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1. Introduction 
 

Reinforced concrete shear walls act as major earthquake 

resisting members in design of buildings and these are the 

main structural elements of Nuclear Power Plants (NPPs). 

Failure of these shear walls is quite complex and depend on 

parameters like aspect ratio, axial load ratio, presence of 

boundary elements and reinforcement percentage. Hence, 

realistic evaluation of performances of shear walls 

subjected to earthquake is the subject of research. The 

methodology needs to be developed and validated with 

experiments for different aspect ratios of shear walls. 

Therefore, scientific research in this area is very intensive 

and has resulted in many experimental programme and 

analytical model development in the past years. Due to the 

parameter variability of shear walls and complex behaviour, 

each experimental or numerical research is but a 

contribution to the knowledge database. Models for 

evaluation of hysteretic characteristics of short shear walls 

have shown limited progress. 

Low-rise walls are different from both slender and squat 

walls due to the fact that these walls are not controlled 

entirely by either shear or flexure, but rather a combination 

of the two. The various modes of failure of shear walls 

include flexure, shear evident with diagonal crushing or 

tension cracking and sliding shear caused by interface shear 
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transfer failures at horizontal cracks. All these modes of 

failure are emphasized by tests carried out by various 

researchers. Earlier experiments have been carried out on 

low rise shear walls (Lopes et al. 2001). He tested four 

small-scale reinforced concrete walls each with aspect ratio 

1.9 and with different amount of shear reinforcement under 

cyclic loading. All the shear walls failed in shear either by 

diagonal tension or diagonal crushing. The yield strength of 

the stirrups was exceeded in all walls which were failed in 

shear by diagonal tension and in the wall which were failed 

by concrete crushing, some stirrups did not yield. 

Salonikios et al. (1999) conducted tests on shear walls with 

aspect ratios of 1.0 and 1.5. The wall specimens were 

reinforced against shear, either conventionally (orthogonal 

grids of web reinforcement) or with cross-inclined bars. The 

specimens were tested as cantilevers and those having 

diagonal reinforcement failed in a predominantly flexural 

mode, characterized by concrete crushing and 

reinforcement buckling. Griefenhagen and Lestuzzi (2005) 

tested four lightly reinforced shear walls with aspect ratio 

0.69 under cyclic loading. They observed substantially 

different crack patterns for shear related failure modes such 

as sliding, diagonal compression, and diagonal tension in all 

specimens due to variation of the concrete compressive 

strength and the axial force. Recently, in 2017, experimental 

investigation was carried out by Christidis and Trezos 

(2017) to assess and strengthen existing non-conforming 

reinforced concrete midrise walls of aspect ratio 2 designed 

according to older seismic codes that do not meet the 

modern seismic provisions. They concluded that low ratios 

of shear reinforcement do not seem to affect either the 

bearing or the top deformation capacity of the walls 
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significantly. Habibi et al. (2018), recently compared the 

energy dissipation capacities and ductility of shear walls 

made of alkali silica reactive (ASR) concrete with that of 

shear walls made with normal concrete. They concluded 

that both the ductility and energy dissipation capabilities of 

shear walls decreased by 25-30% due to ASR. 

Modelling of RC walls involves several challenges in 
representing the combined effects of moment, shear and 
axial forces, in addition to bar slip, buckling, damping and 
boundary conditions. The models are classified as micro-
models such as finite element models and fibre models and 
macro-models such as strut or beam model. Fibre model 
was used by Kotronis et al. (2005) to simulate the 
behaviour of RC shear walls under dynamic excitation. 
They simulated shake table experimental campaigns of 
CAMUS I and III using Bernoulli multilayered beam 
elements and advanced constitutive laws based on damage 
mechanics and plasticity. The proposed strategy could 
reproduce the global behaviour of the specimens but its 
major drawback was that it could not capture localized, 
discrete phenomena like excessive plastic deformations and 
significant cracks. In 2016, Jeong and Jang predicted 
inelastic response of RC shear walls using fiber and spring 
elements. The fiber elements and the spring reflect flexural 
and shear behaviors of the shear wall, respectively. 
Recently, a rational analysis procedure was given by Feng 
et al. (2018) for modeling cyclic behavior of reinforced 
concrete shear walls based on softened damage-plasticity 
model considering compression-softening effect. Parulekar 
et al. in 2014 carried out simulation of RC stiff squat shear 
wall tested in test program called TESSH at JRC, Italy 
using Finite element modelling and analysis. Three-
dimensional and two-dimensional FE models predicted the 
load displacement characteristics as well as crack patterns 
obtained by tests with sufficient accuracy. However, these 
approaches were computationally cumbersome and hence 
macro-modelling approach which guaranteed simplicity 
was used by researchers. The cyclic testing of the same full-
scale low aspect ratio reinforced concrete wall in a 
principally uniform shear state was described by Beko et al. 
in 2015 and a nonlinear mathematical model was described 
which is capable of simulating the hysteresis of the tested 
shear walls. However this model was based on test results 
of one shear wall configuration only. Simplified approach to 
accurately predict the load deformation behaviour of shear 
walls was first proposed by Vecchio and Collins in 1986 
using modified compression field theory. Later, macro-
models such as three vertical line elements (TVLE) 
connected to each other by rigid bars at the top and the 
bottom wall was developed into multiple vertical line 
element by Vulcano et al. (1988). However, in these models 
the deformation compatibility between the wall and the 
boundary element was still not enforced and the flexure and 
shear responses were not coupled. Softened-Strut-and-Tie 
truss model was then used by Yu and Hwang (2005) to 
predict the shear capacity of RC squat walls. Later, Wallace 
et al. (2008) modified the model proposed by Yu and 
Hwang (2005) considering the coupled response to improve 
the efficiency of the model in predicting the response of RC 
shear walls. It is worth noting that, although such models 
were able to predict the capacity of RC elements, they could 
not capture the cyclic or the hysteretic behaviour of these 

elements. Lot of hysteretic models have been developed in 
past for RC shear walls like Takeda model by Takeda et al 
(1970), modified Takeda model by Otani (1974), Q model 
by Saiidi and Sozen (1981), gamma model by Lestuzzi et 
al. (2003). On the basis of experimental testing hysteretic 
models were suggested by Brun et al. (2003) considering 
stiffness degradation and Thomson et al. (2009) considering 
pinching effect. Later Brun et al. (2011) carried out pseudo-
dynamic tests on low-shear walls and proposed a simplified 
model based on the structural frequency drift. In 2016, 
Parulekar et al. tested midrise shear walls and suggested 
simplified hysteretic model for dynamic behaviour of these 
walls. Saritas et al. (2013) has proposed a 3D plastic 
damage model to describe the hysteretic behaviour of 
concrete. The proposed model was able to capture the 
overall load-deformation response of RC structural walls of 
varying aspect ratios. However this 3D model was complex. 

