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1. Introduction 
 

In order to improve of expedient structural 

characteristics, the properties of individual constituents of 

engineering materials i.e., the metals and the ceramics are 

used in combination to achieve a heterogeneous composite 

material termed as functionally graded materials (FGMs). 

The FGMs have an inherent advantage over the 

conventional laminated and sandwich composite structures 

in the sense that the variation in the properties is continuous 

and smooth in the preferred directions. The directional 

control over the properties is attained by varying the 

volume fractions of two or more materials spatially. As a 

result of this, the FGM structure/structural components are 

devoid of delamination which is often observed in layered 

composite structures due to material discontinuities at the 

lamina interfaces. Thus, the failure of the load transfer 

mechanism owing to the concentration of inter-laminar 
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stresses leading to reduced stiffness. This, in leads, to the 

lower overall structural strength and the functional failure 

of the structures is circumvented. Therefore, graded or the 

graded sandwich structural components are favorably found 

in numerous high-performance engineering applications 

specifically as thermal-barrier systems. Recently the 

FG/FG-sandwich structures have also achieved 

considerable attention asvital elements for future power 

generation and high speed spacecraft industries (Vinson 

2001). Several experimental, analytical and numerical 

studies have been conducted to recognize the static and 

dynamic characteristics of FG sandwich panels using 

various existing and modified kinematic models in the past 

(Jha et al. 2012, Bousahla et al. 2016, Boukhari et al. 2016, 

Bouderba et al. 2016, El-Haina et al. 2017, Bellifa et al. 

2016). An extensive review of the diverse existing and 

improved theories (classical (CPT) (Ghannadpour et al. 

2012, Ovesy et al. 2015), first-order (FOSDT) and higher 

order shear deformation theory (HOSDT) (Sherafat et al. 

2013, Baseri et al. 2016, Bousahla et al. 2014, Ait Yahia et 

al. 2015, Sekkal et al. 2017, Menasria et al. 2017, Karami 

et al. 2018, Zine et al. 2018), hybrid theories and 3D 

elasticity techniques are employed for the modeling and 

analysis of the FG plates and shells have been presented by 

Thai and Kim (2015). A simpler modified FOSDT with 

fewer unknowns for analyzing the flexural behavior of FG 

sandwich plates has also been provided by Thai et al. 

(2014), Abdelaziz et al. (2011) obtained the closed form 

solution for the static responses of FG sandwich plates 

using a four-unknown based HOSDT together with Navier 

method. Lok and Cheng (2001) also presented the closed 
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form solution for the forced response of truss-core thick 

sandwich panels by using the Rayleigh-Ritz method. 

Meziane et al. (2014) analysed the bucking and free 

vibration responses of FG sandwich flat panels by 

considering the nonlinear variations in the in-plane 

displacement over the thickness of the panels. The 

inevitability of the HOSDT for predicting bending 

responses of laminated composite and sandwich flat panels 

analytically have been revealed by Kant and Swaminathan 

(2012). Analytical 3-D elasticity solution for the sandwich 

panels with FG core subjected to transverse loading has also 

been derived (Anderson 2003). Zenkour (2005a) 

implemented a sinusoidal shear deformation plate theory for 

computing the bending responses of FG sandwich flat 

panels with ceramic core. Later, this approach has been 

further extended to study the buckling and free vibration of 

FG sandwich plates (Zenkour 2005b). Additionally, a 

refined trigonometric HOSDT has also been presented for 

the flexural analysis of simply supported ceramic-metal FG 

sandwich plates (Zenkour 2013). Kashtalyan and 

Menshykova (2007) performed 3D elasticity analysis of 

sandwich panels with FG core subjected to transverse 

loading. We also note the use of finite element method 

(FEM) for the bending and vibration analysis of FG 

sandwich panel structures. Natarajan and Ganapathi (2012) 

