i Y i Y i
f f i f f

X i X i X i
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      (16) 

where 
'
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3 3 1 22 2 2s s T T T T TD B B f B f       
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1 2 2s T T s TD f f   , 

' 2

0s TD f  

Employing the Eqs. (12)-(16), the dynamic 

magnification factors (DMF) of the structure-ATMDI 

system can be derived, as shown below. 

For the displacement DMF of the structure with the 

ATMDI 

   
2 2 2 22 ( ) ( ) ( ) ( ) ( ) ( )

sY s s g e m e mDMF Y i X i R I R I                    

   
2 2 2 22 ( ) ( ) ( ) ( ) ( ) ( )

sY s s g e m e mDMF Y i X i R I R I                  
   (17) 

For the displacement DMF (used for evaluating the 

stroke) of the ATMDI mass block 

   
2 2 2 22 ( ) ( ) ( ) ( ) ( ) ( )

TY s T g eT mT eT mTDMF Y i X i R I R I                    

   
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  (18) 

For the acceleration DMF of the structure with the 

ATMDI 

   
2 2 2 2
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sA s g ea ma ea maDMF A i X i R I R I                 

 

   
2 2 2 2

( ) ( ) ( ) ( ) ( ) ( )
sA s g ea ma ea maDMF A i X i R I R I                 

   (19) 

For the active control force DMF of the ATMDI 

   
2 2 2 2
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   (20) 

For the inerter element force DMF of the ATMDI 

   
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4. PSO-based searching of the ATMDI 
 

The objective for the optimization of the ATMDI design 

parameters in this study is to reduce the maximum DMF of 

the controlled structure, with the objective function defined 

as the minimization of the maximum values of the DMF 

(Eq. (17)), which can be mathematically written as follows 

min.max.
SYR DMF             (22) 

Through the minimization of the maximum values of 

the DMF of the structure equipped with the ATMDI, the 

optimum parameters, effectiveness, and stroke of the 

ATMDI are investigated to evaluate and compare its control 

performance. The optimum parameters of the ATMDI 

include both the optimum tuning ratio and optimum 

damping ratio. In the present work, a metaheuristic 

algorithm, namely the particle swarm optimization (PSO) 

(Clerc and Kennedy 2002, Kannan et al. 2009) is taken into 

consideration for the optimum search of the ATMDI by 

resorting to MATLAB software platform. Fig. 2 provides 

the implementation flowchart of the PSO-based searching 

of the ATMDI. 

 

 

5. Estimating the performance of the ATMDI 
 

The two variables (fT and ξT) to be optimized as well as 

their respective incremental intervals (ΔfT 
and ΔξT) are 

listed in Table 1. The ratio of the inertance coefficient to the 

structural mass is known as the inerter mass ratio (μI). The 

αT is the normalized acceleration feedback gain factors 

(NAFGF) of the ATMDI. In order to take into account the 

effect of the mass ratio (μT) on the ATMDI, its different 

values are singled out. And more importantly, in order to 

provide valuable insights into the sensitivity of the ATMDI 

to the inerter mass ratio, its diverse values are taken into 

consideration and served as the abscissa of the graphs, 

except for the frequency response plots. The 

nondimensional frequency of excitation (NFE) is regarded 

as a continuous variable in MATLAB code. The assigned 

values of μT, αT, and the modal damping ratio of structures 

(ξs) are presented in Table 1. For the sake of comparison, 

the optimum results of the ATMD (i.e., the special case of  
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Table 1 Targets and ranges of explored parameters as well 

as assigned parameter values 

fT (to be 

optimized) 
0≤fT≤10 ΔfT=0.001 

ξT (to be 

optimized) 
0≤ξT≤0.999 ΔξT=0.001 

Mass ratio: μT=0.01, 0.005, 0.0025 

NAFGF: αT=2, 4, 6, 8 

Inerter mass ratio: μT=0, 0.01, 0.02, 0.03, 0.04, 0.05 

NFE: 0≤λ≤2 

 

 

the ATMDI with μI=0), and the TMDI (i.e., the special case 

of the ATMDI with αT=0) are simultaneously included into 

consideration. The PSO-based minimization of Equation 

(22) will lead to the optimal parameters of the ATMDI 

system. Likewise, the lower the value of the objective 

function, the higher the effectiveness of the ATMDI. 

