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1. Introduction 
 

The steady-state dynamic response of rigid surface 

foundations in viscoelastic homogeneous soils has been the 

subject of much research, in both the kinematic and the 

forced vibration analyses. For the study of rigid surface 

foundations and embedded foundations in a homogeneous 

half-space, several methods have been used to solve the 

soil-structure interaction problem. To simplify the problem 

linear-analysis techniques have been developed. One of the 

most commonly used approaches is the sub-structuring 

method that allows the problem to be analyzed in two parts 

(Kausel et al. 1978, Aubry et al. 1992, Pecker 1984). In this 

approach the analysis of foundation systems can be reduced 

to the study of the dynamic stiffness at the soil-foundation 

interface (known as impedance function) and driving forces 

from incident waves. 

The determination of impedance functions and forces of 

movement related to the incident waves is a complex 

process. Several studies have been conducted on the 

dynamic response of foundation resting on viscoelastic 

homogeneous soils using the finite-element and boundary-

element methods. Wong and Luco (1978) have shown the 

importance of the effect of non-verticality of SV, SH 

harmonics on the response of a foundation. 
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Apsel and Luco (1987) used an integral-equation 

approach based on Green’s functions for multilayered soils 

determined to calculate the impedance functions of 

foundation. Using this approach, Wong and Luco (1986) 

studied the dynamic interaction between rigid foundations 

resting on a half-space. The finite-element method was 

applied by Kausel et al. (1978), Kausel and Roesset (1981) 

and Lin and Tassoulas (1987) to determine the behavior of 

rigid foundations placed on or embedded in soil layer 

limited by a rigid substratum. A formulation of the 

boundary-element method in the frequency domain has 

been developed to address wave-propagation problems of 

soil-structure interaction and structure-soil-structure which 

limits the discretization at the interface soil-foundation. In 

this approach, the field of displacement is formulated as 

integrals equation in terms of Green’s functions Beskos 

(1987), Aubry et al. (1992), Qian and Beskos (1996), 

Karabalis and Mohammadi (1992), Mohammadi (1991). 

Celebi et al. (2006) used the boundary-element method with 

integral formulation (BIEM) to compute the dynamic 

impedance of foundations. The Betti-Rayleigh Dynamic 

Reciprocal Theorem is used by Cao et al. (2010), for 

déterminante the Green’s functions of the soil layers 

mdeium. The finite element method having transmitting 

boundaries is considered for layered system considering 

soil-rock and rock-rock combinations for analysis the 

dynamic response of the foundation resting on 

homogeneous soil and rocks Kumar et al. (2013). A new 

scheme to calculate impedance matrices for axial-

symmetric foundations embedded in halfspace medium was 
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developed by Chung and Liou (2013), in this work the half-

space medium can be approximated by increasing thickness 

of one layer stratum on rigid bedrock. 

McKay (2009) used the reciprocity theorem based on 

the BIEM to analyze the influence of soil-structure 

interaction on the seismic response of foundations. 

However, Suarez et al. (applied the BIEM to determine the 

seismic response of an L-shaped foundation. In addition, 

experimental work has been carried out by researchers in 

Japan to determine the effect of soil-structure interaction on 

the response of real structure Fujimori et al. (1992), Akino 

et al. (1996), Mizuhata et al. (1988), Watakabe et al. 

(1992). The finite element method combined with the 

boundary element method (FEBEM) was used by Auersch 

(2013) to obtain the dynamic response of the infinitely long 

plates rested on a layer soil limited by a substratum. 

The soil in natural state is rarely homogeneous and it 

can exist in a state with a hard rock at shallow depth, 

consisting of different strata with different properties. 