analysed the bending and free vibration behaviour of FG 

sandwich plates based on a HOSDT with 13 degrees of 

freedom and employed an eight-noded quadrilateral element 

for discretization purpose Das and Barut (2006) studied the 

thermo-mechanical behaviour of thick sandwich panels with 

FG core by using a triangular third order shear deformation 

theory (TOSDT). Yang et al. (2008) utilized a perturbation 

technique in conjunction with Galerkin method to study the 

nonlinear bending responses of FG sandwich panels in the 

frame work of FOSDT. A comparative study on the 

thermomechanical bending of FG sandwich structures using 

the CPT, the FOSDT and TOSDT has also been reported 

(Zenkour and Alghamdi 2010). Also, the size dependent 

bending (Kolahchi and Heydari 2015), nonlinear bending, 

vibration and post-buckling analysis of sandwich which 

plates with FG sheets resting on elastic foundation have 

also been performed (Wang and Shen 2011). Further, 

various types of refined theories (Bennoun et al. 2016, 

Draiche et al. 2016, Bellifa et al. 2017, Attia et al. 2018, 

Fourn et al. 2018), higher-order shear and normal 

deformation theories (Houari et al. 2013, Mahi et al. 2015, 

Belabed et al. 2014, Mahmoudi et al. 2018, Belabed et al. 

2018, Ayache et al. 2018, Benadouda et al. 2018) and 

unified shear deformation plate theory (Zenkour and 

Alghamdi 2008) have also been utilized every now and then 

to study the elastic/thermoelastic bending of FG sandwich 

panels. Researchers have also utilized higher-order zigzag 

theories (Kolahchi et al. 2017a) to study the bending 

responses of FG sandwich flat rectangular (Neves et al. 

2012) and circular (Alipour and Shariyat 2012) plate 

structures. Several studies considering the stretching effect 

(Chaht et al. 2015, Hamidi et al. 2015, Abualnour et al. 

2018, Younsi et al. 2018) with an aim of accurately 

estimating the flexural behaviour of the structure have also 

been reported. Neves et al. (2012) utilized a mesh-less 

technique in the framework of quasi-3D HOSDT to analyse 

the static, free vibration and buckling responses of 

sandwich FG plates. Nguyen-Xuan et al. (2013) utilised a 

fifth-order shear deformation theory in conjunction with 

isogeometric FE to investigate the vibration and bending 

responses of laminated composite sandwich plates. Sobhy 

and Zenkour (2015) studied the influence of time harmonic 

sinusoidal variation of temperature over the surface and 

variation through thickness on the bending characteristics of 

FG sandwich plates resting on Pasternak‟s foundation. 

Also, the studies on flexural and free vibration responses of 

composite sandwich panels reinforced with CNT have been 

reported in the past (Natarajan et al. 2014). Kolahchi and 

his colleagues (Kolahchi 2017, Kolahchi and Arani 2016, 

Kolahchi et al. 2017b, Kolahchi et al. 2016) studied the 

buckling, bending and vibration behaviour of laminated 

nanoplates using several refined theories. 

The brief review of literature reveals that the FG 

sandwich panels have been extensively studied for their 

flexural and free-vibration responses by using various 

analytical/numerical/mesh-free techniques in the framework 

of several mid-plane kinematic theories. However, majority 

of the studies consider flat panels only and the doubly 

curved (cylindrical, spherical, elliptical and hyperboloid) 

FG sandwich shell panel structures have got less attention. 

Based on the author‟s knowledge, numerical studies 

pertaining to the flexural characteristics of FG sandwich 

curved panels implementing HOSDT via FEM are yet to be 

reported. In the current study, the flexural characteristics of 

curved FG shell panel structures are investigated in the 

framework of the HOSDT with nine-degrees of freedom in 

conjunction with FEM. A nine-noded quadrilateral 

isoparametric element is utilized for discretization purpose. 

After testing the stability and efficacy of the proposed 

scheme through convergence and validation studies, 

numerous numerical results are provided to investigate the 

influence of various geometrical factors and material 

parameters on the flexural characteristics of FG sandwich 

curved panel structures. The useful inferences are brought 

out by solving appropriate numerical examples. 

 

 

2. Formulation and solution technique 
 

A general mathematical formulation for obtaining the 

flexural responses of doubly curved functionally graded 

sandwich shell panels is derived. The core is considered to 

be purely ceramic whereas the face sheets have material 

graded (from ceramic to metal) functionally along the 

thickness direction. The material properties (young‟s 

modulus, density and Poisson‟s ratio) vary as per the 

following relation 

( )( ) ( ) n

m c m fP z P P P V             (1) 

where, Pm and Pc are the material properties of metal and 

ceramic, respectively, Vf

(n)
 is the volume fraction of the 

ceramic (n=1,2,3). The volume fraction of the ceramic 

varies through the thickness as per the following power-law 

 

56



 

Finite element solution of stress and flexural strength of functionally graded doubly curved sandwich shell panel 

 

 

 

(1) 0
0 1

1 0

(2)

1 2

(3) 3
2 3

2 3

, [ , ]

1 , [ , ]

, [ , ]

k

f

f

k

f

z h
V z h h

h h

V z h h

z h
V z h h

h h

 
  

  


  


  
     

 

(2) 

where, the thickness coordinate (z) levels h0, h1, h2 and h3 

are defined in Fig. 1 which illustrates the geometry of the 

shell panels based on the principal radii of curvature along 

the longitudinal and transverse directions. 