It was observed from work carried out by the 

researchers that aspect ratios, axial load ratio and 

percentage reinforcement play a significant role in the mode 

of failure, the ultimate load, drift and hysteretic 

characteristics of the shear walls. It is therefore required to 

systematically evolve a simplified methodology and suggest 

a multi-linear hysteretic model for short shear walls which 

is based on particular range of axial load ratio and 

reinforcement ratio. The hysteretic models suggested by 

researchers till date for short shear walls are not applicable 

for various axial load ratios and reinforcement ratios. This 

is so because the hysteretic characteristics such as stiffness 

degradation and pinching are path dependent and differ for 

same shear wall with varying axial loads and varying 

reinforcement ratio. Hence the novelty of the present work 

is that a multi-linear hysteretic model is given for short 

shear walls by carrying out experimental studies on six 

numbers of lightly reinforced shear walls (0.45% 

reinforcement in vertical direction and 0.36% to 0.4% in 

horizontal direction) with aspect ratios ranging from 1 to 

1.5 and an axial load ratio of 1%. Moreover, experimental 

responses of lightly reinforced shear walls from literature of 

similar aspect ratio and axial load ratio are also used for 

validation of the model. From the experiments performed in 

the present study, ultimate load, drift, ductility, stiffness 

reduction and failure pattern of the walls are studied. 

Macro-modelling approach is adopted considering the 

coupled shear and flexure behaviour for shear walls to 

obtain backbone curve for the shear walls.  The shear 

response is estimated using softened truss theory and using 

the concrete model given by Vecchio and Collins (1994) 

with a modification in softening part of the model and 

flexure response is estimated using moment curvature 

relationship. Finite element analysis is also performed using 

appropriate constitutive model which is formulated on the 

basis of nonlinearity of concrete and reinforcement. 

Comparison of analysis and test results is presented clearly.  

 

 

2. Experimental program  
 

Six RC short shear walls with boundary elements were 

cast and tested under monotonic and cyclic loading 

conditions. 
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Fig. 1 Shear walls: Reinforcement details and location of 

Strain gauges 

 

 
2.1 Wall specifications 
 

The sectional dimensions and reinforcement details of  

the shear wall specimens are shown in Fig. 1. All the test 

specimens had a web thickness of 150 mm and width of 

1000 mm. Heights of the specimens were different 

depending on aspect ratios and specifications of the tests 

specimens are given in Table 1. Each of the six specimens 

consisted of flanged wall connected to a heavily reinforced 

concrete base block which was anchored and locked to the 

strong floor in the laboratory. The schematic test setup and 

the actual test setup are shown in Fig. 2(a) and Fig. 2(b) 

respectively. A deep heavily reinforced concrete top block 

was also connected at the top of the wall for the lateral load 

application. In all the six specimens, reinforcement 

percentage in both horizontal and vertical directions is 

given in Table 1. In each of the boundary elements twelve 

steel bars of 16mm diameter were used as longitudinal bars 

and 8mm diameter bars were used as stirrups (Fig. 1). 

 
2.2 Material properties 
 

The shear walls were designed using concrete with cube 

 

 
(a) Schematic and location of LVDTs 

 
(b) Actual test setup 

Fig. 2 Test setup of Shear walls 

 

 

strength (fck) of 20 N/mm
2
 and reinforcement steel with 

yield strength of 415 N/mm
2
. Six cubes were cast for every 

concrete mix. Three cubes were tested at 7 days and the 

other three at 28 days of curing. The average compressive 

strength of the cubes tested at 28 days of each specimen 

listed in Table. 1. Samples of the reinforcing steel used in 

wall specimens were collected and tested under direct 

tension to determine their yield and ultimate strengths. The 

results of the specimen tests on concrete cubes and 

reinforcement bars are summarized in Table 1 

 
2.3 Instrumentation 
 

Strains in the reinforcement bars were measured using 

electrical resistance strain gauges attached to the reinforcing  

Table 1 Specifications of the Test specimens 

Specimen and 

Dimensions 

Aspect    

Ratio 

Concrete Cube Compressive 

strength (MPa) 
Steel 

Diameter 

(mm) 

Yield 

stresss 

(MPa) 

Ultimate stress 

(MPa) 

% steel 

Vertical 

% steel 

Horizontal 
7 days 28 days 

SW1 (Mono) 

1.5 m×1 m×0.15 m 
1.5 14.22 22.22 

8 

16 

437.67 

423.56 

586.88 

563.33 
0.45 0.36 

SW2 (Cyc) 

1.5 m×1 m×0.15 m 
1.5 15.26 23.48 

8 

16 

439.52 

440.56 

584.56 

585.46 
0.45 0.36 

SW3 (Mono) 

1.25 m×1 m×0.15 m 
1.25 15.59 23.63 

8 

16 

429.85 

426.35 

567.41 

569.17 
0.45 0.38 

SW4 (Cyc) 

1.25 m×1 m×0.15 m 
1.25 16.16 24.12 

8 

16 

431.26 

435.23 

560.22 

574.53 
0.45 0.38 

SW5 (Mono) 

1 m×1 m×0.15 m 
1 16.64 26.42 

8 

16 

428.53 

432.56 

569.94 

570.25 
0.45 0.4 

SW6 (Cyc) 

1 m×1 m×0.15 m 
1 18.82 29.85 

8 

16 

421.35 

435.23 

556.182 

570.15 
0.45 0.4 
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Fig. 3 Loading protocol 

 

 

bars at 10 locations as shown in Fig. 1. Four numbers of 

strain gauges were attached to horizontal reinforcement and 

six numbers of strain gauges were attached to vertical 

reinforcement. The locations of the LVDTs placed on the 

shear wall at bottom and top are shown in Fig. 2(a). One 

face of each specimen was instrumented with LVDTs 

(LVDT1, LVDT 3, LVDT 7 and LVDT9) positioned 

horizontally.  LVDT5 and LVDT6 are attached diagonally 

to monitor average shear strain distortions and rotations. 

