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1. Introduction 
 

Stability problems are extremely significant of spatial 

truss structure and have been extensively studied in many 

papers. Rozvany (1996) investigated the relations between 

global buckling and local buckling by analyzing the system 

stability constraints of the structure. Tada and Suito (1998) 

analyzed the dynamic post-buckling behavior of a plane 

parallel chord truss structures and a double-layer space truss 

structure based on the assumption that the mass distributes 

in the member. BEN-TAL et al. (2000) introduced a linear 

buckling model of the stability problems for truss based on 

the strain energy of the structure. Dou et al. (2013) studied 

the elastic out-of-plane buckling load of circular steel 

tubular truss arches by using the static equilibrium 

approach. Halpern and Adriaenssens (2015) investigated the 

nonlinear elastic in-plane buckling behavior of shallow 

truss arches by calculating the equivalent moment of inertia 

and equivalent area of truss cross sections. Madah and Amir 

(2017) studied the local buckling and the global buckling of 

trusses with geometrical imperfection based on 

co-rotational beam formulation using the gradient-based 

method of moving asymptotes. Wattanamankong et al. 

(2017) studied the behavior of lateral buckling of truss 

structures and evaluated the lateral buckling coefficient by 

using buckling of a bar with intermediate compressive 

forces. Tugilimana et al. (2018) analyzed the global stability 

of a truss topology structure by calculating the total 

potential energy using Green Lagrange strain tensor. The 

above studies analyzed the stability of the truss structure by 

calculating the stability parameters of the structure. 

The practices indicated that it is difficult to analyze the 
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stability of the truss structure by calculating the stability 

parameters with the increasing of members. Thus, some 

researchers analyzed the stability of the truss structure 

based on the FEM. Bi (2016) analyzed the linear buckling, 

geometric nonlinear stability and nonlinear stability of 

large-span steel tubular truss based on the FEM. Konkong 

et al. (2017) investigated the lateral buckling of a 

cold-formed steel truss structure by the experimental test 

and FEM analysis. Sui et al. (2018) analyzed the elastic 

global buckling and elastic critical local buckling of the 

double-shell octagonal lattice truss composite structures by 

using the FEM. Unfortunately, most of them only analyzed 

the linear stability or the elastic stability of the structure by 

using the FEM, and they seldom consider the elastic-plastic 

buckling load of the truss structure. 

Meanwhile, some researchers studied the buckling 

behavior of the truss under the earthquake. Ramesh and 

Krishnamoorthy (2005) performed the inelastic 

post-buckling analysis of truss structures by the Dynamic 

Relaxation method. Thai and Kim (2011) carried out the 

nonlinear inelastic time-history analysis of truss structures 

under earthquake with considering the buckling and 

inelastic post buckling. Dai et al. (2013) researched the 

local buckling and global buckling of two gymnasiums of 

steel space structures by investigating the damage of 2013 

M7.0 Lushan earthquake in China. However, most of 

researchers considered the linear buckling strength or 

inelastic post-buckling of the truss structure under 

earthquake, and they seldom took into account the 

elastic-plastic buckling strength of the truss structure under 

earthquake. 

Accordingly, the present study aims to propose a 

buckling strength, the elastic-plastic buckling strength in 

another word, analysis method of the truss structure. In 

particular, the present works focuses on (i) demonstrating 

the proposed buckling strength analysis by analyzing the  
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(a) Member under 

concentrated load 

with rigid 

connection 

(b) Member under 

concentrated load 

with pin connection 

(c) Member under 

gravity with rigid 

connection 

Fig. 1 Member, with different connections, under different 

load 

 

 

buckling strength of the single member models, the portal 

frame models and the simple truss models; (ii) ensuring that 

the proposed formulations consider the effect of the plastic; 

(iii) applying the proposed buckling strength analysis 

method to analyze the buckling strength of a simple truss 

under earthquake. Therefore, the paper is organized as 

follows: Section 1 introduces studies about buckling 

analysis, and a method of buckling strength analysis is 

proposed in Section 2. Several examples of the buckling 

strengths analysis are given in Section 3 to verify the 

method. Buckling strength analysis of simple truss under 

earthquake are given in Section 4. Conclusions and future 

research directions are given in Section 5.  

 

 

2. A method of buckling strength analysis 
 

The buckling strength of structures is affected by many 

factors and is difficult to be calculated. Thus, factors 

relating to buckling strength are introduced firstly. Then the 

relationship between the representative member and the 

truss structure is discussed. Finally, the buckling strength of 

structures is analyzed which is based on the linear elastic 

analysis of the structures, the linear buckling analysis of the 

representative member and the elastic buckling analysis of 

the representative member. 

 

2.1 Factors relating to buckling strength 
 

Taking the theory of Euler’s member buckling for 

example to explain the factors related to the buckling 

strength, the buckling strength 𝑁Euler  of member under 

concentrated load, as shown in Fig. 1(a) and Fig. 1(b), could 

be calculated based on Eq. (1) and the buckling strength 

(𝑞𝑙)cr of member under gravity, as shown in Fig. 1(c), 

could be calculated based on Eq. (2). 