However the effects of no-homogeneity in the soil medium 

on the dynamic response of the foundations have not been 

addressed adequately in the past because of the obvious 

difficulty in analyzing this case. In this context, the 

analytical solutions of 3-D wave equations in cylindrical 

coordinates in layered medium with satisfying the necessary 

boundary conditions are employed by Liou (1989, 2013), 

Liou and Chung (2009). Gazetas (1980) is developed an 

analytical-numerical formulation for study the foundations 

on an elastic isotropic medium consisting of heterogeneous 

layers. Mandal and Baidya (2004), Mandal et al. (2013) 

used an experimental investigation for study the effect of 

layer in rigid base on the dynamic behavior of foundation 

under a vertical mod of vibration. Ahmad and Rupani 

(1999) presents an extensive investigation into the influence 

of key mechanical and geometrical parameters on 

horizontal impedance of square foundations resting on or 

embedded in a two-layer soil deposit. Using the cone 

model, the vertical dynamic response of foundation resting 

on a soil layer over rigid rock is studied by Pradhan et al. 

(2004). The results are presented in the term of vertical 

dynamic impedance. Using the BEM-TLM method, Sbartai 

and Boumekik (2008) have studied the dynamic response of 

two square foundations placed or embedded in soil layered 

limited by a substratum. 

Recently, Messioud et al. (2016) studied the effects of 

soil structure interaction on the seismic response of 

foundation resting or embedded in the soil layered limited 

by a rigid bedrock under a harmonic seismic waves. In this 

study, the method has been applied to analyze the effect of 

some parameters on the dynamic response of the 

foundations (depth of the substratum, embedding, masses 

and shape of the foundation and frequency)..  

In our study, the solution is derived from the BEM in the 
frequency domain with constant quadrilateral elements and 
the thin-layer method is used to analyze the effect of soil-
structure interaction on the seismic response of the 
foundation resting on a viscoelastic soil layer limited by 

rigid bedrock. The results are presented as of displacements 
as a function of dimensionless frequency, angle of incidence 
(vertically and horizontally) and the effects of rigidity soil 
layer.  

 

Fig. 1 Geometry of a foundation subjected to harmonic 

seismic waves 

 
 

2. Physical model and basic equations 
 

The geometry of the calculation model is shown in Fig 

1. Consider 3-D rigid massless surface foundation of 

arbitrary shape S in full contact with a homogeneous, 

isotropic, and linearly-elastic soil that is limited by bedrock. 

The soil is characterized by its density ρ, shear modulus G, 

damping coefficient β and Poisson’s ratio ν. The foundation 

is subject to harmonic oblique-incident waves that are time-

dependent: P, SV, SH and R. 

The movement of a not-specified-point “ζ” can be 

obtained from solving the wave equation 

0)( 2

,

2

,

22

  ijjiSijjSP uuCuCC   (1) 

Where Cs, and Cp are the velocities of shear and 

compression waves and ω the angular frequency of 

excitation. 

ui is the component of the harmonic displacement-vector 

in the x-direction; 

uj,ij is the partial derivative of the displacement field 

with respect to x and y; 

ui,jj
 
is the second partial derivative of the displacement 

field with respect to y. 

The solution of Eq. (1) may be expressed by the 

following integral equation 

  
S

iijj dsTxGxu  ),(),,(),(  
(2) 

With Gij denoting the Green’s functions at point i due to 

unit-harmonic load (vertical and horizontal) of the ground at 

point j and Ti being a load (traction) distributed over an area 

of soil. 

The medium is continuous so this relationship is very 

difficult to assess. However, if the soil mass is discretized 

appropriately, this relationship can be made algebraic and 

displacement can be calculated. The key step of this study is 

to determine the impedance matrix linking the harmonic 

forces applied to the resulting harmonic displacement. Even 

with a continuous medium the determination of the 

impedance matrix is still very difficult, if not impossible, 

due to the propagation problem and its mixed-boundary 

conditions. However, if the medium is discretized vertically 

Bedrock 
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and horizontally then it is possible to making the problem 

algebraic by considering that the variation of interface 

displacement is a linear function 

 
2.1 Discretization of the model 
 
We limit ourselves to the general representation of the 

problem. If a source acts on (or in) a massif multilayered, a 

multitude of reflection and refraction takes birth to the level 

of the interfaces. Even if the nature of the primary 

incidental wave is known, it would be very difficult to 

know the nature of the resulting waves in the massif. The 

quantity of energy transmitted of a layer to the other by the 

refracted waves would be therefore difficult to determine. 