LVDT4 is attached between the base block and a fixed 

location at support to ensure fixity of the base. The rotation 

of the bottom and top blocks was monitored using LVDT2 

and LVDT 8 placed vertically at the edges. 

 
2.4 Testing procedures 
 

The 100 tons capacity actuator was used for applying 

lateral displacement on the specimens through the top block 

as shown in the test setup in Fig. 2(b). The lateral 

movement of the specimen base was arrested by fixing the 

bottom block of the specimen with the strong floor of lab  

 

 

using bolts and two „A‟ frames were provided at the ends of 

the specimen. The applied loads (reactions) were measured 

using the load cells. The top beam of the specimen was 

loaded vertically using the hydraulic jack with a total 

compression load of 6 tons which gives an axial load ratio 

(N/Agfck) of 1%. Later, the monotonic loading was applied 

using actuator to the three specimens (SW1, SW3, and 

SW5) with different aspect ratios. The walls were loaded till 

failure i.e., till the reaction in the load cell dropped to 85% 

of the peak load. The remaining three wall specimens 

(SW2, SW4, and SW6) were subjected to the cyclic loads in 

order to simulate the loading sequence that might be 

expected to occur during an earthquake. The loading 

protocol for applying cyclic loading for the respective 

specimens was adopted as per FEMA-461.The amplitude, 

ai+1 of the step i+1 is 1.4 times the amplitude (ai) of ith step.  

The loading protocol is shown in Fig. 3.  

Horizontal load was applied at a quasi-static rate in 

displacement-controlled cycles which corresponded to three 

major states, namely cracking state, yielding state and 

ultimate state. The rate of loading began at 0.05 mm/s and 

later it was increased till 0.1 mm/s. First two cycles were 

applied such that the wall remains in pre-cracking stage in 

the complete cycles and hence the lateral displacement 

amplitude of 0.3 mm peak was given in first two cycles. 

Later the amplitudes of subsequent cycles were given as 1.4 

times that of the previous cycle. Every excursion in the 

inelastic range causes cumulative damage in the structural 

elements. For each amplitude, two complete cycles were 

given and repetition in excursions were made because it is 

generally observed that there is a drop in the peak load after 

the first cycle and then stabilization is achieved. Lateral 

load excursions were applied till the significant drop of 

15% in the peak load was achieved and this was marked as 

the failure of walls 

 
2.5 Experimental results 
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Fig. 4 Crack pattern in all the walls at ultimate load 
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Fig. 5 Backbone curve for shear walls with various A/Rs 

obtained from tests 

 

Table 2 Results of experiments 

 
Parameters 

Measured 

1st Shear 

Crack Point 

Yield 

point 

Ultimate 

/Peak Point 

Failure 

Point 

SW1-

Mono 

A/R 1.5 

Load (kN) 181 305 481 435 

Displ. (mm) 1 3.5 10.9 20 

Crack width 

(mm) 
0.1 0.3 2.8 6.7 

SW3-

Mono 

A/R1.25 

Load (kN) 221 447 535 502 

Displ. (mm) 0.8 2.5 8.7 15.2 

Crack width  

( mm) 
0.10 0.5 2.7 5.5 

SW5-   

Mono 

A/R 1 

Load (kN) 236 604 701 621 

Displ. (mm) 0.5 2.4 6.4 11.8 

Crack width  

(mm) 
0.1 0.5 2.8 5 

 
 

All the walls were essentially subjected to the intended 

in-plane action. The details of crack formation and results 

obtained are explained henceforth. 

 

2.5.1 Crack formation 
For all specimens, first flexural cracks initially appeared 

in the boundary elements near the bottom part of the tensile 

zone of the wall when only 20% of the wall capacity was 

reached. The first shear cracks in the wall panel were 

observed when 35 to 40% of load capacity is reached. As 

the cyclic lateral load approached nearly 60 per cent of its 

maximum value, significant inclined shear cracks were 

formed. The test loads and corresponding displacements for 

all the specimens for major states of diagonal cracking, 

yielding and ultimate are given in Table 2. After reaching 

the peak load, the length and width of the previously 

formed diagonal cracks were increased and the cracks were 

extended to the boundary elements. The crack pattern 

observed in all the walls at the end of the tests is shown in 

Fig. 4. It can be observed from Fig. 4 that for SW1, SW3 

and SW5 specimens with aspect ratio 1.5, 1.25 and 1 

respectively, there are major diagonal cracks in one 

direction. For SW2, SW4, SW6 cracks are formed in criss-

cross pattern due to cyclic loads. For SW6 spalling of 

concrete in the middle section after reaching the ultimate 

load was observed. For this wall at the mid portion of wall 

web there was an intersection of diagonal cracks in both the 

directions and due to weak plane at mid portion, there was a 

major web crushing in the wall web. Initially diagonal  

 
(a) Variation of ultimate load and ductility 

 
(b) Variation of ultimate drift and yield displacements 

Fig. 6 Variation of parameters of shear walls with A/Rs 

 

 

cracks were developed but later failure was dominated by 

web crushing. 

 

2.5.2 Strain gauge results 
Strain gauge data from the structural testing of shear 

walls SW1 to SW6 were collected. The strain gauges were 

attached to the re-bars (as shown in Fig. 1) in the shear wall 

panels and not in boundary elements. In shear wall panel for 

walls of aspect ratio 1, 1.25 and 1.5 first the vertical 

reinforcement near the boundary element close to the 

bottom slab yielded at lateral displacement of 3 mm, 3.5 

mm and 5 mm respectively. Subsequently, after the peak 

load was reached, horizontal rebars near the boundary 

element close the bottom slab yielded for the walls of aspect 

ratio 1.25 and 1.5. Finally, just before the failure of each 

wall, vertical reinforcement close to the centre of wall panel 

yielded for the walls of aspect ratio 1 and 1.25. 

 

2.5.3 Load displacement curves 
The back bone curve of lateral load versus top 

displacement established from the tests for SW1, SW3 and 

SW5 specimens of different aspect ratios is shown in Fig. 5. 

Idealized force displacement relationship is obtained using 

FEMA 356(ATC-40) procedure. This relationship is 

bilinear, with initial slope K1 and post-yield slope α for all 

the walls. In the present work tri-linear force displacement 

relationship (as shown in Fig. 5) with slope of softening 

portion of the curve after ultimate load is also defined.  