𝑁Euler  
    

( 𝑙) 
 (1) 

(𝑞𝑙)cr  
    

( 𝑙) 
 (2) 

where   is Young’s modulus of the member,   is the 

weakest second moment of inertia of the member’s 

cross-section, 𝑙 is the length of the member and   is a 

parameter corresponding to the boundary of the member 

and the form of load.  

The parameter I and l are related to the configuration of 

the structure. Once the configuration of the structure is 

defined, the parameter I could be calculated in terms of the 

section of the member and the parameter l could be 

calculated in terms of the coordinates of the member’s 

nodes. The values   of the members under concentrated 

load with the rigid connection and pin connection are 2 and 

1, respectively. And the value   of the member under 

gravity with the rigid connection is 1.12. 

Consequently, the buckling strength is related to the 

boundary of the structure by comparing the buckling 

strength of the member under concentrated load with the 

rigid connection and pin connection. In addition, the 

buckling strength is related to the form of the load by 

comparing the buckling strength of the member under 

concentrated load and gravity. In summary, the parameters, 

the configuration, the boundary conditions of structure and 

the form of load, have important influence on the buckling 

strength. 

 

2.2 The relationship between the representative 
member and the truss structure 
 

The representative member (Kato 2014), introduced in 

Section 2.3, is defined by considering the structure 

configuration, boundary conditions, load distribution, 

connections between members and nodes and geometric 

imperfections as well as material and geometric 

nonlinearity. Therefore, the representative member is the 

key member in a structure, and whose failure may lead to 

local buckling, progressive collapse, and even a whole 

structure collapse. Moreover, the buckling strength of the 

representative member can be regarded as the key reference 

value to analyze the buckling strength of the truss structure. 

 

2.3 Linear elastic analysis 
 

The fundamental information on stress, strain and 

displacement of the structure could be obtained by linear 

elastic analysis (Long et al. 2001, Zhang et al. 2019). And 

an equation for linear elastic analysis is obtained as follows 

, E-* +   * + (3) 

where , E- is the material and geometrical linear stiffness 

matrix of the structure, * + is the displacement vector，  

is a factor of loading increment and * + is the load vector 

considering the load distribution of the design load and the 

pertinent load combinations. And the displacement vector 
* +  increases linearly with the increase of   in linear 

elastic analysis. When the value   equals to 1, the 

fundamental responses of the structure on nodal 

displacement * 0𝑖+ , nodal bending moments *𝑀0𝑖+  and 

axial force 𝑁0𝑖  of the 𝑖th element are calculated under 

design load. Here, it should be noted that the characteristic 

magnitude of the load * + is difficult to describe, as that 

the load may vary on the structure with a specified 
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distribution. For convenience, the maximum vertical load 

 0 at node or the maximum vertical load intensity 𝑞0 per 

unit area is defined as the representative load to represent 

the characteristic magnitude of the load * +.  

Importantly, a member whose absolute value of normal 

stress, as given by Eq. (4), is the largest among all members 

in a structure under compression is defined as the 

representative member of the structure (Kato 2014). 

|𝑁0𝑖  𝑖| (4) 

where 𝑁0𝑖 and  𝑖 respectively denote the axial force of 

the 𝑖 th member under the design load and the 

cross-sectional area of the 𝑖th member.  

Under the design load, the axial force of the 

representative member is defined as  𝑁0 , and the load 

applied on it is expressed as  0𝑅 . Moreover, the 

representative member is considered to yield faster than any 

other members under the compression when the value of   

is increased from 0 to a special amount. 

 

2.4 Linear buckling analysis of the representative 
member 
 

An equation based on the matrix displacement method 

for linear stability analysis is shown as follows (Long et al. 

2001) 

(, E-   , s-)* +  * + (5) 

where , s- is the geometric stiffness matrix expressing the 

effect of initial stresses exerted under the design load, and 

  is a factor of loading increment and should be satisfied in 

the eigenvalue problem of Eq. (5). A set of * + could be 

obtained by solving the eigenvalue problem of Eq. (5). The 

lowest positive eigenvalue is defined as the first buckling 

load factor and it is expressed as  cr
lin.  

Consequently, the linear buckling strength of the 

representative member  0R_cr
lin  could be calculated in terms 

of Eq. (6). And the linear axial buckling force of the 

representative member 𝑁0cr
lin  is defined by using the first 

buckling load factor  cr
lin and the axial force 𝑁0 which is 

the axial force of the representative member under the 

design load, as shown in Eq. (7). Similarly, the linear 

buckling load of the structure could be calculated by Eq. 

(8). It means that the structure is linear buckling when the 

value of the representative load  0 or 𝑞0 reaches  cr
lin 0 

or  cr
lin𝑞0. 