Considering the pressure of confinement, the rigidity of 

the layers generally increases with the depth. The energy 

transmitted of a layer to the other decreases therefore with 

the depth. Besides, the Bedrock is (of very elevated rigidity) 

sufficiently deep, the reflection of the waves would be total 

to this level. The incidental and reflexive waves form this 

fact, in the massif, a system of stationary waves, whose 

energy would propagate itself mainly in the parallel 

direction to the interfaces (horizontally). It would be 

therefore reasonable, to simplify the survey of problem, to 

make the hypothesis of a horizontal propagation of the 

waves thought in the multilayered massif The principle of 

horizontal and vertical discretization of soil mass is shown 

in Fig. 2. The principle of vertical discretization based on 

the division of every soil layer into a number of sub-layers 

of height hj with similar physical characteristics. Each 

sublayer is assumed to be horizontal, viscoelastic, and 

isotropic, and characterized by constant Lame λj, a shear 

modulus μi and a density ρj. The bedrock at depth Ht is 

considered infinitely rigid and is not discretized. The 

reflection wave is assumed to be total and the displacements 

null. 

Ht: height of soil mass; 

h1: height of the sublayer 1; 

Nx: number of elements in the x-direction for a 

horizontal plane;  

Ny: number of elements in the y-direction for a 

horizontal plane;  

Nz: number of soil layers. 

n : number of soil layer 

N is the total number of elements in soil-foundation 

interface and Bx and By are the dimensions of the 

foundation. 

Within a given sublayer, the displacement is assumed to 
be a linear function of interface displacement above and 
below. This is true when the height of the sublayer is small 
in relation to the wavelength considered (in the order of 
λ/10). This method is comparable to the FEM in the sense 

that the movements within each sublayer are completely 
defined from the displacements in the middle of the 
interfaces. The interaction between the elements is done 
only through the nodes. The degrees of freedom of the soil 
mass are reduced to the degrees of freedom of the nodes. 
The stiffness matrix of soil mass is obtained in a similar 

manner to how it is determined in the FEM. 
This technique has been developed by Lysmer and Waas 

(1972) and is known as the thin-layer method (TLM) and is  

 

Fig. 1 The model of calculation 

 

 

used mainly for horizontal soil layers. This method has the 

advantage to making the problem algebraic and thus obtains 

the Green’s functions by applying the boundary elements 

method in the soil-foundation interface. For this reason a 

horizontal discretization of the interface soil-foundation is 

established. 

The horizontal discretization permits to subdivide any 

horizontal interface of soil-foundation by elements of 

square-sections Sk. These elements where the constant-

moving average is replaced by the movement of the center, 

assumes that stress distribution is uniform and is shown in 

Fig. 2. Seeking simplicity of the integration calculation and 

economy of computing time the square elements are 

approximated disc elements. If the units loads (along the 

direction x, y, z) are applied to disc j, the Green’s functions 

at the center of disc i can be determined. By successively 

applying these loads on all discs, the flexibility matrix of 

soil complex at a frequency of a given ω can be formed. 

The discretized model to calculate the impedance functions 

of the foundation is also presented in Fig. 2. In the discrete 

model, Eq. (2) is expressed in algebraic form as follows 

 



N

i S

iijj dsTGu
1

 (3) 

The Green’s function Gij for a layered stratum is 

obtained by an inversion of the thin-layer stiffness matrix 

using a spectral-decomposition procedure of Kausel and 

Peek (1982), Messioud et al. (2016). The advantage of the 

thin-layer-stiffness matrix technique over the classical 

transfer-matrix technique for finite layers and the finite-

layer-stiffness matrix technique of Kausel and Roesset 

(1981) is that the transcendental functions in the layered-

stiffness matrix are linearized.  