Idealized force-displacement curve is plotted using an 

iterative graphical procedure that approximately balances 

the area above and below the curve. The effective lateral  

0 5 10 15 20 25 30
0

100

200

300

400

500

600

700

800

k
y1


y
''

y


y
'

J''

J'

J

P'P''
P

B''

C''

C'

B'

C

B

A

L
o

a
d

(k
N

)

Displacement(mm)

 A/R 1

 A/R 1.25

 A/R 1.5

        A/R 1 FEMA

        A/R 1.25 FEMA

        A/R 1.5 FEMA

1.000 1.125 1.250 1.375 1.500
0

200

400

600

800

1000

 Load- Experiments

 Load- Analysis

Aspect ratio

L
o
a
d
(k

N
)

0.0

2.5

5.0

7.5

10.0

 Ductility- Experiments

 Ductility- Analysis

D
u
c
tility

1.000 1.125 1.250 1.375 1.500
0

2

4

6

8

 Yield displacement- Experiments

 Yield displacement- Analytical model

Aspect Ratio

Y
ie

ld
 D

is
p
la

c
e
m

e
n
t(

m
m

)

0

2

4

6

8

10

 Ultimate drift-Experiments

 Ultimate drift- Analytical model D
rift(%

)

45



 

T. Nagender, Y.M. Parulekar and G. Appa Rao 

 

 

 

 

Fig. 7 Comparison of analysis and test results 

 

 

stiffness, Ky1, shall be taken as the secant stiffness 

calculated at a base shear force equal to 60% of the 

effective yield strength of the shear wall as per FEMA-356 

procedure. The yield displacements, the yield load of the 

shear walls, ultimate displacement and ultimate load are 

obtained from the initial bilinear portion of force 

displacement curve for shear walls with various aspect 

ratios. The displacement corresponding to softening region 

beyond ultimate load for the value of 85% of the ultimate 

load is defined as displacement at failure. The ultimate 

ductility of each shear wall is obtained as ratio of 

displacement at failure to yield displacement. The ultimate 

drift is the ratio of failure displacement to height of wall 

expressed in percentage. The results obtained from the tests 

in the form of the ultimate load and ductility with aspect 

ratio are plotted in Fig. 6(a). It is observed as that the 

ductility increases and the peak ultimate load of shear wall 

decreases with increase in aspect ratio from 1 to 1.5. The 

variation in the yield displacement and the ultimate drift 

(drift limit) at the top of the wall with the varying aspect 

ratio is plotted in Fig. 6(b). Drift limit statistics for shear 

walls was carried out by Duffy et al. (1993) and for walls 

 

Fig. 8 Principal tensile stresses developed in the shear walls 

(Specimens: SW1, SW3, SW5) 

 

 

with aspect ratio of 1, the median value of ultimate drift 

recommended by them is 1.15 %. The value of drift 

obtained in the present work for shear wall with aspect ratio 

of l is 1.5%. Thus the drift values obtained are in 

concurrence with the drift limit statistics carried out by 

Duffy et al. (1993). It is observed from the figures that as 

aspect ratio increases, the ductility increases however the 

drift remains same. 

Fig. 7 shows the experimental results for cyclic load for 

SW2, SW4, and SW6. The test backbone curve for 

monotonic loading for same aspect ratio walls (SW1, SW3 

and SW5 respectively) is also shown in the Fig. 7. It is 

observed that the monotonic tests results envelopes the 

cyclic except in case of wall of aspect ratio 1.0 (SW6) as 

observed in Fig. 7. It is observed from Fig. 7 that the cyclic 

load displacement results are slightly higher than 

monotonic. This is because the cube strength of concrete for 

SW6 is higher than other walls by 10 %. (See Table 1). 

 

2.5.4 Evaluation of test results  
The test results of the specimens are utilized to evaluate 

their performance in terms of computation of principal 

stresses developed, energy dissipation in hysteretic 

deformation and evaluation of damage index. Evaluation of 

all these parameters for the tested specimens facilitates in 

understanding thoroughly the performance of the RC wall 

assemblages during seismic load.  

 
Principal tensile stresses 
The cracking and damage to the shear walls occur due to 

the principal tensile stresses developed in the shear walls 

due to applied constant axial load and increasing shear 

loads till their failure. The nominal principal tensile stresses 

developed in three shear walls subjected to monotonic load 

(SW1, SW3 and SW5) are obtained for major states of 

diagonal cracking, yielding, ultimate and failure. Fig. 8 

demonstrates the nominal principal tensile stresses values 

developed in the wall panel region for the three shear walls 

of aspect ratio 1, 1.25 and 1.5. It can be deduced from the 

figure that the principal tensile stresses developed in wall of 

aspect ratio 1 at ultimate load is the highest and is equal to 

1.02√f′c. The principal tensile stress developed in the shear 

wall with aspect ratio 1.5 at ultimate load is equal to 

0.68√f′c. 
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(a) Hysteretic energy per cycle 

 
(b) Damage index 

Fig. 9 Hysteretic energy per cycle and damage index v/s 

lateral deformation 

 

 

Hysteretic energy dissipation 
Energy dissipation represents the capacity of the 

specimen to be stressed until failure and gives the important 

parameter of damping for evaluation of dynamic response. 

The energy dissipated by each shear wall specimen (SW2, 

SW4 and SW6) due to cyclic load is evaluated by 

calculating the area enclosed by the hysteretic loops of the 

load displacement curves for that particular displacement. 

Thus, the energy dissipated for each cycle is obtained and 

plotted corresponding to the lateral deformation for each 

shear wall as depicted in Fig. 9(a). It is observed that for a 

particular lateral displacement the energy dissipation of 

shear wall decreases as aspect ratio increases. However, it is 

observed that for a particular state of deformation of the 

shear walls say ultimate state, the deflection of shear walls 

of A/R 1, 1.25 and 1.5 are 6 mm, 9 mm and 12 mm 

respectively as shown in Fig. 7. For this ultimate state of 

deformation, the energy dissipated by shear walls of A.R 1, 

1.25 and 1.5 respectively are 2000 kN-mm, 2500 kN-mm 

and 2600 kN-mm (Fig. 9(a)). Similarly. for deformation at 

failure point the energy dissipation of shear walls of A/R 1, 

1.25 and 1.5 are 4000 kN-mm, 4150 kN-mm and 4300 kN-

mm respectively. Hence, it is observed that the energy 

dissipation is in increasing order with increasing aspect 

ratio of the shear walls for a particular state of damage. The 

damping evaluated at ultimate drift of the walls ranges 

between 15 to 20%. 

