A rapid screening method for selection and modification of ground motions for time history analysis

Farhad Behnamfar^{1a} and Mehdi Talebi Velni^{*2}

¹Department of Civil Engineering, Isfahan University of Technology, Isfahan 8415683111, Iran ²Senior Structural Engineer, Chaloos, Iran

(Received December 31, 2017, Revised June 11, 2018, Accepted December 1, 2018)

Abstract. A three-step screening process is presented in this article for selection of consistent earthquake records in which number of suitable ground motions is quickly screened and reduced to a handful number. Records that remain at the end of this screening process considerably reduce the dispersion of structural responses. Then, an effective method is presented for spectral matching and modification of the selected records. Dispersion of structural responses is explored using different statistical measures for each scaling procedure. It is shown that the Uniform Design Method, presented in this study for scaling of earthquake records, results in most cases in the least dispersion measure.

Keywords: ground motion selection; screening process; modification; nonlinear time history analysis; scatter of response

1. Introduction

The nonlinear time history analysis of structures under earthquake motions has been known as the most rigorous analysis method for determining the seismic responses. The basic prerequisite for accomplishment of such an analysis is a suite of consistent earthquake records. By consistency, earthquakes recorded on the same soil type, in the same distance range, and having similar peak ground accelerations (PGA's), among other characteristics, are purposed. On the other hand, the final results of analysis with the selected suite of records, i.e., the structural responses, should not be too different between the earthquakes. In other words the scattering of responses must be kept small enough by appropriate selection and modification of ground motions.

Many alternatives have been proposed in the past for the same purpose mentioned above. Procedures suggested for the ground motion selection can generally be categorized in three groups regarding their level of complexity. In group 1 simply the general seismicity and seismotectonic characteristics of the region are considered. Parameters such as the fault mechanism, earthquake magnitude, distance to the causative fault, etc., have been used for sorting of earthquakes. This approach is very simple and needs no calculations. It has been adopted mainly by the public databases of earthquake records on the Internet, such as the PEER NGA strong motion data bank (Peer 2009).

In group 2, similarity of spectral shapes is the basis of selection. For this purpose, the response spectrum of the

Copyright © 2019 Techno-Press, Ltd. http://www.techno-press.com/journals/eas&subpage=7 record at hand is compared with the design spectrum. If enough similarity is satisfied, the record is selected for dynamic analysis. As the basis of comparison, the codebased constant-shape design spectrum, the uniform hazard spectrum (UHS), and the conditional mean spectrum (CMS) have been used. The design spectrum is usually derived by a smoothing process of the average acceleration spectrum of a consistent suite of ground motions and/or using the attenuation relations. Therefore, the uniformity of hazard probability along its curve is not guaranteed. The UHS has been derived accounting for the same probability of a certain hazard at all periods. However, the resulting shape is not much different from that of the design spectrum. On the other hand, obviously a single earthquake cannot produce a response spectrum matching the UHS within a wide band of frequencies. The CMS has been developed considering the above reality. For constructing a CMS, a target spectral acceleration and a spectral shape parameter are necessary (Baker 2011). The target acceleration is usually selected to be the value of the design spectral acceleration at the fundamental frequency of the studied structure. The shaping parameter determines the CMS at other periods with calculation of the average and standard deviation of logarithm of the response spectrum with respect to the target (design) spectrum.

To determine how similar a response spectrum is to a basis spectrum, many options are available. When using the design or UHS spectra as the basis, the area under the response and basis spectra, or else the average of deviations from the basis spectrum between two certain periods are calculated and compared.

When the basis is a CMS, a spectral shape parameter called " ε " is used as a deviation index. Recently a more effective deviation index called " η " has been proposed (Mousavi *et al.* 2011). It uses a combination of spectral acceleration and velocities for evaluating an earthquake.