In the present analysis, curved panels with dimensions 

(a×b×h) m
3
and having a rectangular base (projection of the 

curved panel would be a rectangle) are considered. The 

thickness of the core is denoted as “hc” whereas the 

thickness of the bottom and top face sheets are denoted as 

“hf1” and “hf2”, respectively such that h=hc+hf1+hf2. The 

principal radius of curvature along x and y direction is R1 

and R2, respectively. The curved panel geometries are 

defined as: cylindrical (R1=R, R2=∞), spherical (R1=R, 

R2=R), elliptical (R1=R, R2=2R), hyperboloid (R1=R, R2=   R) 

and flat (R1=R2=∞) on the basis of curvature, where Ris a 

constant. The displacement field (p, q and r) of the FG shell 

panel i.e., the displacements of a point along the x, y and z 

coordinates based on the HOSDT kinematic relation is 

expressed as (Kant and Swaminathan 2002) 
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 (3)     

where, p0, q0 and r0 are the mid-plane displacements of a 

point with respect to corresponding coordinates. p1 and q1 

are the rotations of transverse normal about the y- and x-

axes, respectively. The higher-order functions p2, q2, p3 and 

q3 defined in the mid-plane of the shell are involved in 

present displacement field.  

Now, the strain displacement field can be expressed as 
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By substituting Eq. (3) in Eq. (4), the strain vector can 

further be given as 

0 1 2 3

0 1 2 3

2 30 1 2 3

0 1 2 3

0 1 2 3

xx x x x x

yy y y y y

xy xy xy xy xy

xz xz xz xz xz

yz yz yz yz yz

k k k

k k k

z z zk k k

k k k

k k k

 

 

 

 

 

        
        
        

         
             
         
         
                  

 (5) 

The Eq. (5) can further be expressed as 

}ˆ]{[}{  T                  (6) 

where, }ˆ{   0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
T

x y xy xz yz x y xy xz yz x y xy xz yz x y xy xz yzk k k k k k k k k k k k k k k     
)
   0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

T

x y xy xz yz x y xy xz yz x y xy xz yz x y xy xz yzk k k k k k k k k k k k k k k     
)  

   0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
T

x y xy xz yz x y xy xz yz x y xy xz yz x y xy xz yzk k k k k k k k k k k k k k k     
)

 
is the mid-plane strain vector and [T] is the function of 

thickness coordinate.  

The present shell panel model is discretised using a nine 

noded quadrilateral Lagrangian isoparametric element with 

nine degrees of freedom associated with each node. 

The elemental displacement vector is expressed as 
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1
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is the 

nodal displacement vector at node i. Ni is the shape function 

for the  i
th

 node and the details can be seen in (Cook et al. 

2000).  

The mid-plane strain vector as expressed in Eq. (6) can 

be rewritten in terms of nodal displacement vectors as 

}]{[}ˆ{ 0i
B                   (8) 

where, [B] is the product form of differential operators and 

the shape functions in the strain terms. Thus, the stress-

strain relationship for the FG shell panel can be expressed 

as 

   Q    
                (9) 

where, T

yzxzxyyyxx }   {}{     is stress vector and [ ]Q  
is the reduced stiffness matrix. 

The strain energy of the curved shell panel can be 

expressed as 
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Fig. 1 Geometry and material variation in FG sandwich curved panels with ceramic core 

57



 

Sushmita Dash, Kulmani Mehar, Nitin Sharma, Trupti Ranjan Mahapatra and Subrata Kumar Panda 

 

   
1

2

T

v

U dV             (10) 

Eq. (10) can be rewritten by substituting strains and 

stresses from Eqs. (6) and (9) and conceded as 
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The elemental form of strain energy (as given by Eq. 

(11)) can be rearranged by substituting Eq. (8) in it to have 

the following form 
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Eq. (12) can further be expressed as 
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is the elemental 

stiffness matrix. 