 

Damage index 
A damage index is used as an indicator to describe the 

state of the lateral load-carrying capacity and the reserve 

capacity of the structural components or structures. In this 

study, the model by Park and Ang (1985) is employed for 

evaluation of damage index for the SW2, SW4 and SW6 

specimens subjected to cyclic loads. As per this damage 

model, the seismic structural damage is a linear 

combination of the damage caused by excessive 

deformation and the damage accumulated by repeated 

cyclic loading effect. The Park-Ang damage index 

combining both ductility and cumulative hysteretic energy 

demand is given by the following equation  

m
PA h

u u y

D dE
F

 

 
  

 
(1) 

wherem is the maximum deformation under earthquake, u 

is the ultimate deformation under monotonic loading, Fy is 

the yield strength, dEhis the incremental absorbed hysteretic 

energy and β is the non-negative parameter representing the 

effect of cyclic loading on structural damage. The 

quantitative estimation of coefficient β was made by 

researchers by conducting extensive experimentations and 

the results reported a median value of β of about 0.15 

(Cosenza et al.). It is mentioned that the value of β=0.15 

correlates closely with the results of other damage models, 

and this value has widely been adopted by the researchers. 

Hence, in this study the value of β is considered as 0.15. A 

perfect damage index typically normalizes the damage on a 

scale of 0 to 1, where zero represents undamaged state 

while unity represents the collapse state of the 

structure/component. The maximum value of the Park-Ang 

damage index is over 1 and nearly close to 2 in some cases. 

In addition, the Park-Ang damage index is not directly 

suitable for nonlinear static pushover analysis as the 

cumulative damage does not occur in this case. Based on 

pushover analysis, a stiffness damage index was presented 

by Ghobarah (2001) as given by the following equation 

1
f

K

i

k
D

k
   (2) 

Where 𝑘i is the initial slope of the pushover curve of the 

structure/component before subjecting it to the earthquake 

ground motion and 𝑘f is the slope of the same relationship 

but after subjecting the frame to the earthquake time 

history. The values of these damage indices given by 

Ghobarah range from zero to one depending on the amount 

of damage experienced. The calculated damage indices 

based on the above described Park and Ang model and 

Ghobarah model are presented in Fig. 9(b). These damage 

indices are compared for all the shear walls in the figure. It 

is observed from the figure that the damage index by 

Ghobarah reaches a value of 0.88 for all the walls at 

ultimate drift which signifies the damage degree of 

collapse. It can be concluded from the results of Park and 

Ang damage index evaluated for the three shear walls that 

maximum damage index value of 1.25 is reached at ultimate 

displacement. 

 

 
3. Simulation 

 

Analytical simulation of the shear walls for monotonic  
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(a) Shear wall of aspect ratio 1.5 

 
(b) Stress condition in an element of the shear wall 

Fig. 10 FE model 

 

 

lateral loads is carried out using FE analysis and a simplified 

truss model, considering flexure-shear interaction to evaluate 

the backbone curve. Moreover, a simplified hysteretic model is 

suggested based on the experimental cyclic characteristics for 

shear walls.    

 
3.1 FE Modelling and analysis 
 
Concrete with nonlinear material properties is modelled 

using four noded iso-parametric 2D plane quadrilateral 

elements for the shear wall, top beam and bottom beam. 

Reinforcing steel provided in the wall is modelled as discrete 

form of truss element. In the top beam and bottom beam 

reinforcement is modelled in smeared form. The finite element 

model of shear wall SW1 of 1m width, 1.5 m height and 0.15 

m thickness is as shown in Fig. 10(a). The cube compressive 

strength of concrete and tensile strength of steel is considered 

as per Table 1 (28 days strength) for SW1. The ratio of cylinder 

to cube strength is considered as 0.81. The axial load of 6 tons 

was applied on the FE model as applied during test. 

FE analysis of the shear wall is carried out by simulating 

the test boundary conditions of the foundation as fixed in all 

directions. For the top beam all the translations and rotations 

were set free except translation in the direction, for which a 

fixed displacement was defined as the loading condition. Steel 

plates with less (fictitious) density are attached to 3 sides of top 

beam so that there is no local failure in the top beam due to 

point load application. Nonlinear concrete model is considered. 

Kent and Park (1971) concrete material model is chosen for the 

analysis which includes non-linear behaviour in compression 

including hardening and softening. Fracture of concrete in 

tension is based on the nonlinear fracture mechanics. The 

biaxial strength failure criterion, reduction of compressive 

strength after cracking, tension stiffening effect and reduction 

of the shear stiffness after cracking is also considered in the 

model. The reduction of compressive strength after cracking 

shown by factor β is considered as 0.45. The steel is modelled 

as reinforcement bars with a bilinear elastic-plastic model. 

Nonlinear analysis is carried out for monotonic and cyclic load 

on the wall with constant axial load of 6 tons. Analysis is 

carried out according to the loading protocol given in the 

experiment till failure of the wall i.e., the load drops to 85% of 

ultimate peak load. Comparison of experimentally obtained 

and analytically simulated backbone curve is shown in Fig. 7. 

 

3.2 Simplified truss model 
 
Shear-flexure interaction of shear wall with aspect ratio 1 

to 1.5 should be essentially considered while determining the 

force displacement characteristic of shear wall. Simplified truss 

model is described which combines the shear with flexure 

characteristics and analytical force displacement relationship is 

obtained. Shear characteristics of the shear wall is determined 

using the widely accepted procedure of softening truss 

approach given by Vecchio and Collins (1986). Cracked 

reinforced concrete in compression has been observed to 

exhibit lower strength and stiffness when compared to 

uniaxially compressed concrete. There is reduction of the 

compressive strength in one direction by cracking, due to 

tension in the perpendicular direction. This aspect is taken care 

in the concrete nonlinear model. Concrete model comprises 

non-linear compressive behaviour that is capable of modelling, 

hardening and softening characteristics. The pre-peak relation 

is based on the equation of quadratic parabola (Kollegger and 

Mehlhorn 1990) given below. Thus when ε<εo then 

𝜎 =  𝑓𝑐
′ [

2𝜀

𝜀0

− (
𝜀

𝜀0

)
2

] (3) 

where ε is the compressive strain in concrete and εo is the 

compressive strain corresponding to peak cylindrical 

compressive stress, 𝑓𝑐
′ . The ratio of cylinder to cube 

compressive strength is considered as 0.81. The value of εo 

used in the analysis is 0.002 based on literature. The post peak 

compressive behavior is linear descending, and the slope of the 

softening law is defined by means of the softening modulus Ed  

such that 𝑓𝑐
′ is reduced to zero at 4.7εo. This value is given for 

short shear wall (Parulekar et al. 2014). Thus, the post peak 

behavior is defined by relation 

=f'c+Ed(-0) (4) 

Moreover, compressive strength in the direction parallel to 

the cracks is reduced considering a modification factor β to 

reduce the peak stress of the stress strain curve of concrete in 

which the base curve is modified by peak stress only. The 

factor β suggested by Vecchio and Collins (1994) is given by 

following relation 

𝛽 =  
1

1 +  𝐾𝑐𝐾𝑓

 (5) 

Where, Kc represents effect of transverse cracking and Kf, 

represents dependence on strength of concrete. 