The criteria used in the third group are generally called

^{*}Corresponding author, Associate Professor

E-mail: farhad@cc.iut.ac.ir

^aM.Sc. Student

E-mail: nmehdi_aria@yahoo.com

the advanced intensity measures. They usually combine the spectral characteristics of a ground motion, calculated with linear analysis of simple systems, with certain nonlinear responses of multi-story structures. For instance, the intensity measure of inelastic spectral displacement, utilizes the response spectrum displacement at the fundamental mode and the maximum inelastic displacement of an elastic-perfectly-plastic model of the real building at the first mode (Luco and Cornell 2007). After computing the above intensity measure (IM) for many records, those with IM's nearer to the average IM are selected.

Another proposed method in the same group is the method of priority list (Azarbakht and Dolsek 2011). This method has mainly been developed in response to the need for minimizing the number of ground motions, hence the computation time, in an incremental dynamic analysis (IDA). In this method, first an IDA is implemented on a nonlinear equivalent single-degree-of-freedom (SDF) system with many earthquake records. An average IDA curve is then calculated and used for record selection based on how a specific IDA curve deviates from the average (Azarbakht and Dolsek 2007).

When a record is scaled, the main idea is to minimize deviation of its response spectrum from the target (basis) spectrum in a certain period range. If it can be assumed that the elastic response of the structure under study is mainly dependent on its fundamental mode, the period range can be defined using T_1 , the period of the first mode of vibration. It is usually taken to be extending from $0.2 T_1$ to $1.5 T_1$ to include both the effects of higher modes and the nonlinear response of structure (ASCE-2010). In the spectral balancing method (Behnamfar and Nafarieh 2004).the scale factor is determined such that the area under the response spectrum becomes equal to that of the target spectrum in the mentioned period range. In the CMS method (Baker 2011) derivation of the scale factor is targeted at equalizing sum of the spectral amplitudes in the required period range from the CMS to that of the response spectrum. Genetic algorithm approaches are also available in which several groups of records are selected and the group characteristics are evolved during matching with each other until reaching a best generation of records (Michael 1999, Naeim et al. 2001, Pezeshk et al. 2000).

There have been several studies on the effects of different selection and scaling methods on the calculated nonlinear dynamic behavior of structures. Among them, one may refer to the studies of Takewaki and Tsujimoto on tall buildings (Takewaki and Tsujimoto 2011), Wood and T.C. Hutchinson on higher mode responses (Wood and Hutchinson 2012), Ergun and Ates on comparison of Eurocode8 and ASCE 7-05 regulations (Ergun and Ates 2013) and on comparative effects of scaled and unscaled earthquakes (Ergun and Ates 2014), Camataa and Cantagallo on directionality effects (Cantagallo et al. 2015), Bayati and Soltani on the collapse behavior of RC frames (Bayati and Soltani 2016), Kayhan on uni-directional and bi-directional dynamic analysis (Kayhan 2016), and Pavel and Vacareanu on Romania earthquakes (Pavel and Vacareanu 2016).

Scaling of records can also be accomplished using codebased prescribed procedures. For instance, FEMA 440 presents a method called the scaled nonlinear analysis procedure (FEMA 440). In this method, it is aimed to scale a record such that the maximum displacement of the mass center at the roof in a nonlinear dynamic analysis with the desired record is identical to the target displacement. Clearly, this method needs several trial and errors and can be too time-consuming and costly. ASCE7-10 requires that the scale factor be determined such that the average response spectrum of the suite of records does not fall below the design spectrum in the mentioned period range.

As observed, a large variety of methods exists for selection and scaling of ground motions, without a general consensus on the appropriate method. The aim of this research is to sort out a suitable methodology for earthquake record selection and modification. The final purpose of such a procedure is applying the records in a nonlinear dynamic analysis. Therefore, the main criterion for recognizing the suitability of the method is chosen to be having a minimum scatter in nonlinear structural responses.