 

 

3. Calculation model  
 

The total displacement of the soil matrix is obtained by 

successive application of unit loads on the constituents of 

the discretized solid ground. The displacements in the soil 

are then expressed by  
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     tGu   (4) 

The vectors {u}
 
and {t} are the nodal values of the 

amplitudes of displacements and tractions respectively at 

the interface soil-foundation. [G] is the flexibility matrix of 

the soil. 

When the foundation is in place, it requires different 

components of soil displacement consistent with rigid body 

motions. Compatibility of displacements at the contact area 

S between the soil and the rigid foundation leads to the 

matrix equation  

     Ru  (5) 

[R] is the transformation matrix 
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R
 

(6) 

{Δ}={Δx, Δy, Δz, Φx, Φy, Φz} is the displacement vector; 

Δi(i=x,y,z) represents translations and Φi(i=x,y,z) rotations 

(Fig. 1). 

If we denote {P}
 

the vector of load applied to the 

foundation, the equilibrium between the vector of loads 

applied and the forces (tractions) distributed over the 

elements discretizing the volume of the foundation is 

expressed by the following equation 

     tRP t  (7) 

Combining Eqs. (4), (5) and (7) we obtain the following 

equation 

         


RGRP
t 1 =   )(K  (8) 

with ω
 
is the circular frequency of vibration and [K(ω)] the 

impedance or dynamic-stiffness matrix of the rigid 

foundation. 

Considering an incident plane, SH, P, SV and R 

harmonic waves are characterized by the vertical and 

horizontal angles of incidence θV 
and θH respectively, as 

shown in Fig. 1. The motion of the half-space due to these 

seismic waves can be expressed by the following equation 

     cyxiff HHeUu
/)sin.cos.(  

  (9) 

   tf

z

f

y

f

x

f UUUU ,,  , is known as the vector of 

amplitudes of the soil, that depends on the z coordinate if 

we want to study the embedded foundations case. However, 

in the case of surface foundations (z=0), it is known as the 

vector of amplitudes of the free field. c is the apparent 

velocity of the incident waves having the form 

VV

c
cor

c
c

 coscos

21 

 

for P or S waves, 

respectively, and being equal to the R-wave. The explicit 

expressions of the vector {U
f
} of waves SH, P, SV and R 

may be found in Wong and Luco (1978). 

The presence of a rigid foundation on the surface of the 

half-space results in diffraction of the above waves so that 

the total displacement field {u} is expressed the following 

equation 

     sf uuu   (10) 

where {u
s
} represents the scattered wave field that satisfies 

the equation of motion (5). Also, the total displacement 

field in the contact region between the foundation and the 

half space must be equal to the rigid body motion of the 

foundation. 

      fs uRu   (11) 

Substituting Eq. (5) into Eq. (11), written in terms of the 

traction forces 

       fuRtG   (12a) 

hence 

          fuGRGt 11 
  (12b) 

Multiplying both sides of the Eq. (12b) by the transpose 

of the transformation matrix and combining with Eqs. (10) 

and (11) yields the external forces 

                fttt
uGRRGRtR 11 

  (13) 

The equilibrium between external forces and seismic 

forces can be as follows 

       fUKKP *  (14) 

with [K
*
] is the driving force matrix given by the following 

formula 

       cyxit HHeGRK
/)sin.cos.(1*    (15) 

Eq. (14) can be replaced by the alternative form 

       fUSPC *  (16) 

where  

[C]=[K]
-1

 is the dynamic compliance matrix and [S
*
] is the 

input motion matrix given by the following formula 

    ** KCS   (17) 

When the rigid foundation is acted upon by seismic waves 

only, the external forces are zero (P=0), and the seismic 

response of the foundation is obtained from Eqs. (15) or 

(17) by the following expression 

    fUS*  (18) 

When the mass of the foundation is not zero, one simply has 

to replace [K] by [K]−ω
2
 [M] in the above equations, where 

[M] is mass matrix of the foundation. 