𝐾𝑐 = 0.27 (
𝜀r

𝜀0

−  0.37) (6) 

48



 

Performance evaluation and hysteretic modeling of low rise reinforced concrete shear walls 

 

𝐾𝑓 = 0.1825 √𝑓𝑐
′ (7) 

Where εr is the principal tensile strain. 

The softening model used for obtaining the shear spring 

characteristics consists of diagonal concrete compression 

struts and the equilibrium and compatibility equations are 

explained henceforth. Fig. 10(b) shows a concrete element 

in the stationary l-t coordinate system, defined by the 

directions of the longitudinal and transverse steel and 

rotated d-r co-ordinate system with rotation angle α. When 

a concrete element is reinforced orthogonally with 

longitudinal and transverse steel bars, the three stationary 

stress components, 𝜎𝑙, 𝜎𝑡 and 𝜏𝑙𝑡 are the applied stresses 

on the element. The stresses in the longitudinal and 

transverse steel are denoted by 𝜌𝑙𝑓𝑙 and 𝜌𝑡𝑓𝑡 respectively, 

where 𝜌𝑙 and 𝜌𝑡are reinforcement percentages in l and t 

axes respectively. The reinforcement stress strain 

relationship is defined by the bilinear law in which elastic-

plastic behavior is assumed. Hence from the super position 

principle 

𝜎𝑙 = 𝜎𝑑(cos α)2 + 𝜎𝑟(sin α)2 + 𝜌𝑙𝑓𝑙 (8) 

𝜎𝑡 = 𝜎𝑟(cos α)2 + 𝜎𝑑(sin α)2 + 𝜌𝑡𝑓𝑡 (9) 

𝜏𝑙𝑡 = (−𝜎𝑑 + 𝜎𝑟)cos (α)sin (α) (10) 

The same principle of transformation for stresses can be 

applied to strains considering r as principal tensile strain 

and d as principal compressive strain. Therefore, the 

following compatibility equations can be derived. 

𝑙 = 𝑑(cos α)2 + 𝑟(sin α)2 (11) 

𝑡 = 𝑟(cos α)2 + 𝑑(sin α)2 (12) 

 (𝛾𝑙𝑡/2) = (𝑑 + 𝑟)cos (α)sin (α) (13) 

For framed wall panel the strain of transverse steel in 

low-rise shear walls can be neglected t=0 and the tensile 

strength of concrete is neglected, 𝜎r=0. Shear deformation 

characteristics of the shear wall can be thus obtained by 

solving Eq. (8) to Eq. (10) and Eq. (11) to Eq. (13). 

Neglecting the tensile stress in concrete element and 

considering 𝜎r as zero, the unknowns in the equations are 

d, l, 𝜎d and α. The step by step procedure is used for 

evaluating these variables and obtaining the shear 

deformation characteristics by simplified softening strut 

approach. 

Initially assuming small value of d and value of α as 

45°, the above equations are used and iteratively the force 

v/s displacement relationship for the shear wall is obtained 

from shear characteristics using following equations 

Shear force V = 𝜏𝑙𝑡 ∗ 𝑡𝑤 ∗ 𝑑𝑤 (14) 

Displacement Δ = 𝛾𝑙𝑡 ∗ 𝐻𝑤  (15) 

Where tw, dw and Hw are thickness, depth and height of the 

shear wall respectively. 

The aspect ratio of the wall specimens is varying from 

short to mid-rise with small axial compression. Therefore, 

failure of the shear wall is also governed by flexural 

yielding and the evaluation of flexural strength of the shear 

wall is based on the basic principles of beam with axial 

 
(a) Moment shear spring model 

 
(b) Load displacement response (A/R1.5) 

Fig. 11 Simplified spring model 

 

 

load. The nonlinear behaviour of a beam depends primarily 

on its moment-rotation behavior, which in turn depends on 

the moment-curvature characteristics of the plastic hinge 

section and the length of the plastic hinge. The moment-

curvature (M-) characteristics of RC sections of the shear 

wall is developed using the widely used Kent and Park 

model (Kent and Park 1971) for concrete and elastic 

perfectly plastic model for steel. The ductile design 

provisions of IS 13920 require that transverse 

reinforcements in beams and columns should be able to 

confine the concrete core. Thus, if the stirrups are provided 

using IS13920 then the Kent and Park model for confined 

concrete is used for modeling the concrete within the 

stirrups. However, if the stirrups are laid far off without IS 

13920 provisions then the unconfined concrete 

characteristics, following again the Kent and Park 

guidelines are assigned for the concrete model. Priestley 

(1997) prescribed an ultimate concrete strain (in 

compression) for unconfined concrete, cu=0.005, which is 

adopted in the present work to obtain moment curvature of 

the shear walls. 

For the three shear walls of aspect ratios1, 1.25 and 1.5 

with specifications and material properties as given in Table 

1, the moment curvature relation is obtained. The maximum 

displacement of the shear wall is calculated for particular 

load from moment curvature relationship using principle of 

virtual work thus load displacement relation is obtained. A 

simplified truss model of the shear wall is shown in Fig. 

11(a). The shear spring and moment spring are connected in 

series. The load displacement relationship obtained thus 

from the moment curvature relationship for shear wall of 

aspect ratio 1.5 is shown in Fig. 11(b). The load 
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displacement relation obtained from shear characteristics 

for the same shear wall is shown in Fig. 11(b). The 

combined load displacement relationship obtained by 

considering the flexure and shear springs in series is shown 

for shear wall with aspect ratio 1.5 in Fig. 11(b) and is 

denoted as simplified model. The load-displacement 

relation of the simplified truss model is matching with the 

test results of the shear wall till pre-peak perfectly. In the 

post-peak region, the load values of simplified model are 

slightly higher than that of test results. 