The total work done by externally applied load (q) can 

be expressed as 

 dxdyqP T }{}{ 0             (14) 

The elemental form of work done by the applied load is 

given as 

}{}{ 0 e

T

e FP
i

               (15)  

where, {λ} is the global displacement vector and {Fe} is the 

elemental force vector as a result of the mechanical load.  

The final form of governing equation of the FG shell 

panel is derived using variational principle which is 

designated as 

0 eee PU            (16) 

where, δ is the variational symbol and Πe is the elemental 

potential energy.     

The global form of the equilibrium equation for static 

analysis is obtained by substituting Eqs. (13) and (15) inEq. 

(16) and conceded as 

[ ]{ } { }K F                 (17) 

where, [K] is the global stiffness matrix and {F} is the 

global mechanical load vector. Eq. (17) is solved to obtain 

the deflection of the system. 

 

 

3. Result and discussion 
 

The flexural responses of curved higher-order FG 

sandwich shell panels are computed through a domestic FE 

code developed in MATLAB environment. The cylindrical,  

Table 1 Material properties used in the analysis 

 Aluminium Alumina Zirconia 

Young‟s modulus (E, GPa) 70 380 151 

Poisson‟s ratio (ν) 0.3 0.3 0.3 

 

Table 2 Configuration in different FG sandwich panel 

symmetries 

Symmetry h0 h1 h2 h3 

1-2-2 -h/2 -3h/10 h/10 h/2 

1-1-3 -h/2 -3h/10 -h/10 h/2 

2-1-4 -h/2 -3h/14 -h/14 h/2 

2-1-3 -h/2 -h/6 0 h/2 

4-1-3 -h/2 0 h/8 h/2 

 

 

spherical, elliptical, hyperboloid and flat shell panel 

geometries are considered for the current study. The static 

analysis is conducted for two combinations of metal and 

ceramic materials namely, Aluminium/Alumina [Al/Al2O3] 

and Aluminium/Zirconia [Al/ZrO2]. The material properties 

of the metal and the ceramic in the aforementioned 

combinations are mentioned in Table 1 (Lok and Cheng 

2001). 

The FG sandwich panels are subjected to the sinusoidal 

load applied on the surface and given as 

)/sin()/sin(),( 0 byaxqyxq         (18) 

where, 0q  is the load intensity at the panel center. 

The symmetry of FG panels is defined in terms of the 

ratio of face and core thickness and represented as 

hf1−hc−hf2. The various symmetry schemes of the panels 

considered in the present analysis are summarized in Table 

2. The variation of volume fraction along the panel 

thickness for various power-law indexes are also portrayed 

in Fig. 2.  

The solutions are computed using different sets of 

support conditions in the combination of clamped (C), 

simply-supported (S) and free (F) supports to avoid rigid 

body motion and to reduce the number of unknowns. The 

restricted field of variables at the panel edges corresponding 

to each condition are given as:  

• Simply-supported (S) 
x=0, a q0=r0=q1=q2=q3=0 

y=0, b q0=r0=p1=p2=p3=0 

• Clamped (C) 
x=0, a, 

y=0, b 

p0=q0=r0=p1=q1= 

p2=q2=p3=q3=0 

• Free (F) 
x=0, a, 

y=0, b 

p0=q0=r0=p1=q1= 

p2=p2=p3=q3≠0 

Based on this definition, the combinations end supports 

are utilized for the current numerical analysis i.e. (a) All 

sides simply supported [SSSS], (b) All sides clamped 

[CCCC], (c) Two opposite sides are simply supported and 

others free [SFSF], (d) Two opposite sides are simply 

supported and others clamped [SCSC], (e) Two opposite 

sides are clamped and others free [CFCF] and (f) Cantilever 

(one side clamped, others free) [CFFF]  

The panels are assumed to have the following 

dimensions throughout, unless specified otherwise: h=0.005 

m, a/h=50, a/b=1, R/a=5. The core-face thickness ratio is 

defined as hc/hf wherein h=hc+2hf. The Aluminium-Alumina  
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(Al/Al2O3) material properties are utilized, if not stated 

explicitly. The central deflection is nondimensionalized as 

W=10hE0r(a/2,b/2)/a
2

0q ,
 
where E0=1 GPa. The normal stress 

(σxx) and transverse shear stress (σxz) are 

nondimensionalized as ),2/,2/(
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and 
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0
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h
xzxz   , respectively. The convergence 

behaviour of the model is tested and the validity of the 

results is first established. Subsequently, the model is 

extended to solve several numerical examples to investigate 

the influence of varying power-law index, thickness ratio,  

 

 

aspect ratio, sandwich symmetry type, geometry, curvature 

ratio and support conditions on the flexural behaviour of FG 

sandwich curved panel structures under the influence of 

sinusoidal load. 