 0R_cr
lin   cr

lin 0R (6) 

𝑁0cr
lin   cr

lin𝑁0 (7) 

 0cr
lin   cr

lin 0；𝑞0cr
lin   cr

lin𝑞0 (8) 

 

2.5 Elastic buckling analysis of the representative 
member 
 

Based on the geometrical nonlinear of the structure and 

material linear analysis, elastic buckling load of the 

representative member,  0R_cr
el , could be estimated (Kato  

 
(a) Rigid connection 

 
(b) Connection in structure 

 
(c) Semi-rigid connection 

Fig. 2 Connection of the representative member 

 

 

2014). The elastic buckling load  0cr
el  is generally less than 

the corresponding load obtained by linear buckling analysis, 

as the effect of geometric imperfection and semi-rigidity at 

connection shall be considered in the elastic buckling 

analysis and both of them will reduce the elastic buckling 

load. 

However, not only the imperfection magnitude but also 

the corresponding distribution over the structure is difficult 

to ascertain, and the ratio of buckling load reduction as the 

exact quantity is difficult to compute. Here, the maximum 

imperfection of the structures 𝑤0 is regarded as 1/1000 for 

the long span of the structures according to the steel 

fabrication in AIJ (Architectural Institute of Japan, JASS6 

1996). And one node of the representative member is 

assumed to be given an imperfect of 𝑤0 and almost no 

imperfection is assumed at other nodes. 

The connection of the representative member is often 

assumed to be the rigid connection in the structure, no 

rotation and displacement in the connection as shown in 

Fig. 2(a), and it is convenient to analyze the elastic buckling 

load of the representative member. However, the connection 

of the representative member in red and which is bolded, in 

Fig. 2(b) is regarded as semi-rigidity in the structure since 

the deformation of the member which is connected with the 

representative member will lead to the nodal rotation or 

displacement that will result in the reduction of the buckling 

load of the representative member. The connection of the 

representative member in Fig. 2(b) could be simplified as a 

semi-rigidity connection whose stiffness is between that of 

pin connection and rigidity connection, as shown in Fig. 

2(c), according to the theory of structural mechanics. The 

 A  and  B  are the bending stiffness at the connection 

node A and node B. 

Taking into account the geometric imperfections and 

semi-rigidity at connections, the elastic buckling load of the 
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representative member  0R_cr
el , utilizing the linear buckling 

load of the representative member  0R_cr
lin , could be 

evaluated as the following equation. 

 0R_cr
el     0R_cr

lin  (9) 

   0    (10) 

where  0 and   respectively denote the reduction ratio of 

the elastic buckling load due to the geometric imperfection 

and semi-rigid connection. 

Based on the values 𝜃 of the semi-rigidity as shown in 

Fig. 2(c), the  0 and   could be defined as follows. 

 0  
 0R_cr(imp)
el (𝜃   )

 0R_cr
lin (𝜃   )

 (11) 

  
 0R_cr
el (𝜃   )

 0R_cr
el (𝜃   )

 (12) 

where 𝜃    denotes that the connection is completely 

rigid as shown in Fig. 2(a), 𝜃    denotes that the 

connection is semi-rigidity as shown in Fig. 2(c) and the 

connection could rotate under the bending moment, 

 0R_cr(imp)
el (𝜃   ) means the elastic buckling load of the 

representative member considering the geometric 

imperfection and completely rigid connection, while 

 0R_cr
lin (𝜃   )  means the linear buckling load of the 

representative member considering the rigid connection 

without the imperfection. The  0R_cr
el (𝜃   )  means the 

elastic buckling load of the representative member only 

considering the semi-rigid connection, while  0R_cr
el (𝜃   ) 

means the elastic buckling load of the representative 

member only considering the completely rigid connection. 

Consequently, the elastic buckling load of the 

representative member  R_0cr
el  is expressed in terms of   

or  0cr
el  in Eq. (13). Similarly, the elastic buckling load of 

the truss structure  0cr
el  is expressed in terms of   or  0cr

el  

in Eq. (14). 

 0R_cr
el     0R_cr

lin   0cr
el   0R (13) 

 0cr
el     0cr

lin   0cr
el   0 (14) 

 0cr
el   0     cr

lin (15) 

where  0cr
el  and  0cr

el  mean the elastic buckling load and 

elastic buckling loading factor considering the geometric 

imperfection and semi-rigid connection, respectively. The 

structure will happen to elastic buckling when the 

representative load  0 or 𝑞0 reaches  cr
el 0 or  cr

el𝑞0. 

 

2.6 Evaluation of buckling strength of the structures 
based on the representative member 
 

The buckling strength of the structures is calculated 

based on the generalized slenderness ratios and the axial 

strength of the representative member. 

2.6.1 Generalized slenderness ratio of the 
representative member 

When the   and  0R_cr
el  have been calculated, the 

elastic buckling axial force of the representative member, 

𝑁0cr
el , could be approximately evaluated by Eq. (16) 

considering the geometric imperfection and semi-rigid 

connection. 

𝑁0cr
el    𝑁0cr

lin     cr
lin  𝑁0 (16) 

Referring to the definition of the slenderness ratio of an 

ordinary column in a high-rise building (Kato 2014), the 

generalized slenderness ratio Λ0 of the representative 

member could be given as follows. 