Herein, it is especially pointed out that in the following 

graphs, R denotes the minimization of the maximum values 

of the DMF of the structure coupled with the ATMDI; fTopt 

and ξTopt represent the optimum tuning frequency ratio and 

the optimum damping ratio of the ATMDI; max.DMFAs 
is 

 

 

the maximum value of the acceleration DMF of the 

structure installed with the ATMDI taking its respective 

optimum parameters; and max.DMFYT
, max.DMFUT

, and 

max.DMFFI 
respectively express the maximum value of the 

displacement DMF of the mass block, active control force 

DMF, and inerter element force DMF of the ATMDI taking 

its respective optimum parameters. It is pointed further that 

R is used to measure the effectiveness of the ATMDI, while 

max.DMFYT
 is harnessed to evaluate the magnitude of the 

strokes of the ATMDI. By resorting to both the objective 

function and the PSO, the numerical results of R, 

max.DMFAs
, max.DMFYT

, max.DMFUT
, max.DMFFI

, and 

the optimum parameters will be exhibited and analyzed next 

in detail. 

 

5.1 Displacement control effectiveness 
 

The plot of the variation tendency of R utilized for 

measuring the displacement control effectiveness of the 

ATMDI versus the inerter mass ratio is displayed in Fig. 3 

with several important parameters. It can been seen from 

Fig. 3 that under the circumstances of the same mass ratio  

 

Fig. 2 Framework of PSO based searching of the ATMDI 
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and NAFGF value, the effectiveness of the ATMDI is 

remarkably better than that of the ATMD, indicating that 

the inerter can significantly enhance the displacement 

control effectiveness of the ATMD. The explanation for this 

phenomenon is that adding the inerter is equivalent to 

increasing the virtual mass b to the physical mass of the 

ATMD and then the ATMD inertia is greatly promoted yet 

without increasing its physical mass, thereby gaining the 

high effectiveness ATMDI system. Through scrutinizing 

the Fig. 3, the indepth demonstrations can be provided in 

the following. The values of R decrease but the decrease 

rate tends to reduce with the increasing of the mass ratio, 

NAFGF, and inerter mass ratio. The smaller the mass ratio 

of the ATMDI, the more obvious the change in the values 

of R with the inerter mass ratio. Therefore, the smaller the 

ATMDI mass block, the more significant the inerter mass 

amplification effect. However, when the inerter mass ratio 

is beyond 0.04, the further improvement in the effectiveness 

of the ATMDI is insignificant. That is to say the inertia 

function of the ATMDI system tends to be saturated with 

the inerter mass ratio beyond 0.04. Hence, the economic 

values of the inerter mass ratio are within the range from 

0.01 to 0.04. The larger the NAFGF of the ATMDI, the less 

obvious the change in the values of R with the inerter mass 

ratio. This effectively indicates that an excessive active 

control force not only brings about some technical 

difficulties but also weakens the inerter mass amplification 

effect. Therefore, the economic values of NAFGF are 

suggested to be within the range from 2.0 to 6.0. 

Combined with Table 2, the advantages of the ATMDI 

are summarized in the following. In the case of the same 

mass ratio and inerter mass ratio, the effectiveness of the  

 

Table 2 Practically same level of effectiveness with 

different mass ratio, NAFGF, and inerter mass ratio 

 μT αT μI R 

TMDI 0.01 0 0.0425 5.2026 

ATMD 0.01 4 0 5.2027 

ATMDI 

0.01 2 0.0212 5.2036 

0.005 

2 0.0364 5.2027 

4 0.0258 5.2014 

6 0.0151 5.2040 

8 0.0045 5.2026 

0.0025 

2 0.0440 5.2030 

4 0.0387 5.2018 

6 0.0334 5.2012 

8 0.0281 5.2005 

 

 

ATMDI is remarkably higher than that of the ATMD. 