2. The proposed method for selection of ground motions

In this study, a three-stage procedure for screening of earthquake records is presented. During the stages, the selection criteria become more strict and number of records that pass each screen sharply decreases. In other words, more strict measures are logically used with a smaller number of records resulting in much time saving. The three stages are called loose, medium and tight screens. They are explained in the following sections.

2.1 Stage 1: The loose screen

In stage 1, some global characteristics of earthquakes are utilized as the basis of record selection. These are: earthquake magnitude (M), source-to-site distance (R), soil type or the shear wave velocity (V_s), and peak horizontal acceleration at the ground surface (PGA).

For illustration, the following values are chosen to get forward with the next stages:

$$6 \le M \le 8 , \ 10 \le R \le 90 \ Km ,$$

$$375 \le Vs \le 750 \ m/_S, \ 0.2 \le PGA \le 1.2 \ g$$

Use of the above search criteria within the PEER ground motion database (Peer 2009), results in 47 ground motions, as shown in Table 1.

2.2 Stage 2: The medium screen

For the medium screen, the more promising option, after testing several procedures, seemed to be the spectrum intensity approach.

In this method the records with spectral intensities nearer to that of the design spectrum are picked up for the next screen. The spectrum intensity, *SI*, is calculated using Eq. (1)

$$SI = \int_{0.1}^{2.5} PSV \, dT$$
 (1)