 

 

4. Validation of the method 
 

The accuracy of the BEM-TLM method used in this 

paper to study the 3D-response of foundations subject to 

plane-harmonic waves with variable angles of incidence 

and dimensionless frequency ao is validated through 

comparisons with results obtained by Luco and Wong 

(1977), Qian and Beskos (1996) for a semi-infinite ground. 

A parametric study was conducted to define the parameters 

of the calculation model. The influence of the discretization 

of the soil-foundation interface was studied. The thickness 

of a sub-layer “h” must be small enough that the discrete 

model can transmit waves in an appropriate manner and  
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Fig. 4 The coefficient of movement Sxx a square foundation 

(θH=0°, θV=45° and cs/c=0.70711) 

 

 

Fig. 5 The response a square foundation under the Rayleigh 

wave cR/c=0.9325 

 

 

without numerical distortion. This size depends on the 

frequencies involved and the velocity of wave propagation. 

The frequency of loading and velocity of wave propagation 

affect the precision of the numerical solution. Kausel and 

Peek (1982) showed that the thickness of sub-layer must be 

smaller than a quarter of the wavelength λ. Consequently, 

the maximum dimensionless frequency must not exceed the 

number of sub-layer N divided by four. 

Consider a rigid massless square foundation of side 

Bx=2a on the surface of the half-space with a Poisson’s ratio 

of v=1/3 and subjected to plane P, SV, or SH harmonic 

waves (θH=90° and θV=45°). Fig. 4 shows the variation of 

the real and the imaginary part of coefficient Sxx movement 

based on the dimensionless frequency . The 

results obtained by the proposed method are in agreement 

with those obtained by the method used by Qian and 

Beskos. Considering the same foundation subjected to a 

Rayleigh wave where the angle of horizontal incidence is 

(θH=0) and the corresponding velocity taken is equal to 

cR=0.9325.c for a Poisson’s ratio v=1/3. 

Fig. 5 shows the real and the imaginary part of 

dimensionless displacement x/HR function of frequency ao. 

The results of this study using the BEM-TLM method were 

compared with those of Qian and Beskos. 

The results obtained are in agreement with those of 

Beskos and Qian (1996) and those of Luco and Wong 

(1977). However, a difference is present for dimensionless 

frequencies ao higher than 2.5. This difference can be 

explained in two ways: 

 

Fig. 6 Geometry of a rigid surface foundation posed in the 

heterogeneous soil subjected to seismic harmonic waves 

 

 

Qian and Beskos isoparametric elements were used to 

determine the soil-foundation interface. These types of 

elements are more accurate than constant elements used by 

the method developed in this article.  

Qian and Beskos and Luco and Wong use the Green’s 

functions of a semi-infinite soil whereas our method used 

the Green’s functions of soil bounded by bedrock. 

 

 

5. Response of a massless foundation to incident P, 
SV and SH-waves traveled the layer medium 
 

A square rigid surface dimension Bx=2a=1 m posed in a 

two layered soil limited by rigid bedrock and subject to P, 

SV and SH waves (Fig. 6) is considered. The medium is 

laminated and consists by two layers soil. Characteristics 

are the following: The layers soil is characterized by, their 

Poisson’s ratio is ν=1/3, the coefficient of the hysteretic 

damping β=0.05, the shear modulus G=1, and its density 

ρ=1. The height of the first layer soil is 1m and the height of 

the second layer soil is greater than 10 m. By varying the 

stiffness ratio of the first layer on second layer (G1/G2 = 0, 

0.25, 0.5, 1). The wave velocity is calculated by the 

following relationship: Cs =


G
  

Where G and ρ are the characteristics of the first layer. 

To present results that are easier to understand visually, 

the driving-force vectors are converted to input-motion 

vectors by multiplying by the inverse of the impedance 

matrix. The response of the massless foundation to incident 

body waves of type P, SV SH traveled the heterogeneous 

soil is considered. The nature of the P, SV and SH waves 

traveled the medium is determined depending on the 

characteristics of the first layer. It is assumed that the 

reflected energy transmitted by the waves propagating is 

parallel to the layers soil interfaces. The results are 

presented in terms of displacement and torsion as functions 

of the dimensionless frequency . 