Although greatly reducing the mass block amplitude, the 

effectiveness of the ATMDI is yet obviously higher than 

that of the ATMD with a larger mass ratio. Employing the 

ATMDI can thus further miniaturize both the ATMD and 

TMDI. Under the circumstances of the practically same 

level of effectiveness, with respect to the TMDI, the 

ATMDI requires the obviously smaller mass ratio and 

inerter mass ratio, thus avoiding the difficulty of connecting 

the inerter due to the large inerter element force. 

 

5.2 Acceleration control effectiveness 
 

Fig. 4 presents the variation trends of max.DMFAs
 used 

for measuring the acceleration control effectiveness of the  

 

Fig. 3 Variation trends of R used for measuring the effectiveness of the ATMDI with reference to inerter mass ratio under the 

circumstances of several mass ratio and NAFGF values 
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ATMDI with reference to the inerter mass ratio in the case 

of several mass ratio and NAFGF values. Let us be clear: 

the max.DMFAs
 value is calculated out using the optimum 

parameters obtained based upon the objective function (Eq. 

(22)). Fig. 4 clearly shows that when keeping the equal 

mass ratio, the ATMDI and TMDI may render the higher 

effectiveness in reducing the acceleration response with 

reference to the ATMD and TMD, respectively; in 

particular, the acceleration control effectiveness of the 

ATMDI is notably better than that of the TMDI and this 

advantage is more prominent with increasing in the 

NAFGF. Although greatly reducing the mass ratio, the 

effectiveness of the ATMDI is yet obviously higher than 

that of the TMDI with a larger mass ratio, thus indicating 

that the ATMDI can further miniaturize both the ATMD and 

TMDI and is applicable for the acceleration response 

mitigation of super-tall buildings. 

 

5.3 Assessment of stroke 

 

 

Fig. 5 clearly depicts the variation trends of max.DMFYT
 

employed for measuring the stroke of the ATMDI with 

reference to the inerter mass ratio under the circumstances 

of several mass ratio and NAFGF values. It can be 

identified from Fig. 5 that the strokes of both the ATMDI 

and TMDI are respectively smaller than those of both the 

ATMD and TMD and this merit is more prominent with 

increasing in the inerter mass ratio. But, this reduction in 

the stroke of the ATMDI tends to be saturated with the 

inerter mass ratio being beyond 0.04. Especially, in the 

context of a very small mass ratio, such as 0.0025, the 

ATMDI still keeps nearly the same stroke as the TMDI with 

a larger mass ratio, such as 0.01, with the inerter mass ratio 

being beyond 0.02. Furthermore, the stroke of the ATMDI 

is, by and large, insensitive to the NAFGF values. Based on 

the above elucidation of the stroke, the inerter mass ratio of 

the ATMDI is thus suggested to be within the range from 

0.02 to 0.04. 

 

 
Fig. 4 Variation trends of max.DMFAs

 used for measuring the acceleration control effectiveness of the ATMDI with reference 

to inerter mass ratio under the circumstances of several mass ratio and NAFGF values 
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5.4 Active control force and inerter element force 
 

The graph of the variation trends of max.DMFUT
 with 

regard to the inerter mass ratio is presented in Fig. 6 utilized 

for measuring the active control force magnitude of the 

ATMDI. From Fig. 6, it can be clearly perceived that 

regardless of the mass ratio, the active control force of the 

ATMDI mildly decreases with the increase of the inerter 

mass ratio. Likewise, increasing both the mass ratio and 

NAFGF values leads to the demand of a larger active 

control force. 

 

 

The variation trends of max.DMFFI
 used for measuring 

the inerter element force magnitude of the ATMDI with 

reference to the inerter mass ratio are compared in Fig. 7 

under the circumstances of several mass ratio and NAFGF 

values and can be summarized as follows: (1) The inerter 

element force of the ATMDI is insensitive to the active 

control force and larger than that of the TMDI. (2) The 

inerter element force of the ATMDI increases with 

increasing in the inerter mass ratio. (3) The inerter element 

force of the ATMDI can be increased by decreasing the  

 
Fig. 5 Variation trends of max.DMFYT

 used for measuring the stroke of the ATMDI with reference to inerter mass ratio under 

the circumstances of several mass ratio and NAFGF values 

 
Fig. 6 Variation trends of max.DMFUT

 used for measuring the active control force of the ATMDI with reference to inerter 

mass ratio under the circumstances of several mass ratio and NAFGF values 
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mass ratio, but not significantly, especially for a very small 

mass ratio, such as 0.005 and 0.0025. 