In a similar way, combined flexure and shear 

characteristics are obtained and the simplified model force 

displacement curve (backbone curve) is obtained for the 

other shear walls with aspect ratio 1 and 1.25. The 

comparison of the backbone curves for all the three shear 

walls with tests, simplified model and FE analysis using 2D 

element is shown in Fig. 7. It is observed that there is good 

agreement in the curves. Also, the ductility, ultimate load, 

yield displacement and drift of all shear walls are calculated 

based on the simplified model and compared with tests as 

shown in Fig. 6(a) and 6(b). 

 

3.3 Hysteretic model 
 

Evaluation of nonlinear response of shear walls for 

earthquake loads requires nonlinear dynamic analysis to be 

carried out. If nonlinear dynamic analysis is carried out using 

2D FE model, it will require large computational efforts. 

Hence it is necessary to define a multi-linear cyclic hysteretic 

spring model which will be very effective to accurately predict 

the cyclic response of shear wall with less computational 

efforts.  Earlier, in literature (Takeda 1970, Otani 1974, Saiidi 

and Sozen 1988, Lestuzzi et al. 2003) many hysteretic models 

were used. These models were based on the parameters of RC 

walls like initial stiffness, the yield displacement, the post yield 

stiffness, a parameter relating the stiffness degradation and 

another parameter specifying the target for the reloading curve. 

Moreover, different rules are used for large and for small 

hysteretic cycles. However, the maximum force and 

displacement factors depending on ductility and pinching point 

were not included to form the hysteretic rules. This paper 

discusses a multi-linear hysteretic model for lightly reinforced 

(horizontal and vertical reinforcement between 0.3 to 0.75%) 

short shear walls with axial load ratio of less than 5%. 

Three numbers of shear walls of aspect ratio 1, 1.25 and 1.5 

tested for cyclic load with the hysteretic characteristics shown 

in Fig. 7 are considered to propose the model. Moreover, two 

more shear walls tested by Palermo and Vecchio (2002), 

Greifenhagen and Lestuzzi (2005) with schematic and 

hysteretic curves shown in Figs. 12 and 13 respectively were 

considered to evaluate the analytical model parameters. The 

details of the shear walls are given in Table 3 
Initially, the analytical backbone curves of the shear 

walls are evaluated by the methodology given in section 
3.2. The analytical backbone curve obtained using this 
methodology is in good agreement with monotonic loading 
tests results (Fig. 7). Using these backbone curves five 
parameters of the hysteretic model are defined namely the 
yield stiffness, the yield displacement, the post yield 
stiffness, ultimate/peak load and stiffness after peak. Fig. 14 
shows the multi-linear hysteretic model in which slope AB 

 
(a) Details of the Shear wall 

 
(b) Experimental Load Displacement curve 

Fig. 12 Shear wall (Paleramo and Vecchio 2002) 

 

 

is the yield stiffness, y is the yield displacement, slope BC 

is the post yield stiffness, load corresponding to point C 

denotes ultimate/peak load and slope CJ is the stiffness after 

peak. The actual slope of branch CJ obtained from tests of 

short walls (shown in Fig. 5) showed decreasing shear 

strength with increasing displacement. However, in the 

proposed model branch CJ (Fig. 14) of the model is taken as 

nearly constant maintaining the actual ultimate/failure 

displacement obtained from tests. In order to characterize 

the unloading part of the hysteretic curves the stiffness 

degradation parameter is defined. This stiffness degrading 

parameter is given as function of initial pre-cracking 

stiffness of the wall. The initial pre-cracking stiffness, ki of 

the wall is obtained from tests (shown in Fig. 5 as slope AP) 

or by backbone curves obtained from analysis methodology 

explained in section 3.2. The reduction in the unloading 

stiffness represent the damage occurred in the shear wall 

and this unloading stiffness goes on decreasing with 

increase in ductility of the wall as number of cycles increase 

and the corresponding damage increases. The unloading 

stiffness degradation factor, c which is the ratio of reduced 

unloading stiffness to the initial stiffness (pre-cracking 

stiffness) is plotted with ductility for different aspect ratios 

(Fig. 15(a)) from experiment conducted for short walls in 

the current work and literature. 

When unloading occurs at any nth level of displacement 

greater than yield displacement, the stiffness can be given as 

kn=c ki (16) 
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(a) Details of the shear wall 

 
(b) Experimental load displacement curve 

Fig. 13 Shear wall (Greifenhagen and Lestuzzi 2005) 

 

 

This parameter, c depend on ductility,  and is given by 

the equation 

c = 0.0167
2
 - 0.196 + 0.85 (17) 

Finally, the pinching effect observed in low rise shear walls 

needs to be accurately modelled which gives rise to lesser 

damping and thus higher dynamic response than that observed 

for high rise shear walls. The location of the pinching points E 

and I in the hysteretic model shown in Fig. 14 are obtained by 

defining the abscissa and ordinate of each pinching point. The 

ordinate of each pinching point is determined by the maximum 

force factor,  and the abscissa of each pinching point is 

determined by the permanent deformation factor, . 

Thus, as shown in Fig. 14, during reverse cyclic load, the 

force (the ordinate) in pinching point is governed by the 

product of force factor and maximum force in previous cycle 

(Fmax) or yield force, Fy whichever is higher. Moreover, the 

displacement (abscissa) in the pinching point is governed by 

product of displacement factor,  and the maximum permanent 

deformation in the previous cycle, D where D is equal to 

(max-y). For example, in case of pinching point, E as the 

yielding force is still not reached and permanent deformation 

 

 

Fig. 14 Proposed multi-linear model of shear wall 

 

 
(a) Variation of unloading Stiffness degradation with 

Ductility 

 
(b) Displacement and force Pinching factors 

Fig. 15 Parameters for different aspect ratios of shear walls 

 

 

in that direction is zero, the abscissa of the pinching point E is 

zero. The ordinate of point E is obtained by first locating point 

E with ordinate,Fy and abscissa, y as shown in Fig. 14 and 

then obtaining the slope of DE. Similarly, in order to locate the 

pinching point, I the abscissa of pinching point I is obtained as 

(max-D). The ordinate of the pinching point, I is obtained by 

first locating point I with ordinate, Fmax and abscissa, max and  

Table 3 Details of Shear walls tested in Literature 

Experiments by A/R 
web thickness 

(mm) 

f ’c 

MPa 

Fy 

MPa 

% steel in 

web ρh 

% steel in 

web ρv 

% steel in 

flanges ρh 

% steel in 

flanges ρv 

Axial load 

ratio (%) 

Palermo and Vecchio 0.7 75 22 605 0.73 0.79 0.58 0.627 5 

Greifenhagen and Lestuzzi 0.67 80 24.4 605 0.3 0.3 N.A N.A 5 
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Fig. 16 Validation of proposed model with cyclic test results 

of shear walls 

 

 

then obtaining the slope of HI. 