 

3.1 Convergence study 
 

Firstly, the stability of the presently developed model is 

tested through convergence study. The nondimensional 

central deflection values of simply-supported Aluminium-

Alumina (Al/Al2O3) FG square sandwich shell panels of 

different geometries and subjected to sinusoidal distributed 

load are computed. Panels with geometrical specifications  
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Fig. 2 Variation of volume fraction along the panel thickness for various power-law indexes: (a) 1-2-2, (b) 1-1-2, (c) 2-1-4, (d) 

2-1-3, (e) 4-1-3 FG sandwich panel 
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Fig. 3(a) Convergence behaviour for simply supported 

curved FG shell panels 
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Fig. 3(b) Convergence behaviour for clamped cylindrical 

FG shell panels 

 

 

as: h=0.005 m, a/h=50, R/a=5, hc/hf=3 and the load 

parameter=1MPa are considered. Fig. 3(a) depicts the 

variation of nondimensional central deflection (W/h) values 

for k=5 with increasing mesh size for the considered curved 

panel geometries. Further, clamped square cylindrical FG 

sandwich shell panels (h=0.005 m, a/h=10, R/a=20, 

hc/hf=10) composed of Aluminium-Zirconia (Al/ZrO2) are 

considered. The flexural responses are computed for 

increasing mesh size corresponding to k=0, 1, 2, 4 and 10 

and shown in Fig. 3(b). From both the examples it can 

clearly be observed that the model is showing excellent 

convergence rate with the mesh refinement and on the basis 

of the convergence studies, a (6×6) mesh has been utilized 

for the computation of responses for throughout the 

analysis.  

 

3.2 Validation study 
 

In order to demonstrate the effectiveness of the present 

Table 3 Comparison of nondimensional central deflection of 

simply supported FG sandwich flat panels 

k Theory 1-0-1 2-1-2 1-1-1 1-2-1 2-2-1 

0 

CPT (Zenkour 2005a) 0.1856 0.1856 0.1856 0.1856 0.1856 

TOSDT 
(Zenkour 2005a) 

0.19606 0.19606 0.19606 0.19606 0.19606 

FOSDT 

 (Zenkour 2005a) 
0.19607 0.19607 0.19607 0.19607 0.19607 

Present (HOSDT) 0.1959 0.1959 0.1959 0.1959 0.1959 

1 

CPT (Zenkour 2005a) 0.3105 0.2942 0.2803 0.2596 0.2692 

TOSDT 

(Zenkour 2005a) 
0.3236 0.3063 0.2920 0.2709 0.28085 

FOSDT 

(Zenkour 2005a) 
0.3248 0.3075 0.2930 0.2717 0.28168 

Present (HOSDT) 0.3232 0.3059 0.2916 0.2706 0.2805 

2 

CPT (Zenkour 2005a) 0.3589 0.3394 0.3207 0.2910 0.30405 

TOSDT 

(Zenkour 2005a) 
0.3734 0.3523 0.3329 0.3026 0.31617 

FOSDT 
(Zenkour 2005a) 

0.3751 0.3541 0.3344 0.3037 0.31738 

Present (HOSDT) 0.3729 0.3519 0.3324 0.3022 0.3158 

5 

CPT (Zenkour 2005a) 0.40905 0.3916 0.37128 0.3495 0.33474 

TOSDT 
(Zenkour 2005a) 

0.4112 0.39418 0.37356 0.35123 0.33631 

FOSDT 

(Zenkour 2005a) 
0.39227 0.37789 0.35865 0.33693 0.32283 

Present (HOSDT) 0.4089 0.3915 0.3711 0.3343 0.3493 

10 

CPT (Zenkour 2005a) 0.3988 0.3894 0.3724 0.3361 0.34915 

TOSDT 

(Zenkour 2005a) 
0.4177 0.4041 0.3855 0.3482 0.36215 

FOSDT 

(Zenkour 2005a) 
0.4192 0.4066 0.3879 0.3500 0.36395 

Present (HOSDT) 0.4173 0.4038 0.3852 0.3478 0.3619 

 

 

developed model for computing the flexural responses 

precisely, the central deflection obtained using the present 

scheme is compared with the benchmark results available in 

the open literature. The FG sandwich flat panel (simplest 

form of curved panels, R1=R2=∞) example as solved by 

Zenkour (2005a) is reproduced for the validation purpose. 