 

5.5 Optimum parameter analysis 
 

The variation trends of both the optimum tuning 

frequency ratio and damping ratio of the ATMDI with 

reference to the inerter mass ratio are presented, 

respectively, in Figs. 8 and 9 under the circumstances of 

several mass ratio and NAFGF values, and are briefly 

 

 

 

assessed as follows: (1) The optimum tuning frequency 

ratio of the ATMDI increases with increasing in the inerter 

mass ratio and decreasing in the mass ratio and is 

insensitive to the active control force. (2) It is interesting to 

note that regardless of both the inerter mass ratio and 

NAFGF, given the same mass ratio, such as 0.01, the 

ATMDI and TMDI have practically the same optimum 

tuning frequency ratio. (3) The optimum damping ratio of 

the ATMDI increases with increasing in the inerter mass 

ratio and decreasing in the mass ratio and is larger than that  

 
Fig. 7 Variation trends of max.DMFFI 

used for measuring the inerter element force of the ATMDI with reference to inerter 

mass ratio under the circumstances of several mass ratio and NAFGF values 

 

Fig. 8 Variation trends of the optimum tuning frequency ratio of the ATMDI with reference to inerter mass ratio under the 

circumstances of several mass ratio and NAFGF values 
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Table 3 Further comparison of optimum tuning frequency 

and damping ratios of both the ATMDI and TMDI at nearly 

identical level of effectiveness 

 μT αT μI fTopt ξTopt R 

TMDI 0.01  0.05 2.287 0.361 4.938 

ATMDI 

0.01 

2 0.03 1.883 0.306 4.891 

4 0.01 1.344 0.212 4.841 

6 0.01 1.328 0.251 4.271 

0.005 
6 0.02 2.130 0.319 5.018 

8 0.01 1.657 0.256 4.992 

 

 

of the TMDI. (4) In general, the active control force has 

little impact on the optimum damping ratio of the ATMDI. 

Table 3 renders further comparison of the optimum 

tuning frequency and damping ratios of both the ATMDI 

and TMDI at nearly identical level of effectiveness. In this 

comparison, it is a pleasure to discover that at nearly 

identical level of effectiveness, the optimum tuning 

frequency and damping ratios, as well as the corresponding 

inerter mass ratio of the ATMDI are smaller than those of 

the TMDI in the optimum scenarios. 

 

5.6 Frequency response of the controlled structure 
 

The aim of Fig. 10 is to reveal the status that the 

optimum ATMDI, ATMD, and TMDI affect the 

max.DMFYs
 (frequency response) curves of the controlled 

structure. Fig. 10 clearly depicts that the max.DMFYs
 curves 

of the controlled structure attain two local maxima of equal 

height at two nondimensional frequencies of excitation 

(NFE), including the smaller and larger NFE, whose 

locations depend on both the inerter mass ratio and NAFGF. 

The nondimensional frequency range between the smaller 

and larger NFE is named the suppression bandwidth. In 

 

 

terms of Fig. 10, the optimum ATMDI, ATMD, and TMDI 

all can flatten the max.DMFYs
 curves of the controlled 

structure, which means that the vibration mitigation can be 

achieved over a wider suppression bandwidth. Therefore, 

the control system which brings the wider suppression 

bandwidth will render better robustness. At the 

approximately equal level of effectiveness, the comparison 

among the variations trends in the max.DMFYs
 curves of the 

controlled structure in the first row of Fig. 10 brings the 

following findings. 

Although adopting a remarkably smaller inerter mass 

ratio with respect to the TMDI or a significantly smaller 

active control force with regard to the ATMD, the ATMDI 

may gain the nearly equal suppression bandwidth in the 

case of the same mass ratio. Further, the practically equal 

suppression bandwidth can be actualized making use of the 

ATMDI with a very small mass ratio and a very small 

inerter mass ratio or their different combinations. 