Λ0  √
𝑁 

  𝑁0cr
lin

 (17) 

𝑁   0     (18) 

where 𝑁  means the yield force of the representative 

member under an axial load;  0 means the cross section 

area of the representative member;    means the yield 

strength of the representative member. To avoid joint 

failure, the strength and rigidity of the connection are 

assumed to be large enough compared with the 

representative member. 

 

2.6.2 Axial strength of the representative member 
In most case, the region subjected to buckling is almost 

the same as that subjected to yielding (Kato 2014). 

Therefore, a member in a truss under compression is 

assumed to buckle and yield at the same location. And the 

axial strength 𝑁cr of the representative member can be 

approximately evaluated if the analysis of 𝑁cr is based on 

an appropriate column strength curve (Kato 2014). 

According to the Dunkerley’s formulation for column 

strength curve (Eq. (19)) (Architectural Institute of Japan 

2010, Ogawa et al. 2008), the axial strength of the 

representative member could be calculated by Eq. (20) in 

terms of the generalized slenderness ratio Λ0. 

Λ0
  (

 s𝑁cr
𝑁 

)  (
𝑁cr
𝑁 
)

 

   (19) 

𝑁cr  
 𝑁 

√ s
 Λ0

     sΛ0
 

 
(20) 

where  s is a factor adopting a proposal of Kollar and 

Dulacska (Kollar and Dulacska 1984, Dulacska and Kollar 

2000) to evaluate the axial strength of column. The 

magnitude of  s  ranges from 1.14 to 1.44 as that the 

column strength curves in design code are various in 

different countries (Dulacska and Kollar 2000). Here the  s 
is regard as 1.2 for the column strength curve which is 

similar to that in AIJ LSD (Architectural Institute of Japan, 

1998). 

 

2.6.3 Evaluation of elastic-plastic buckling load of the 
structures 
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(a) Single member model-a (b) Single member model-b 

Fig. 3 The boundary conditions, configurations and the load 

of the single members 

 

  
(a) Portal frame model-a (b) Portal frame model-b 

Fig. 4 The boundary conditions, configurations and the 

loads of the portal frames 

 

 

The elastic-plastic buckling load (buckling strength) of 

the truss structure could be evaluated by Eq. (21) based on 

𝑁cr (Kato 2014). 

 0cr   cr 0 or 𝑞0cr   cr𝑞0 (21) 

 cr  
𝑁cr
𝑁0

 (22) 

where  0  and 𝑞0  are the representative loads which 

have been defined in Section 2.3; 𝑁0 is the axial force of 

the representative member under the representative loads 

 0 or 𝑞0; 𝑁cr is the axial strength of the representative 

member; and  0cr  and 𝑞0𝑐𝑟  are the elastic-plastic 

buckling loads of the truss structure corresponding to the 

 0 and 𝑞0. 

 

 
3. The buckling strength analysis of the structures 
under static loads 
 

The efficiency of the proposed method is verified by 

analyzing the buckling strength of the single members, 

portal frames and simple trusses, and the above buckling 

strengths would be compared with the collapse loads 

obtained by the FEM. 

 

3.1 Configuration of models  
 

The single member, portal frame and simple truss with 

different boundaries, configurations and the loads are 

shown in Fig. 3 to Fig. 5, respectively. And all models are 

  
(a) Simple truss model-a (b) Simple truss model-b 

 
(c) Simple truss model-c 

Fig. 5 The boundary conditions, configurations and the 

loads of the simple trusses 

 

 

Fig. 6 Stress-strain curve for pipes 

 

 

modeled in ABAQUS with beam element B31 (ABAQUS 

6.13 2013, Ma et al. 2019). The connection in members and 

the boundary of all models is rigidity connection that can’t 

rotate and displace. Moreover, all models are meshed by 

free meshing technology in ABAQUS. And in order to 

simplify the analysis, the load P is assumed to be equal to 

1.00 N in all models. The pipes composing all the models 

are mild steel with cross-section: 𝜙 100×5 mm except 

𝜙42.4×3.5 mm for the simple truss model-c. Here, the pipes 

have a yield stress    of 345 MPa, Young’s modulus E of 

206 GPa, and Poisson’s ratio 𝜈 of 0.30. In addition, the 

pipes are assumed to perfect elastic-plastic material with a 

maximum plastic strain of 0.035 and its stress-strain curve 

is shown in Fig. 6. 

The element B31 is based on the assumption that the 

deformation of the structure can be determined entirely 

from variables that are functions of position along the 

structure's length and is suitable for modeling both stout 

members, in which shear deformation is important, and 

slender beams, in which shear deformation is not important. 

And element B31 has six degrees of freedom at each node: 

translations in the nodal, x, y, and z directions, and rotations 

about the nodal x, y, and z axes, as shown in Fig. 7 

(ABAQUS 6.13 2013). 
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Fig. 7 Beam element geometry 
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Fig. 8 The failure loads of the single member models 

calculated by the FEM 

 

 

3.2 The buckling strength analysis of the single 
member 
 

The single member model in Fig. 3, composed of only 

one member, will fail when the representative member fails. 