in which PSV is the pseudo spectral velocity. This method

~ -

Table 1 Characteristics of the ground motions after the loose screen

-

1 NGA0033 6.19 24.90 0.2934 527.90 2 NGA0057 6.61 16.00 0.2994 450.30 3 NGA0125 6.50 13.00 0.3458 424.80 4 NGA025 6.33 30.00 0.5722 659.60 6 NGA0288 6.90 47.00 0.2137 500.00 7 NGA0587 6.60 13.00 0.2285 488.80 9 NGA0755 6.93 40.00 0.2137 500.00 10 NGA0776 6.93 40.00 0.22834 671.80 12 NGA0801 6.93 40.00 0.2834 671.80 13 NGA0810 6.93 40.00 0.5174 376.10 15 NGA0844 7.28 71.70 0.2489 379.30 16 NGA0952 6.69 18.00 0.2053 446.00 19 NGA093 6.69 18.00 0.22488 392.20	D	NCAN	17	$\mathbf{D}(1)$	DCA()	17 (/)
2 NGA0057 6.61 16.00 0.2994 450.30 3 NGA0125 6.50 13.00 0.3458 424.80 4 NGA0126 6.80 22.50 0.6438 659.60 5 NGA0265 6.33 30.00 0.5722 659.60 6 NGA0288 6.90 47.00 0.2137 500.00 7 NGA057 6.60 13.00 0.2926 424.80 8 NGA0739 6.93 40.00 0.2385 488.80 9 NGA0787 6.93 40.00 0.2834 671.80 12 NGA0801 6.93 40.00 0.3418 714.00 13 NGA0811 6.93 40.00 0.5174 376.10 14 NGA0811 6.93 40.00 0.5174 376.10 15 NGA0864 7.28 71.70 0.2489 379.30 16 NGA093 6.69 18.00 0.2558 446.00	Row	NGA No.	M	<i>R</i> (km)	PGA (g)	$V_{s30} ({\rm m/s})$
3 NGA0125 6.50 13.00 0.3458 424.80 4 NGA0126 6.80 22.50 0.6438 659.60 5 NGA0265 6.33 30.00 0.5722 659.60 6 NGA0288 6.90 47.00 0.2137 500.00 7 NGA0587 6.60 13.00 0.2926 424.80 8 NGA0755 6.93 40.00 0.2385 488.80 9 NGA0755 6.93 40.00 0.2281 425.30 11 NGA0801 6.93 40.00 0.2834 671.80 12 NGA0801 6.93 40.00 0.5174 376.10 13 NGA0811 6.93 40.00 0.5174 376.10 15 NGA0864 7.28 71.70 0.2489 379.30 16 NGA0953 6.69 18.00 0.20558 446.00 19 NGA0991 6.69 18.00 0.2489 372.0						
4 NGA0126 6.80 22.50 0.6438 659.60 5 NGA0265 6.33 30.00 0.5722 659.60 6 NGA0288 6.90 47.00 0.2137 500.00 7 NGA0587 6.60 13.00 0.2926 424.80 8 NGA0739 6.93 40.00 0.2385 488.80 9 NGA0755 6.93 40.00 0.22814 425.30 11 NGA0809 6.93 40.00 0.2834 671.80 12 NGA0811 6.93 40.00 0.4568 714.00 13 NGA0811 6.93 40.00 0.5174 376.10 15 NGA0864 7.28 71.70 0.2489 379.30 16 NGA0952 6.69 18.00 0.2558 446.00 19 NGA093 6.69 18.00 0.2558 446.00 21 NGA1006 6.69 18.00 0.22648 392.20						
5 NGA0265 6.33 30.00 0.5722 659.60 6 NGA0288 6.90 47.00 0.2137 500.00 7 NGA0587 6.60 13.00 0.2226 424.80 8 NGA0739 6.93 40.00 0.2385 488.80 9 NGA0755 6.93 40.00 0.2281 425.30 11 NGA0801 6.93 40.00 0.2281 425.30 12 NGA0801 6.93 40.00 0.3418 714.00 13 NGA0810 6.93 40.00 0.5174 376.10 15 NGA0864 7.28 71.70 0.2489 379.30 16 NGA0952 6.69 18.00 0.5102 545.70 17 NGA0963 6.69 18.00 0.2063 446.00 19 NGA0991 6.69 18.00 0.2384 460.00 20 NGA0993 6.69 18.00 0.2158 446.00						