The second row of Fig. 10 exhibits the variation trends 

in max.DMFYs
 of the structure, respectively, equipped with 

the optimum ATMDI, ATMD, and TMDI with respect to 

NFE in consideration of changing several important 

parameters. From the second row of Fig. 10, it can be 

clearly seen that with the increase of the inerter mass ratio, 

the smaller and larger NFE values all decrease; but the rate 

of decline in the smaller NFE is greater than that of the 

larger one. More importantly, with the increase of the 

NAFGF values, the smaller and larger NFE values all 

increase, effectively meaning that the max.DMFYs
 curves of 

the ATMDI are flatter than those of both the ATMD and 

TMDI. From here we see that the suppression bandwidth of 

the ATMDI is wider than that of both the ATMD and 

TMDI and may be further widened through increasing the 

inerter mass ratio and/or active control force. Therefore, the 

proposed ATMDI possesses better robustness (i.e., higher  

 

Fig. 9 Variation trends of the optimum damping ratio of the ATMDI with respect to inerter mass ratio under the 

circumstances of several mass ratio and NAFGF values 
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robustness against the change or the estimation error in the 

structural natural frequency) than both the ATMD and 

TMDI. Distinctly, in the suppression bandwidth, the 

effectiveness of the ATMDI is remarkably higher than that 

of the TMDI. 

 

 

6. Conclusions 
 

The ATMDI has been proposed to attenuate undesirable 

oscillations of structures under the ground acceleration. 

Owing to the high performance and the markedly light 

advantage, it is expected that the proposed ATMDI will be 

widely used in the future for the control of undesirable 

oscillations of super-tall buildings subjected to large 

earthquakes. From the results presented, the following 

conclusions can be drawn: 

(1) Keeping the equal mass ratio and inerter mass ratio, 

the effectiveness of the ATMDI is remarkably higher 

than that of the ATMD. Although greatly reducing the 

mass block, the effectiveness of the ATMDI is yet 

obviously higher than that of both the ATMD and TMDI 

with a large mass ratio, thus indicating that the ATMDI 

can further miniaturize both the ATMD and TMDI. 

(2) At nearly identical level of effectiveness, the ATMDI 

requires the obviously smaller mass ratio and inerter 

mass ratio with respect to the TMDI, thus avoiding the 

difficulty of connecting the inerter due to a large inerter 

element force. 

(3) Although taking minimizing the maximum values of 

the displacement DMF of the controlled structure as the 

goal, the ATMDI can significantly reduce the structural 

acceleration response. Likewise, the effectiveness of the 

ATMDI is higher than that of the ATMD and remarkably 

higher than that of the TMDI. 

 

 

(4) In the context of a very small mass ratio, the ATMDI 

still keeps nearly the same stroke as the TMDI with a 

larger mass ratio with the inerter mass ratio being 

beyond 0.02. Hence, the micro ATMDI has a smaller 

stroke, being suitable for the vibration mitigation of 

super-tall buildings. 

(5) The suppression bandwidth of the ATMDI is wider 

than that of both the ATMD and TMDI and may be 

further widened through increasing the inerter mass ratio 

and/or active control force, demonstrating the ATMDI 

possesses better robustness than both the ATMD and 

TMDI. 

(6) Based on the considerations of both the effectiveness 

and stroke, the inerter mass ratio of the ATMDI is thus 

suggested to be within the range from 0.02 to 0.04. 

Likewise, the economic values of NAFGF are within the 

range from 2.0 to 6.0. 