The central deflection values in nondimensional form are 

computed for 1-0-1, 2-1-2, 1-1-1, 1-2-1 and 2-2-1 

symmetries flat panels (h=0.1 m, a/b=1, a/h=10) 

corresponding to k=0, 1, 2, 5 and 10. The comparison of 

present central deflection values with those reported by 

Zenkour (2005a) presented in Table 3 clearly shows the 

close conformance of the current results with the reference 

data. However, it is noted that the responses computed 

using the present model are lesser in comparison to the 

values reported by Zenkour (2005a). This is primarily 

attributed to the difference in theories utilized for modelling 

the panel structure. It is important to mark here that the 

present model is based on more general HOSDT kinematic 

relations and solved via FEM steps whereas the reference 

(Zenkour, 2005a) utilized CPT, TOSDT and FOSDT for 

structural modeling and computed the responses 

analytically.  

Further, in order to build more confidence in the present 

model, the present nondimensional normal stress σ’xx 

varying with the thickness coordinate z is compared with 

the values reported by Zenkour (2005a) obtained in the 

framework of TOSDT. Fig. 4(a) and (b) illustrate the  
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Fig. 4 Comparison of nondimensional normal stress varying 

with the thickness coordinate of the simply supported FG 

sandwich plate: (a) (1-2-1) scheme, (b) (1-1-1) scheme 

 

 

variation of stress for 1-2-1 and 1-1-1 symmetries of the 

sandwich panels, respectively, corresponding to k=0, 1 and 

2. It is evident that present values are in excellent 

agreement with the reference thereby justifying the 

correctness of the present results. 

 

3.3 Numerical Illustrations 
 

After having established the stability and validity of the 

proposed scheme, several numerical examples are now 

solved to understand the influence of different parameters 

such as power-law index (k), geometry, aspect ratios (a/b), 

curvature ratio (R/a), thickness ratio (a/h) and support 

conditions on the flexural responses of FG sandwich curved 

shell panels. The detailed discussion is mentioned in the 

following sub-sections. 

 

3.3.1 Effect of power law index 
Simply supported FG sandwich curved shell panels of 

different geometries and diverse core-face thickness ratios 

(hc/hf=0, 0.5, 1, 2, 5, 10) are analysed to observe the 

influence of varying power-law index (k=0, 0.5, 1, 2, 5, 10) 

on the flexural responses. Fig. 5(a) and (b) indicate the 

central deflection values for spherical, elliptical and 

cylindrical, hyperboloid shell panels, respectively. It is 

observed that the deflection is same for a particular  
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Fig. 5 Influence of power-law index on nondimensional 

central deflection: (a) Spherical and elliptical panels, (b) 

Cylindrical and hyperboloid panels 

 

 

geometry corresponding to k=0 irrespective of hc/hf values. 

However, the central deflection increases with increasing 

power-law index for all of the geometries considered and 

the increase in deflection is larger for panels with low core-

face thickness ratio. Also, the increase in deflection with 

increasing power-law index dies out for higher hc/hf values 

as the panels becomes increasingly stiff owing to the 

ceramic core becoming thicker. This behaviour is observed 

in all the geometries considered. Moreover, the deflection is 

less in case of doubly curved panels (spherical and 

elliptical) compared to that in singly curved cylindrical 

panel and hyperboloid (having positive as well as negative 

curvature) panel and the same is evident from Figs. 6(a) and 

(b). As expected, the spherical panels have smaller 

deflection compared to elliptical panels as the presence of 

higher curvature along transverse direction makes the 

panels stiffer. Interestingly, cylindrical panels exhibit lesser 

deflection values as compared to hyperboloid panels. 

Moreover, the variation of nondimensional normal stress 

(σ’xx) and transverse shear stress (σ’xz) along the thickness is 

obtained for k=0, 1, 5, 10 and depicted in Fig. 6 for FG  
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sandwich flat panels having symmetry schemes 1-3-1 and 

1-0-1. The normal stress is the more dominant compared to 

transverse shear stress. 