The representative loads  0, loaded at node b of model-a 

and model-b, are both the concentrated force P. Their linear 

buckling strength can be calculated according to Eq. (6), 

Eq. (7) and Eq. (8), respectively. The main parameters of 

the calculation for linear buckling strength are shown in 

Table 1. 

Here, the reduction of the buckling load, due to 

semi-rigid connection, is ignored as that the single member  

 

 

 

models are directly connected with supports. Namely, the 

parameter   equals to 1.00. The geometric imperfections 

of both models are assumed to be horizontal displacements 

in node b with amplitude 𝑤0 of 2.00 mm according to the 

assumption in Section 2.5. The elastic buckling strengths of 

both models can be calculated according to Eq. (9), Eq. 

(10), Eq. (13) and Eq. (14), respectively, and their 

calculation are shown in Table 2. 

The elastic buckling axial forces and generalized 

slenderness ratios of the single member model-a and 

model-b can be calculated according to the Eq. (16) and Eq. 

(17). After the calculation of generalized slenderness, the 

axial strengths of the single member model-a and model-b 

can be calculated according to Eq. (20), and their buckling 

strengths can be calculated by Eq. (21). The calculation for 

buckling strength is shown in Table 3. 

To verify the proposed method, the buckling strengths of 

the single member model-a and model-b are also analyzed 

by the FEM, as shown in Fig. 8, and the results are 201.98 

kN and 501.85 kN, respectively. 

The ratios of the results calculated by the proposed 

method to that calculated by the FEM for two models are 

80.32% and 76.61%, which are relatively close to each 

other. In addition, the results obtained by the proposed 

method are all lower than that calculated by FEM, the 

reason is that the buckling strength is corresponding to the 

structure buckling modes while the failure loads calculated 

by FEM is the structure collapse loads. 

 

3.3 The buckling strength analysis of the portal 
frames 
 

The portal frame models in Fig. 4, composed of three 

members, will fail when the representative member fails, 

because the failure of the representative member will lead 

to local buckling and progressive collapse of the portal 

frame models. Therefore, the buckling strength of the 

representative member can be regarded as the buckling 

strength of the portal frame models. 

The representative member can be defined by the linear 

elastic analysis and the representative members a-b with red 

and bolded in portal frame model-a and model-b are in Fig. 

4(a) and Fig. 4(b), respectively. The representative load  0  

 

 
 

Table 2 Calculation of the elastic buckling strengths for the single member models 

Model  0R_cr(imp)
el  (𝜃   ) kN  0R_cr

lin  (𝜃   ) kN  0      0cr
lin (kN)  0cr

el   0cr
el /(kN) 

model-a 216.12 216.12 1.00 1.00 1.00 216.12 216.12 216.12 

model-b 1043.26 1043.26 1.00 1.00 1.00 1043.26 1043.26 1043.26 

Table 1 Calculation of linear buckling strengths for single member models 

Model , E- , s-  cr
lin (   ) 𝑁0cr

lin (kN)  0cr
lin (kN) 

model-a [

    

𝑙 
   

𝑙 

   

𝑙 
   

𝑙

]  [

 

 𝑙

 

  
 

  

 𝑙

  

] 216.12 216.12 216.12 

model-b [

   

𝑙

   

𝑙
   

𝑙

   

𝑙

]  [

 𝑙

  
 
 

  

 
 

  

 𝑙

  

] 1043.26 1043.26 1043.26 
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Table 3 Calculation of the buckling strength for the single 

member models 

Model 𝑁0cr
el  (kN) 𝑁  (kN) Λ0 𝑁cr (kN)  0cr (kN) 

model-a 216.12 514.83 1.543 162.22 162.22 

model-b 1043.26 514.83 0.702 384.49 384.49 

 

 

of the portal frame model-a and model-b can be 

respectively defined by the vertical load loaded at nodes b. 

Under the initial load  , the axial force 𝑁0  of the 

representative member of the portal frame model-a and 

model-b are 0.96 N and 1.00 N, respectively. 

The linear buckling strength of the representative 

member of the portal frame model-a and model-b can be 

calculated according to Eqs. (6)-(8), respectively. The 

calculation of the linear buckling strengths is in Table 4. 

It should be noted here that the buckling load reduction 

due to semi-rigid connection was ignored as that the 

representative member of portal frame models in node a is 

directly supported and the semi-rigid effects in node b were 

considered in the materially and geometrically linear 

stiffness matrix , E- in the linear buckling analysis. 

Consequently, the parameter   considering the effects of 

semi-rigid connection can be assumed to be 1.00. However, 

the geometric imperfections 2.00 mm in the horizontal 

displacement in nodes b and c were adopted based on the 

assumption in Section 2.5. The elastic buckling strengths of 

the portal frame model-a and model-b were then calculated 

according to equations Eq. (9), Eq. (10), Eq. (13) and Eq. 