 

5.1 Influence of the flexibility of heterogeneous soil on 
the seismic response 
 

In this section of results, the apparent velocity of the P,  
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Fig. 7 Horizontal input motion Δx due to incident P-waves 

(v=45°, H=0°) 

 

 
Fig. 8 Horizontal input motion Δz due to incident P-waves 

(v=45°, H=0°) 

 

 
Fig. 9 Rocking input motion ϕy due to incident P-waves 

(v=45°, H=0°) 

 

 

SV and SH waves is considered constant. The Flexibility 

matrix of soil layer is determined by the characteristics of 

the heterogeneous medium. The dynamic response of the 

foundation has been obtained for incident P and SH waves 

through the first layer soil (Fig. 6) for a vertical angle of 

incidence equal to 45° the amplitudes of motion in free field 

wave SV equal to zero. 

 

Compression wave (P) 
Figs. 12-14 show the response of a massless foundation 

to an incident P-wave. The wave travels in the x-direction 

with its particle motion in the z and x-directions. Except for 

the vertical incidence θv=90°, the incident P-wave causes a 

conversion mode and reflected SV-wave results. One 

 
Fig. 10 Horizontal input motion Δx due to incident SH-

waves (v=45°, H=90°) 

 

 

considered a vertical angle of incidence of 45° measured 

with respect to the x-axis. The wavelength of the incident P-

wave is twice as long as that of the incident S-waves; 

therefore, the kinematic interaction is less prominent. In 

general, the P-wave induces displacement along the x and z-

axes and rotation around the y-axis. 

Figs. 7-9 show the variation of displacements and 

rotation as a function of dimensionless frequency and the 

influence of the G1/G2 ratio on the input motion of 

foundation.  

The displacements (Δx, Δz) and rotation (ϕy) are affected 

due to the diminution of shear ratio (rigidity) of two soil 

layers, especially for the high frequencies. In addition, the 

imaginary part of the vertical displacement Δz 
is strongly 

affected by the rigidity of first soil layer that the horizontal 

displacement Δx and rotation. 

 
Shear Wave SH 
The response of the square massless foundation to a SH-

wave is presented in Figs. 10 and 11, with a horizontal 

angle of incidence H=90°. The incident wave travels in the 

y-direction; therefore, the particle motion of the wave is in 

the x-direction. The shear wave causes displacement and 

torsion. Figs. 10-11 show the influence of G1/G2 ratio on 

displacement Δx and torsion ϕz.  

Fig. 10 shows the influence of shear ratio G1/G2 on the 

seismic response of a square foundation resting on a layered 

medium. The real part of Fig. 10 shows, for the ratio 

G1/G2=1 (layered medium is homogeneous) the 

displacement of the foundation is strongly attenuated 

compared to displacement given by the low ratios of G1/G2. 

For the ratio G1/G2 = 0, the second layer is relatively rigid 

to the first layer, the figure shows that the displacement is 

strongly affected by the effect of environment. A significant 

increasing of the displacement has been marked and the 

frequency is changed compared to shear ratio (G1/G2 =1). 

Fig 11 shows the influence of shear ratio G1/G2 on the 

variation of the torsion function of frequency. For high 

frequencies the imaginary part shows for G1/G2 ~0 (the 

second layer is infinitely rigid), the torsion is strongly 

affected by the effect of medium. For G1/G2=0.25, 0.5, 1 

and for lower frequencies ao=3, the torsion is weakly 

affected by the effect of medium.  
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Fig. 11 Torsion-input motion ϕz due to incident SH-waves 

(v=0°, H=90°) 

 

 
Fig. 12 Horizontal input motion Δx due to incident P-waves 

(v=45°, H=0°) 

 

 

Figs. 10-11 show that the horizontal displacement and 

the torsion are strongly affected by the rigidity of layers 

soil. For dimensionless frequencies lower than 3 (ao <3), the 

torsion ϕz is not affected by increasing the relative rigidity 

especially for the ratios G1/G2=0.25, 0.5, 1. However, the 

horizontal displacement Δx is strongly affected by an 

increase of the rigidity.  