6 NGA0288 6.90 47.00 0.2137 500.00 7 NGA0587 6.60 13.00 0.2926 424.80 8 NGA0739 6.93 40.00 0.2385 488.80 9 NGA0755 6.93 40.00 0.4700 684.90 10 NGA0787 6.93 40.00 0.2814 425.30 11 NGA0801 6.93 40.00 0.2834 671.80 12 NGA0809 6.93 40.00 0.4568 714.00 14 NGA0811 6.93 40.00 0.5174 376.10 15 NGA0864 7.28 71.70 0.2489 379.30 16 NGA0952 6.69 18.00 0.2653 446.00 19 NGA093 6.69 18.00 0.2558 446.00 20 NGA1006 6.69 18.00 0.3991 413.80 22 NGA1007 6.69 18.00 0.3391 413.80						
7 NGA0587 6.60 13.00 0.2926 424.80 8 NGA0739 6.93 40.00 0.2385 488.80 9 NGA0755 6.93 40.00 0.4700 684.90 10 NGA0787 6.93 40.00 0.2281 425.30 11 NGA0801 6.93 40.00 0.2418 71.80 12 NGA0809 6.93 40.00 0.3418 714.00 13 NGA0811 6.93 40.00 0.5174 376.10 15 NGA0864 7.28 71.70 0.2489 379.30 16 NGA0952 6.69 18.00 0.5102 545.70 17 NGA0963 6.69 18.00 0.2063 446.00 20 NGA0974 6.69 18.00 0.2558 446.00 21 NGA1006 6.69 18.00 0.3991 376.10 23 NGA1007 6.69 18.00 0.2291 405.20 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></tr<>						
8 NGA0739 6.93 40.00 0.2385 488.80 9 NGA0755 6.93 40.00 0.4700 684.90 10 NGA0787 6.93 40.00 0.2281 425.30 11 NGA0801 6.93 40.00 0.3418 714.00 13 NGA0810 6.93 40.00 0.5174 376.10 15 NGA0864 7.28 71.70 0.2489 379.30 16 NGA0952 6.69 18.00 0.5102 545.70 17 NGA0963 6.69 18.00 0.2663 446.00 19 NGA0974 6.69 18.00 0.2058 446.00 20 NGA0993 6.69 18.00 0.2071 446.00 21 NGA0993 6.69 18.00 0.3908 398.40 22 NGA1006 6.69 18.00 0.3391 413.80 25 NGA1020 6.69 18.00 0.2291 405.20 <						
9 NGA0755 6.93 40.00 0.4700 684.90 10 NGA0787 6.93 40.00 0.2281 425.30 11 NGA0801 6.93 40.00 0.2834 671.80 12 NGA0809 6.93 40.00 0.3418 714.00 13 NGA0811 6.93 40.00 0.5174 376.10 15 NGA0864 7.28 71.70 0.2489 379.30 16 NGA0952 6.69 18.00 0.5102 545.70 17 NGA0963 6.69 18.00 0.2063 446.00 18 NGA0974 6.69 18.00 0.2558 446.00 20 NGA0991 6.69 18.00 0.3908 398.40 22 NGA1007 6.69 18.00 0.3492 376.10 23 NGA1007 6.69 18.00 0.2153 602.10 26 NGA1039 6.69 18.00 0.2337 455.40						
10 NGA0787 6.93 40.00 0.2281 425.30 11 NGA0801 6.93 40.00 0.2834 671.80 12 NGA0809 6.93 40.00 0.3418 714.00 13 NGA0810 6.93 40.00 0.5174 376.10 15 NGA0864 7.28 71.70 0.2489 379.30 16 NGA0952 6.69 18.00 0.5102 545.70 17 NGA0963 6.69 18.00 0.2063 446.00 19 NGA0991 6.69 18.00 0.2071 446.00 20 NGA1006 6.69 18.00 0.3908 398.40 21 NGA1006 6.69 18.00 0.3492 376.10 23 NGA1020 6.69 18.00 0.2153 602.10 24 NGA1020 6.69 18.00 0.2153 602.10 26 NGA1039 6.69 18.00 0.2337 455.40						
11 NGA0801 6.93 40.00 0.2834 671.80 12 NGA0809 6.93 40.00 0.3418 714.00 13 NGA0810 6.93 40.00 0.4568 714.00 14 NGA0811 6.93 40.00 0.5174 376.10 15 NGA0864 7.28 71.70 0.2489 379.30 16 NGA0952 6.69 18.00 0.5102 545.70 17 NGA0963 6.69 18.00 0.2063 446.00 19 NGA0991 6.69 18.00 0.2071 446.00 20 NGA0993 6.69 18.00 0.3908 398.40 22 NGA1006 6.69 18.00 0.3492 376.10 23 NGA1007 6.69 18.00 0.2153 602.10 26 NGA1039 6.69 18.00 0.2337 455.40 29 NGA1049 6.69 18.00 0.2337 455.40						