(14), respectively. The calculation process of the elastic 

buckling strengths is in Table 5. The elastic buckling axial 

forces and the generalized slenderness ratios of the portal 

frame model-a and model-b can be calculated by Eq. (16) 

and Eq. (17) as shown in Table 6. Meanwhile, Table 6 

presents their axial strengths and buckling strengths  
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Fig. 9 The failure loads of the portal frame models 

calculated by the FEM 

 

 

obtained by Eq. (20) and Eq. (21). 

Similarly, the failure loads (454.90 kN and 426.36 kN) 

of the portal frame model-a and model-b were also 

calculated by the FEM as shown in Fig. 9 to verify the 

proposed method. And the ratios of the result calculated by 

the proposed principles to the finite element method are 

88.25% and 72.47%, respectively. It is easy to see that the 

buckling strengths estimate by the proposed method are 

lower than the failure loads calculated by the FEM. The 

reason is that the former is related to the structure buckled 

state, while the latter is related to structure collapse state. 

 

3.4 The buckling strength analysis of the simple 
trusses 
 

The simple truss models in Fig. 5, composed of 

horizontal members and vertical members, will fail when 

the representative member fails, since the failure of the 

representative member will lead to local buckling, 

progressive collapse, and even a whole structure collapse.  

 

 
 
 

Table 4 The linear buckling strengths of the portal frame models 

Model , E- , s-  cr
lin (   ) 𝑁0cr

lin (kN)  0R_cr
lin  (kN)  0cr

lin (kN) 

model-a [

    

𝑙 
   

𝑙 

   

𝑙 
   

𝑙

]  [

 

 𝑙

 

  
 

  

 𝑙

  

] 1043.26 1043.26 1043.26 1043.26 

model-b [

    

𝑙 
   

𝑙 

   

𝑙 
   

𝑙

]  [

 

 𝑙

 

  
 

  

 𝑙

  

] 579.59 579.59 579.59 579.59 

 

Table 5 The calculation of the elastic buckling strengths of the portal frame models 

Model 
 0R_  (   )
el  

(𝜃   ) kN 

 0R_  
lin  

(𝜃   ) kN 
 0      0R_cr

lin  (kN)  0cr
el   0R_cr

el /(kN)  0cr
el /(kN) 

model-a 1043.26 1043.26 1.00 1.00 1.00 1043.26 1043.26 1043.26 1043.26 

model-b 579.59 579.59 1.00 1.00 1.00 579.59 579.59 579.59 579.59 

 

Table 6 The buckling strengths of the portal frame models 

Model 𝑁0cr
el  (kN) 𝑁  (kN) Λ0 𝑁cr (kN) 𝑁0 (N)  cr (103)  0cr (kN) 

model-a 1043.26 514.83 0.702 384.49 0.96 401.34 401.34 

model-b 579.59 514.83 0.942 309.00 1.00 309.00 309.00 
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Table 7 The result of the linear elastic analysis 

Model   N  0 N 𝑁0 N 

model-a 1.00 1.00 1.05 

model-b 1.00 1.00 1.00 

model-c 1.00 1.00 2.67 

 

 

Therefore, the buckling strength of the representative 

member can be regarded as the buckling strength of the 

simple truss models. 

The representative member of the simple truss model-a, 

model-b and model-c can be defined by the linear elastic 

analysis using the finite element method according to 

Section 2.3, whose result are in Table 7. The representative 

member with red and bolded in the simple truss model-a, 

model-b and model-c are shown in Fig. 5(a), Fig. 5(b) and 

Fig. 5(c), respectively. The representative loads  0 of the 

simple truss model-a, model-b and model-c can be defined 

by the loads directly applied at the representative member, 

respectively. 

The axial strengths of the representative member of the 

simple truss model-a and model-b were 384.49 kN and 

309.00 kN referring to the analysis of the portal frame 

model-a and model-b in Section 3.3, and their buckling 

strengths were 366.18 kN and 309.00 kN, respectively, 

given by Eq. (21) and Eq. (22). Contrastively, the results of 

obtained by the FEM were 454.90 kN and 426.36 kN as 

shown in Fig. 10. And the ratios of the results obtained by 

the above two methods were 80.49% and 72.47%, 

respectively. 

Referring to the single member model-a in Fig. 3(a), the 

linear buckling strength of the representative member 

 0R_cr
lin  of the simple truss model-c is 10.44 kN, and its 

linear axial buckling force 𝑁0cr
lin  was 10.44 kN. For the 

elastic buckling strength of the simple truss model-c, it must 

consider the effect of the geometric imperfection and 

semi-rigid connection. To consider the geometric 

imperfection, the representative member was regard as 

having an amplitude (𝑤0=12 mm) in node b which was 

along the y-axial and shown in Fig. 11(a), according to the 

assumption in Section 2.5; to considering the semi-rigid, the  
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Fig. 10 The failure loads of simple truss models calculated 

by the FEM 

 

 

 
(a) Geometric imperfection (b) Semi-rigid connection 

Fig. 11 The geometric imperfection and semi-rigid 

connection of representative member 

 

 

representative member of the simple truss model-c can be 

simplified as shown in Fig. 11(b), in which the stiffness of 

moment spring is 8EI/l, to analyze the elastic buckling 

strength of the simple truss model-c. Thence, the materially 

and geometrically linear stiffness matrix , E- of the 

representative member of the simple truss model-c can be 

obtained, referring to the structural mechanics (Long et al. 