 

5.2 Influence of the apparent velocity on the seismic 
response of the foundation  
 

Now, consider the calculation model presented in the 

Fig. 6. The apparent velocities of waves P and SH are 

calculated as function of characteristics of the first layer. In 

this section, the results are presented for P and SH waves 

for a vertical incidence angle 45° for the ratio G1/G2=0, 

0.25, 0.5, 1 

 

Compression wave (P) 
Figs. 12-13 show the influence of G1/G2 ratios on the 

seismic response of a square foundation posed on stratified 

medium. Fig. 12 shows that horizontal displacement is 

strongly affected by the compressible layer soil (layer1). 

For shear ratio G1/G2 ~0, the appearance of resonance peaks 

in the real and imaginary parts has been marked, and the 

evolution of the displacement is does more controlled 

between negative and positive values. However, for shear 

ratios G1/G2=0.25 and 0.5, the variation of displacements is 

uniform with the real part of displacement Δx is strongly 

 
Fig. 13 Vertical input motion Δz due to incident P-waves 

(v=45°, H=0°) 

 

 
Fig. 14 Rocking input motion ϕy due to incident P-waves 

(v=45°, H=0°) 

 

 
Fig. 15 Horizontal input motion Δx due to incident SH-

waves (v=45°, H=90°) 

 

 

attenuated that the displacement of the G1/G2=1. For high 

frequencies the imaginary part is increased according to the 

diminution of G1/G2 ratio. The same remarks are noted for 

displacement Δz except that the sign of displacement is 

changed. 

Fig. 13 shows that the rotation is strongly affected by 

the effect of the stiffness of the first layer. For shear ratio 

G1/G2~0 the appearance of resonance peaks for low and 

high frequencies is noted, and the low frequencies are 

amplify and the rotation becomes considerable Fig. 14. 

 

Shear Wave SH 
Fig. 15 shows the influence of G1/G2 ratio on the  
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Fig. 16 Torsion-input motion ϕz due to incident SH-waves 

(v=45°, H=90°) 

 

 
Fig. 18 Horizontal input motion Δx due to incident P-waves 

(v=45°, H=0°) G1/G2~0.0 

 

 

seismic response of a square foundation resting on a layered 

medium. For the G1/G2~0, the horizontal displacement is 

strongly affected by the effect of medium. 

A significant diminution of displacement has been 

marked, the lower frequencies are amplified and the 

evolution of displacement is not controlled. For the ratio 

G1/G2 =0.25, the real part and imaginary part for horizontal 

displacement are strongly affected by the rigidity of the first 

layer soil. The horizontal displacement is strongly 

attenuated that the displacement for homogeneous medium 

G1/G2 =0.25,1. 

Fig. 16 shows the influence of G1/G2 ratio on the 

variation of the torsion versus frequency. For high 

frequencies and for the G1/G2~0 the imaginary part of 

torsion is strongly affected by the effect of medium and 

becomes important for low frequencies. For the ratios 

G1/G2=0.25, 0.5, 1 and for lower frequencies (ao< 3), the 

torsion is weakly affected by the effect of medium. In 

contrast, for a report G1/G2~0, the torsion is strongly 

affected.  

 

5.3 Influence of the depth of the first soil layer 
 

Considered the calculation model presented in the Fig. 

6. The apparent velocities of waves P and SH are calculated 

as function of characteristics of the first layer. The results 

are presented for P and SH waves for a vertical incidence 

angle 45° for the depth h1=1, 1.5 and 2 m.  