12 NGA0809 6.93 40.00 0.3418 714.00 13 NGA0810 6.93 40.00 0.4568 714.00 14 NGA0811 6.93 40.00 0.5174 376.10 15 NGA0864 7.28 71.70 0.2489 379.30 16 NGA0952 6.69 18.00 0.5102 545.70 17 NGA0963 6.69 18.00 0.2063 446.00 19 NGA0991 6.69 18.00 0.2071 446.00 20 NGA1006 6.69 18.00 0.3908 398.40 22 NGA1007 6.69 18.00 0.3492 376.10 23 NGA1007 6.69 18.00 0.248 392.20 24 NGA1010 6.69 18.00 0.2153 602.10 26 NGA1039 6.69 18.00 0.2337 455.40 29 NGA1049 6.69 18.00 0.2602 473.90						
13 NGA0810 6.93 40.00 0.4568 714.00 14 NGA0811 6.93 40.00 0.5174 376.10 15 NGA0864 7.28 71.70 0.2489 379.30 16 NGA0952 6.69 18.00 0.5102 545.70 17 NGA0963 6.69 18.00 0.2063 446.00 19 NGA0974 6.69 18.00 0.2558 446.00 20 NGA0993 6.69 18.00 0.2071 446.00 21 NGA1006 6.69 18.00 0.3908 398.40 22 NGA1007 6.69 18.00 0.3492 376.10 23 NGA1007 6.69 18.00 0.2153 602.10 26 NGA1020 6.69 18.00 0.2153 602.10 26 NGA1039 6.69 18.00 0.2337 455.40 29 NGA1070 6.69 18.00 0.2591 376.10	11	NGA0801		40.00	0.2834	671.80
14 NGA0811 6.93 40.00 0.5174 376.10 15 NGA0864 7.28 71.70 0.2489 379.30 16 NGA0952 6.69 18.00 0.5102 545.70 17 NGA0963 6.69 18.00 0.4898 450.30 18 NGA0974 6.69 18.00 0.2063 446.00 20 NGA0991 6.69 18.00 0.2558 446.00 20 NGA0993 6.69 18.00 0.3908 398.40 22 NGA1006 6.69 18.00 0.3492 376.10 23 NGA1007 6.69 18.00 0.3492 376.10 23 NGA1007 6.69 18.00 0.2153 602.10 26 NGA1020 6.69 18.00 0.2337 455.40 29 NGA1070 6.69 18.00 0.2337 455.40 29 NGA1070 6.69 18.00 0.2591 376.10		NGA0809	6.93	40.00	0.3418	714.00
15 NGA0864 7.28 71.70 0.2489 379.30 16 NGA0952 6.69 18.00 0.5102 545.70 17 NGA0963 6.69 18.00 0.4898 450.30 18 NGA0974 6.69 18.00 0.2063 446.00 19 NGA0991 6.69 18.00 0.2558 446.00 20 NGA0993 6.69 18.00 0.3908 398.40 21 NGA1006 6.69 18.00 0.3492 376.10 23 NGA1007 6.69 18.00 0.2468 392.20 24 NGA1010 6.69 18.00 0.2153 602.10 26 NGA1020 6.69 18.00 0.2337 455.40 29 NGA1076 6.69 18.00 0.2337 455.40 29 NGA1070 6.69 18.00 0.2591 376.10 31 NGA1020 7.62 88.00 0.2602 473.90	13	NGA0810	6.93	40.00	0.4568	714.00
16 NGA0952 6.69 18.00 0.5102 545.70 17 NGA0963 6.69 18.00 0.4898 450.30 18 NGA0974 6.69 18.00 0.2063 446.00 19 NGA0991 6.69 18.00 0.2558 446.00 20 NGA0993 6.69 18.00 0.2071 446.00 21 NGA1006 6.69 18.00 0.3908 398.40 22 NGA1007 6.69 18.00 0.3492 376.10 23 NGA1009 6.69 18.00 0.2153 602.10 24 NGA1020 6.69 18.00 0.2153 602.10 26 NGA1039 6.69 18.00 0.2337 455.40 29 NGA1070 6.69 18.00 0.2087 401.40 30 NGA1089 6.69 18.00 0.2595 544.70 32 NGA1202 7.62 88.00 0.2602 473.90	14	NGA0811	6.93	40.00	0.5174	376.10