 

3.3.2 Effect of thickness ratio 
In this section the influence of thickness ratio (a/h) on 

the flexural behaviour of FG sandwich (k=2) curved panels 

under [SCSC] support condition is investigated. For 

computation purpose, the thickness ratio is varied (by 

keeping h constant) as a/h=25, 50, 75, 100 and 125. The 

 

 

 

variation of central deflection with the a/h for the 

considered geometries corresponding to different core-face 

thickness ratios (hc/hf) is illustrated in Fig. 7. It can be 

observed that the central deflection increases with 

increasing thickness ratio for all of the considered 

geometries. It is to be marked that the increase in central 

deflection with increasing thickness ratio is higher in the 

case of elliptical panels as compared to the spherical panels 

for a particular core-face thickness values. It is worthy to 

note that, the variation in central deflection is less  
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Fig. 6 Influence of power-law index on nondimensional stress: (a) σ’xx for 1-3-1 scheme, (b) σ’xz for 1-3-1 scheme, (c) σ’xx for 

1-0-1 scheme, (d) σ’xz for 1-0-1 scheme 
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Fig. 7 Influence of thickness ratio index on nondimensional central deflection: (a) Spherical and elliptical panels, (b) 

Cylindrical and hyperboloid panels 
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Fig. 8 Influence of aspect ratio on nondimensional central 

deflection: (a) Spherical and elliptical panels, (b) 

Cylindrical and hyperboloid panels 

 

 

corresponding to lower thickness ratios and gradually 

increase for higher a/h values. A similar trend is observed in 

the case of cylindrical and hyperboloid panels and the same 

can be observed from Fig. 7(b). However, the maximum 

deflection (occurring for hc/hf=0) for elliptical panels 

exceeds that for spherical panels by 53.87%. Similarly, in 

contrast with the trend observed in the example for varying 

power-law index, the deflection for hyperboloid panels 

exceeds the corresponding values for cylindrical panels. In 

the present case the maximum deflection for hyperboloid 

panel is 59.05% higher than that for the cylindrical panel. 

 

3.3.3 Effect of aspect ratio 
The influence of varying aspect ratio (a/b) on the central 

deflection of curved sandwich panels is now investigated. 

For the present analysis, the dimension b is varied and a is 

kept constant such that a/b=1, 1.5, 2 and 2.5. The panels 

(k=2) are considered to be under [CFCF] support condition 

and the responses are depicted in Fig. 8 (a) and (b). It is 

observed that the deflection of cylindrical panels is not 

influenced by varying aspect ratio. However, for other 

geometries, the deflection initially increases rapidly with 

increasing aspect ratio and exhibits asymptotic behaviour 

corresponding to higher aspect ratio values. Moreover, the  
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Fig. 9 Influence of sandwich symmetry type on 

nondimensional central deflection: (a) Aluminium/Alumina 

(Al/Al2O3), (b) Aluminium/Zirconia (Al/ZrO2) 

 

 

variation in deflection is larger for panels with lower core-

face thickness ratio. 

 

3.3.4 Effect of sandwich symmetry type 
It is expected that the stiffness of the sandwich panel 

will be significantly governed by the type of symmetry. 

Therefore, in this example simply supported square 

spherical sandwich shell panels (R/a=20 and a/h=20) with 

Aluminium/Alumina (Al/Al2O3) and Aluminium/Zirconia 

(Al/ZrO2) material properties are considered for 

investigating the influence of sandwich symmetry type (1-

2-2, 1-1-3, 2-1-4, 2-1-3 and 4-1-3) on the deflection 

behaviour. Fig. 9 (a) and (b) illustrates the variation of 

nondimensional central deflection for the considered 

schemes corresponding to Al/Al2O3 and Al/ZrO2 material, 

respectively. It is evident that the deflection values are 

higher for Al/ZrO2 panels in comparison to the 

corresponding values for Al/Al2O3. This may be attributed 

to the lower stiffness of the Zirconia core. Further, for both 

of the materials, the 4-1-3 scheme has the highest and the 1-

2-2 scheme has the lowest deflection for all values of 

power-law index. It is to be marked that the 4-1-3 scheme is 

constituted of the thinnest, whereas, the 1-2-2 scheme is 

constituted of the thickest core and thereby influencing the  
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Fig. 10 Influence of geometry on nondimensional central 

deflection 

 

 

stiffness and consequently the central deflection values of 

the panels. 