 
Fig. 19 Vertical input motion Δz due to incident P-waves 

(v=45°, H=0°) G1/G2~0.0 

 

 
Fig. 20 Rocking input motion ϕy due to incident P-waves 

(v=45°, H=0°) G1/G2~0.0 

 

 
Fig. 21 Horizontal input motion Δx due to incident SH-

waves (v=45°, H=90°) G1/G2~0.0 

 

 

Compression wave (P) 
Figs. 18-20 show the influence of the height of the 

compressible soil layer on the seismic response of the 

foundation. Figs. 18-19 show that Δx and Δz displacements 

are affected by the height of the compressible soil layer 

especially for height hr=1.5 m. Beyond this height, the 

displacements are not affected. Fig. 20 shows that the 

rotation is not affected by the height of the compressible 

soil layer. There is a slight difference between the presented 

results and for some frequencies. 

 

Shear Wave SH 
 

Figs. 21-22 show the influence of the height of the  
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Fig. 22 Torsion-input motion ϕz due to incident SH-waves 

(v=45°, H=90°) G1/G2~0.0 

 

 

compressible layer on the dynamic response of the 

foundation under the SH wave for G1/G2=0. These figures 

show that the displacement and torsion of the foundation is 

not affected by the height of the compressible soil layer. 

 

 

6. Conclusions 
 

The interaction of a seismic square-rigid foundation 

placed in a heterogeneous viscoelastic soil and subjected to 

obliquely incident harmonic P, SV and SH waves was 

implemented. A simplified BEM-TLM was developed and 

used to calculate the foundation-input motion under 

different travelling seismic waves. The solution was 

formulated by the boundary-element method in the 

frequency domain using the formalism of Green’s functions. 

Constant quadrilateral elements were used to study the 

seismic response of a foundation. The efficiency of this 

technique was confirmed by comparison with results 

rigorously obtained by the use of the relationship between 

the solution of the radiation problem associated with the 

soil-impedance functions, and the solution of the scattering 

problem associated with the foundation-input motion. This 

remarkably simple technique was concluded to be both 

highly effective and economical to determine input motions 

for rigid foundations of arbitrary geometry. The originality 

of the method lies first in the insignificance of the number 

of elements used in the discretization of the model, and 

second, in the ability to simulate a medium constituted by 

several soil layers of which different characteristics.  

This study shows the importance of the heterogeneous 

soil on the behavior of a foundation. The results indicate 

that: 

The heterogeneity of soil affects the terms of 

displacements, rotations and torsion and therefore the 

dynamic behavior of the foundation especially for low 

frequencies. The movement of the foundation is strongly 

affected by the rigidity of second layer especially at high 

frequencies.  

For the shear wave SH the results have shown that, for 

the compressible soil layer, the displacements and torsions 

are amplified, especially for the low frequencies. The 

resonance peaks are more marked, their amplitudes are 

weaker because of the reflections of the waves in the rigid 

soil layer and the movement of the foundation is not 

controlled.  

Contrary to the SH-wave, the amplitudes of the 

displacement and rotation provoked by the P-wave are 

higher for low and high frequencies. For high frequencies 

the displacements and rotation are affected due to the 

diminution of shear ratio G1/G2 (rigidity) of soil layers. The 

imaginary part of the vertical displacement is strongly 

affected by the rigidity of first soil layer that the horizontal 

displacement and rotation. In addition, the imaginary part of 

the horizontal and vertical displacements is increased 

according to the diminution of G1/G2 ratio. As regards the 

range of motion in translation, that the real part of the 

displacement is significantly reduced by the presence of the 

compressible layer soil (for the shear ratio G1/G2~0 and 

0.25).  

For SH-wave, the variation of the depth of the first soil 

layer has not influence on the movement of the foundation.  

Finally the heterogeneity of soil affects the terms of 

displacements, rotations and torsion and therefore the 

dynamic behaviour of the foundation especially for low 

frequencies. 

In general, the analysis of the influence of soil 

heterogeneity is more complex because of the multitude 

reflexions in the interface of the layers soil and the 

foundation.  
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