2001), shown in Table 8. And Table 8 also presents the 

adjustment factor   as well as its calculation process.  

 

 

Table 8 The elastic buckling adjustment factor   of the simple truss model-c 

Model , E- 
 0R_  (   )
el   

(𝜃   ) kN 

 0R_  
lin  

(𝜃   ) kN 

 0R  
el  

(𝜃   ) kN 

 0R_  
el  

(𝜃   ) kN 
 0     

model-c [

    

𝑙 
   

𝑙 

   

𝑙 
    

𝑙

] 10.44 10.44 33.33 10.44 1.00 3.19 3.19 

 

Table 9 The calculation of the elastic buckling strength of the simple truss model-c 

Model    0R_cr
lin  (kN)  0cr

lin (kN)  0cr
el   0R_cr

el /(kN)  0cr
el /(kN) 

model-c 3.19 10.44 10.44 33.33 33.33 33.33 

 

Table 10 The calculation of the buckling strength of the simple truss model-c 

Model 𝑁0cr
el  (kN) 𝑁  (kN) Λ0 𝑁cr (kN) 𝑁0 (N)  cr (103)  0cr (kN) 

model-c 33.33 147.57 2.104 26.86 2.67 10.06 10.06 
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Table 11 The first five natural frequency and natural period 

of simple truss model-c 

Number Frequency /(Hz) Period /(s) 

1 0.45 2.21 

2 0.45 2.21 

3 0.53 1.89 

4 0.95 1.05 

5 0.95 1.05 

 

 

Following that, its elastic buckling strength can be 

calculated, shown in Table 9, by Eqs. (9)-(10) and Eqs. 

(13)-(14). 

The elastic buckling axial force and generalized 

slenderness ratio of the simple truss model-c were given by 

Eq. (16) and Eq. (17), respectively. Following that, the axial 

strength and the buckling strength were obtained by Eq. 

(20) and Eq. (21), which are shown in Table 10. 

Similarly, the failure load (41.51 kN) of the simple truss 

model-c analyzed by the FEM is also shown in Fig. 10. And 

the ratio is 24.28% between the results obtained by the 

proposed method and FEM. Notably, the result calculated 

by the proposed method is the buckling strength of the 

simple truss models while the FEM is the collapse load of 

the model. In addition, the structure buckling is earlier than 

collapsing. 

 

 

4. The dynamic buckling strength analysis of the 
structure subjected to seismic load 
 

The efficiency of the proposed method under seismic 

load is verified by analyzing the buckling strength of the 

simple truss model-c, and the maximum nodal displacement 

of the simple truss model-c under the buckling strength 

would be compared with that under seismic records. 

 

4.1 Configuration of models 
 

Take the truss model-c under earthquake as an example, 

the aim of this part is to validate the proposed method to 

analyze the dynamic elastic buckling load and buckling 

strength. The roof weight was 2 kN/m
2
 and the nodal load 

was equivalent to the surface area supported and the lumped 

masses applied to the nodes are described by the point 

mass. Both geometrical and material nonlinearities were 

considered in the dynamic analysis and Rayleigh damping 

was assumed based on the natural periods of the first and 

second modes, and the damping ratio was assumed to be 

0.02 (Zhang et al. 2018). The first five natural frequencies 

and periods of the simple truss model-c’ are shown in Table 

11. 

 

4.2 The nodal seismic force 
 

The general seismic force 𝐹Ek of the simple truss 

model-c is calculated by using the response spectrum 

method according to the Code for Seismic Design of 

Buildings of China (China Architecture & Building Press 

2010), as Eq. (23) shown. The simple truss model-c is  

Table 12 The nodal seismic force 

 𝑖 (  )  no e (  )     eq𝑖 (  ) 𝐹Ek𝑖 (  ) 

400 13.35 0.316 3.44 1.08 

 

 

Fig.12 The seismic forces on simple truss model-c 

 

 

assumed to be located in Doujiangyan city in Sichuan 

province. The characteristic period of the site Tg is 0.55 s 

and 0.60 s for frequent earthquake and rare earthquake 

according to the site classification (III) and classification of 

design earthquake (second group), and the peak ground 

acceleration (PGA)  0max is 4.00 m/s
2
 according to the 

seismic fortification intensity (VIII, 0.20 g) and rare 

earthquake in the Chinese code. 

𝐹Ek     eq (23) 

where 𝐹Ek ,    and  eq  denote respectively the general 

horizontal seismic force, the horizontal seismic influence 

coefficient corresponding to the structure natural period and 

the equivalent total gravity load of the structure which times 

0.85 of the total gravity for multi-mass structure, 

respectively. 