The value of force factor,  and permanent deformation 

factor, λ obtained from tests performed in literature and the 3 

walls tested in present work is shown in Fig. 15(b). For all the 

walls, considering the average, the force factor,  is obtained as 

0.3 and displacement factor,  is obtained as 0.675. The 

proposed analytical model is explained for different paths of 

hysteretic rules from Fig. 14, 

Elastic (loading), Path A-B 

)(1)( txyktF   (18) 

Post yield deformation (loading), Path B-C 

))((2)( ytxykyFtF   (19) 

Where Ky1, Ky2 are the pre and post yield stiffness 

respectively, Fy is the yield force and y is the yield 

displacement. 

Path C-D (where displacement and force at C is δmax and 

Fmax respectively) 

or Path G-H, (where the displacement and force at G are  

 
(a) Palermo and Vecchio (2002) 

 
(b) Greifenhagen and Lestuzzi (2005) 

Fig. 17 Validation of proposed model with cyclic test results 

of shear walls tested in literature 

 

 

δmin and Fmin respectively) 

F(t)=Fmax+k1(x(t)−δmax) (20) 

Where, k1 is obtained from Eq. (16) and value of c from Eq. 

(17) at ductility value of μ=δmax/δy.. 

 

For the path D-E-F 

Point „E‟ acts as a pinching point whose position 

depends on the maximum permanent deformation and load 

experienced in that direction of loading. The abscissa of the 

point E is zero and that of Eis y. 

Thus, the ordinate of the pinching point E is 

FE= [ Fy/ (δy+δD)] × (δD) (21) 

Using this Eq. (21), abscissa and ordinate of pinching 

point, E and conséquently the force in path DE can be 

obtained. Similarly, for path HI the abscissa of the pinching 

point (point I) is defined by the parameter λ, and is given by 

(max-D). The ordinate of point I is Fmaxand abscissa of 

point I is max. Thus, and the ordinate of pinching point I is 

given by the equation   

FI={(Fmax)/(max-min-y)} × (max-D-min-y) (22) 

Where, min is the minimum displacement at point G and 

it is -ve in value. Using this Eq. (22) abscissa and ordinate 

of pinching point I, and conséquently the force in path HI 

can be obtained. Once the pinching point (E and I) is 

reached, the reloading path is directed towards the 

maximum deformation of previous cycles in the direction of 

loading or the yield displacement whichever is larger. Thus, 
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the slopes of part EF and IJ will depend on the pinching 

points and the maximum deformation of previous cycles in 

that direction.  

For low rise shear walls of aspect ratio less than 1.5 the 

multi-linear model can be obtained by considering stiffness 

degradation parameter from Eq. (17) and choosing  as 0.3 

and  as 0.675, the validation of the proposed analytical 

multi-linear model is shown in Fig. 16 for wall of aspect 

ratio 1.5, 1.25 and 1 respectively.  

Similarly, hysteretic characteristics of analytical model 

are generated for tests carried out in literature, by Palermo 

and Vecchio (2002), Greifenhagen and Lestuzzi (2005) for 

wall of aspect ratio 0.7 and 0.67 respectively. The 

comparison of test hysteresis and hysteresis generated by 

proposed analytical model is shown in Fig. 17(a) and 17(b). 

The hysteretic curve from the analytical model is in good 

agreement with test results for shear walls tested in present 

work and tested by researchers in literature. Thus, the 

proposed multi-linear hysteretic model can be used 

effectively.  

 
 
4. Conclusions 

 

In the present work, experimental results of six low rise 

lightly reinforced shear walls of aspect ratio 1 to 1.5 with 

axial load ratio of 1% are presented in order to evaluate the 

backbone curves, stiffness degradation and pinching factors 

and utilize these factors for generation of analytical model. 

These factors are also evaluated from two similar shear 

walls tested in literature. Based on the results of the 

experimental program and the analytical model following 

conclusions are drawn. 

• Experimental results performed on the walls 

demonstrate that shear walls produce highly pinched 

hysteresis curve and are greatly influenced by shear 

related mechanisms and same is obtained using 2D FE 

analysis. 

• The shear wall with aspect ratio 1.5 shows the lowest 

wall capacity (lesser by 30 % than that of aspect ratio 1) 

as the wall capacity is affected by the flexural as well as 

shear strength of the specimen. However, the ductility of 

shear wall with aspect ratio 1 is the lowest (lesser by 25 

% than that for aspect ratio 1.5) due to predominant 

brittle shear failure. 

• The hysteretic energy dissipated for the walls of aspect 

ratio 1.5 is higher than that of the walls of aspect ratio 1 

and 1.25 for particular state of damage in the walls such 

as yielding, ultimate and collapse. The damping 

evaluated at the failure displacement from the dissipated 

hysteretic energy lies in the range of 15 to 20 %. 
• The Park and Ang damage index evaluated for all the 
three walls reaches a maximum value of 1.25 at failure 
displacement which is defined as displacement at which 
peak load drops to 85 % of ultimate load. The damage 
index based peak to peak on stiffness degradation given 
by Ghobarah is evaluated and at ultimate displacement 
this damage index reaches a value of 0.88 which 
signifies the damage degree of collapse. 
• The analytical model for backbone curve is obtained 

using equilibrium equations and it accurately predicts 

the pre and post peak region of the load deflection curve 

of short shear wall with aspect ratio 1,1.25 and 1.5. The 

multi-linear hysteretic model matches with experiments 

and can be used effectively for evaluation of nonlinear 

dynamic response of shear wall using a spring/truss 

model. The proposed model captures the global failure 

mode of shear walls however fails to capture some 

important three-dimensional effects such as the spalling 

observed in the specimens during the experiments. 
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