In closing, based on the above conclusions, it can be 

asserted that the ATMDI is a high performance vibration 

control device and thus has a good application prospect. In 

the present paper, the performances of ATMDI have been 

investigated and demonstrated by extensive simulation 

results in the frequency domain. Surely, further 

investigations may be carried out with a focus on the 

performance evaluation of the ATMDI by using the 

frequency-dependent power spectral density (PSD) 

functions of earthquake ground motions, which are modeled 

as filtered Gaussian white noise processes, e.g., 

Tajimi-Kanai PSD function and Clough-Penzien PSD 

function, corresponding to a modification of Tajimi-Kanai 

PSD function. Likewise, these two models have been 

widely used for studying the vibration control systems of 

structures (e.g., Li and Liu 2004, and Anajafi and Medina 

2018). Also, there is a need of implementing numerical 

simulations in the time domain using a three-dimensional 

 
Fig. 10 Variation trends in max.DMFYs

 of the structure respectively equipped with the optimum ATMDI, ATMD, and TMDI 

with respect to the NFE values 
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model of super-tall buildings subjected to actual and 

artificial earthquake records in order to further conduct the 

performance assessment on the ATMDI. These will be 

discussed in a forthcoming paper by the authors. 
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AT 

 

 

Nomenclature 
 
as Absolute acceleration of the structure 

As(s) Laplace transform of as 

aT Absolute acceleration of the ATMDI 

AT(s) Laplace transform of aT 

ACF-TF Active control force transfer function 

ATF Acceleration transfer function 

ATMD Active tuned mass damper 

ATMDI Active tuned mass damper inerter 

b Inertance coefficient 

cs Viscous damping coefficient of the structure 

cT Viscous damping coefficient of the ATMDI 

Tc
 

Feedback gain of velocity of the ATMDI 

DMF Dynamic magnification factors 

DMFAs
 DMF of acceleration of the structure 

DMFFI
 DMF of inerter element force of the ATMDI 

DMFUT
 DMF of active control force of the ATMDI 

DMFYs
 DMF of displacement of the structure 

DMFYT
 

DMF of displacement of the mass block of the 

ATMDI 

DTF Displacement transfer function 

FF Far-field 

fI(t) Inerter element force 

FI(s) Laplace transform of fI(t)  

fT Tuning frequency ratio of the ATMDI 

fTopt Optimum tuning frequency ratio of the ATMDI 

IEF-TF Inerter element force transfer function 

ks Stiffness coefficient of the structure 

kT Stiffness coefficient of the ATMDI 

Tk  Feedback gain of displacement of the ATMDI 

max.DMFAs
 
Maximum value of acceleration DMF of the 

structure with the ATMDI taking its respective 

optimum parameters 

max.DMFFI
 
Maximum value of inerter element force DMF 

of the ATMDI taking its respective optimum 

parameters 

max.DMFUT
 
Maximum value of active control force DMF of 

the ATMDI taking its respective optimum 

parameters 

max.DMFYT
 
Maximum value of displacement DMF of the 

mass block of the ATMDI taking its respective 

optimum parameters 

MDOF Multi-degrees-of-freedom 

ms Mass of the structure 

mT Mass of the ATMDI 

Tm
 Feedback gain of acceleration of the structure 

MTMD Multiple tuned mass damper 

NAFGF Acceleration feedback gain factors 

NF Near-field 

NFE Nondimensional frequency of excitation 

NTMD Nonlinear tuned mass damper 

PSO Particle swarm optimization 

R 
Minimization of the maximum values of the 

DMF of the structure with the ATMDI 

SDOF Single degree-of-freedom 

TMD Tuned mass damper 

TMDI Tuned mass damper inerter 

uT(t) Active control force 

UT(s) Laplace transform of uT(t)  

ẍg(t) Ground acceleration 

Ẍg(s) Laplace transform of ẍg(t) 

ys 
Relative displacement of the structure with 

reference to the ground 

Ys(s) Laplace transform of ys 

yT 
Relative displacement of the ATMDI with 

reference to the structure 

YT(s) Laplace transform of yT 

αT Normalized acceleration feedback gain factors 

λ Nondimensional frequency of excitation 

ξs Damping ratio of the structure 
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ξT Damping ratio of the ATMDI 

ξTopt Optimum damping ratio of the ATMDI 

ξTMDI Damping ratio of the TMDI 

μI Inerter mass ratio 

μT Mass ratio 

ω External excitation frequency 

ωs 
Structural natural frequency corresponding to 

the vibration mode being controlled 

ωT Natural frequency of the ATMDI 

ωTMDI Natural frequency of the TMDI 

 

163