Here, the dynamic response analysis of the simple truss 

model-c under the rare earthquake needs to be carried out in 

order to obtain the ultimate load corresponding to the 

ultimate limit state. Therefore, the   , the equivalent total 

gravity load of each node in the structure  eq𝑖, and the 

seismic force loaded on each node 𝐹Ek𝑖 can be calculated 

by Eq. (23), listed in Table 12. 

 

4.3 The buckling strength analysis 
 

The elastic buckling load and buckling strength of 

simple truss model-c could be calculated based on the nodal 

seismic force 𝐹Ek𝑖  listed in Table 12. Here, the nodal 

seismic force was applied along the horizontal direction as 

shown in Fig. 12, and the representative member can also 

be obtained according to its definition in Section 2.3, which 

is member-ae, member-dh, member-a’e’ and member-d’h’, 

and the axial force of the representative member under the 

unite load P is 2.79 N. 

Referring to the buckling strengths analysis of the 

simple truss model-c in Section 3.4, the axial strength of the 

representative member 𝑁cr  is 26.86 kN. Therefore, the 

buckling strength  0cr, calculated by Eq. (21) and Eq. (22), 

is 9.63 kN, and its equivalent peak ground acceleration 

 emax is 35.67 m/s
2
, calculated by Eq. (24). The maximum 

nodal displacement of the simple truss model-c under the 

buckling strength  0cr is 0.622 m. 

 emax  
 0cr
𝐹Ek𝑖

 0max (24) 
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Table 13 The details of the selected ground motion records 

GM NGA# 
Earthquake 

Event 
Mw Station Component PGA/(m/s

2
) 

GM1 8 

Northern 

Calif-01, 

1941 

6.40 
Ferndale 

City Hall 
FRN225 1.117 

GM2 23 

San 

Francisco, 

1957 

5.28 
Golden 

Gate Park 
GGP010 0.833 

GM3 27 
Hollister-02, 

1961 
5.50 

Hollister 

City Hall 
HCH181 0.568 
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Fig. 13 The target response spectrum and response 

spectrum of ground motion records 
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Fig. 14 The peak ground acceleration and maximum nodal 

displacement curves 

 

 

4.4 Time history analysis by the FEM 
 

To verify the proposed principle in the dynamic 

buckling strength analysis, the nonlinear dynamic 

time-history analysis was selected to analyze the dynamic 

response of the simple truss model-c. The target response 

spectrum of the local site in Doujiangyan city was obtained 

according to the Code for Seismic Design of Buildings of 

China (China Architecture & Building Press 2010), as 

shown in Fig. 13. Meanwhile, Fig. 11 also presents three 

response spectrums of three ground motion records selected 

in Pacific Earthquake Engineering Research Center in terms 

of the target response spectrum of the local site (Zhong et 

al. 2018). The details of three ground motion records are 

shown in Table 13. After that, the peak ground acceleration 

and maximum nodal displacement curve of the simple truss 

model-c were obtained, as shown in Fig. 14, by the 

 

Fig. 15 The structure deformation map of the simple truss 

model-c under GM3 

 

 

nonlinear dynamic time-history analysis, and one of the 

structure deformation map of the model under GM3 is in 

Fig. 15. 

Comparing with the equivalent peak ground acceleration 

calculated by the proposed method, the time history 

analysis result is larger than it, especially, the time history 

analysis result under GM3 is far more than it. In addition, 

the result of time history analysis indicated that the 

deformation of the structure was too large to accept for that 

it has exceeded the ultimate limit states and the 

serviceability limit states of the structures. Significantly, the 

FEM analysis only gave the numerical calculation results, 

which can be infinitely large, and there don’t have a 

reasonable failure criterion for truss structures, at present. 

Moreover, the effect of seismic records on the structure 

response is discrete significantly. So it is difficult to judge 

the failure of the structure, and this paper gives a relatively 

reasonable method to calculate structural failure load. 

 

 

5. Conclusions 
 

A new method is proposed to estimate the buckling 

strength of the truss structures based on the buckling 

strength of the representative member considering the 

structure configuration, boundary conditions, load 

distribution, connections between members and nodes and 

geometric imperfections as well as material and geometric 

nonlinearity. And the rationality and applicability of the 

new method are assessed in comparison of the FEM for 

estimating the buckling strength of the single members, the 

portal frames and the simple truss structure. The result of 

seismic analysis indicated that the truss structure has a good 

seismic performance and the effect of seismic records on 

the structure response is discrete significantly. The 

assessment indicates that the new method is feasible and 

reliable to estimate the buckling strengths of the truss 

structures under the static loads and seismic loads in terms 

of the results of the selected structures.  

Admittedly, the proposed method is relatively 

conservative according to the analysis results, and further 

studies are required for elastic buckling load and buckling 

strength analysis for different truss structures. In future, a 

reliable dynamic failure criterion of the truss structures 
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needs to be investigated to reasonably estimate the dynamic 

bearing load of the truss structures subjected different 

seismic records. 
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