 

3.3.5 Effect of geometry 
To study the influence of geometry on the flexural 

responses the central deflection values of simply supported 

cylindrical, spherical, elliptical, hyperboloid and flat FG 

sandwich shell panels (hc/hf=3 and k=2) are computed for 

varying sinusoidal load and plotted in Fig. 10. Additionally, 

the nondimensional normal and transverse stresses are 

obtained for the considered geometries corresponding to 

q0=1 MPa and illustrated in Fig. 11. It is observed that the 

central deflection increases with increasing load irrespective 

of the geometries. However, it is worthy to note that the 

deflection increases as the curvature of the panels increases 

and the spherical shell panels exhibit least deflection of all 

the considered geometries. It is interesting to note that the 

deflection for hyperboloid and flat shell panels are in close 

proximity of each other. This is attributed to fact that the  

 

 

presence of positive and negative curvature (the centre of 

curvatures lie on the opposite sides of the panel) in the 

hyperboloid panel that make it resemble the flat panels. A 

similar trend is observed from the plot of nondimensional 

normal and transverse stresses plotted in Fig. 11(a) and (b), 

respectively.  

 

3.3.6 Effect of curvature ratio 
The influence of five different curvature ratios (R/a =1, 

2, 5, 10 and 25) on the deflection behaviour of simply 

supported shell structures (cylindrical, spherical, elliptical 

and hyperboloid) are investigated and presented in Fig. 

12(a) and (b). The variation of curvature ratio (R/a) are 

obtained by changing the values of „R‟ keeping „a‟ constant. 

The deflection values of the three shell panels (cylindrical, 

spherical and elliptical) are following an increasing line. 

However, the curvature ratio has insignificant effect for the 

hyperboloid shell structure. Additionally, the deflection 

responses are significant for the small values of curvature 

ratios in comparison to the higher R/a, irrespective of 

geometrical configurations. Moreover, the deflection values 

are higher for the lower core-to-face thickness ratios for 

each type of geometries and results follow the expected 

line. 

 

3.3.7 Effect of support conditions 
Finally, the influence of support conditions on the 

flexural behaviour of FG sandwich curved shell panels 

(hc/hf=3 and k=2) is investigated. As expected, the number 

of constraints at the supports alters the stiffness of the 

panels. The spherical and elliptical panels (doubly curved) 

have lesser deflection compared to cylindrical and 

hyperboloid panels due to higher stiffness caused by 

curvature and the same can be observed from Fig. 13(a) and 

(b). The defection increases with increasing sinusoidal load.  

Further, the [CCCC] condition has the least, whereas, the 

[SSSS] condition has the highest central deflection 

irrespective of the geometries of the panel considered. The 

[HHHH] condition is stiffer compared to [SCSC] condition 

and consequently the deflection is smaller in the former 

condition. 
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Fig. 11 Variation of nondimensional stress with thickness: (a) Normal stress, (b) Shear stress 
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Fig. 12 Influence of curvature on nondimensional central 

deflection: (a) Spherical and elliptical panels, (b) 

Cylindrical and hyperboloid panels 

 
 
4. Conclusions 
 

In this paper, the flexural behaviour of FG sandwich 

curved shell panels have been investigated using the 

HOSDT based mid-plane kinematic model constituting of 

nine degrees of freedom and implemented via own FE code 

developed in MATLAB environment. The core is 

considered to be made of ceramic whereas the faces are 

functionally graded. The convergence and validation study 

demonstrated that the present formulation yields valid and 

reliable estimate of the flexural responses of FG sandwich 

shell panels. From the extensive parametric study 

performed using the present model it is observed that the 

central deflection values increase with increasing power-

law index values as well as the thickness ratio whereas 

decreases with increasing number of constraints at the 

supports. However, as the core-face thickness ratio 

increases, the stiffness of the panels increases due to the 

core becoming thicker and consequently the deflection of 

the panels decreases. The spherical panels are the stiffest 

due to the presence of equal curvatures along the 

longitudinal as well as transverse directions. The sandwich 

symmetry scheme 4-1-3 contributes to maximum deflection 
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Fig. 13 Influence of support conditions on nondimensional 

central deflection: (a) Spherical and elliptical panels, (b) 

Cylindrical and hyperboloid panels 

 

 

amongst all of the schemes considered. The central 

deflection for all the geometries increases with increasing 

curvature ratio whereas a reverse trend is noticed in the case 

of the hyperboloid panels.  
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