17NGA09636.6918.000.4898450.3018NGA09746.6918.000.2063446.0019NGA09916.6918.000.2558446.0020NGA09936.6918.000.2071446.0021NGA10066.6918.000.3908398.4022NGA10076.6918.000.3492376.1023NGA10096.6918.000.2648392.2024NGA10106.6918.000.2153602.1026NGA10206.6918.000.2291405.2027NGA10496.6918.000.2337455.4029NGA10706.6918.000.2087401.4030NGA10896.6918.000.2591376.1031NGA10896.6918.000.2595544.7032NGA12027.6288.000.2602473.9033NGA12057.6288.000.3852375.3034NGA14027.6288.000.3643520.4037NGA15067.6288.000.5283446.6039NGA15247.6288.000.5283446.6039NGA16337.3771.600.5051724.0040NGA17877.1369.000.3062684.9041NGA26226.2010.000.3363615.0044NGA26586.2010.000.3363615.00 </td <td>15</td> <td>NGA0864</td> <td>7.28</td> <td>71.70</td> <td>0.2489</td> <td>379.30</td>	15	NGA0864	7.28	71.70	0.2489	379.30
18 NGA0974 6.69 18.00 0.2063 446.00 19 NGA0991 6.69 18.00 0.2558 446.00 20 NGA0993 6.69 18.00 0.2071 446.00 21 NGA1006 6.69 18.00 0.3908 398.40 22 NGA1007 6.69 18.00 0.3492 376.10 23 NGA1009 6.69 18.00 0.2648 392.20 24 NGA1010 6.69 18.00 0.2153 602.10 26 NGA1020 6.69 18.00 0.2291 405.20 27 NGA1049 6.69 18.00 0.2337 455.40 29 NGA1070 6.69 18.00 0.2087 401.40 30 NGA1089 6.69 18.00 0.2591 376.10 31 NGA1089 6.69 18.00 0.2595 544.70 32 NGA1202 7.62 88.00 0.2602 473.90	16	NGA0952	6.69	18.00	0.5102	545.70
19 NGA0991 6.69 18.00 0.2558 446.00 20 NGA0993 6.69 18.00 0.2071 446.00 21 NGA1006 6.69 18.00 0.3908 398.40 22 NGA1007 6.69 18.00 0.3492 376.10 23 NGA1009 6.69 18.00 0.2648 392.20 24 NGA1010 6.69 18.00 0.3391 413.80 25 NGA1020 6.69 18.00 0.22153 602.10 26 NGA1039 6.69 18.00 0.2337 455.40 28 NGA1055 6.69 18.00 0.2337 455.40 29 NGA1070 6.69 18.00 0.2591 376.10 31 NGA1089 6.69 18.00 0.2595 544.70 32 NGA1202 7.62 88.00 0.2602 473.90 33 NGA1205 7.62 88.00 0.3643 520.40	17	NGA0963	6.69	18.00	0.4898	450.30
20NGA09936.6918.000.2071446.0021NGA10066.6918.000.3908398.4022NGA10076.6918.000.3492376.1023NGA10096.6918.000.2648392.2024NGA10106.6918.000.3391413.8025NGA10206.6918.000.2153602.1026NGA10396.6918.000.2291405.2027NGA10496.6918.000.2337455.4028NGA10556.6918.000.2337455.4029NGA10706.6918.000.2591376.1030NGA10896.6918.000.2595544.7031NGA11987.6288.000.2602473.9033NGA12027.6288.000.3852375.3034NGA14027.6288.000.3643520.4037NGA15067.6288.000.3643520.4038NGA15247.6288.000.3643520.4039NGA16337.3771.600.5051724.0040NGA17877.1369.000.3062684.9041NGA26226.2010.000.3363615.0044NGA26586.2010.000.3363615.0044NGA26586.2010.000.3643524.9045NGA29426.2017.500.2461427.70 </td <td>18</td> <td>NGA0974</td> <td>6.69</td> <td>18.00</td> <td>0.2063</td> <td>446.00</td>	18	NGA0974	6.69	18.00	0.2063	446.00
21NGA10066.6918.000.3908398.4022NGA10076.6918.000.3492376.1023NGA10096.6918.000.2648392.2024NGA10106.6918.000.3391413.8025NGA10206.6918.000.2153602.1026NGA10396.6918.000.2291405.2027NGA10496.6918.000.2337455.4028NGA10556.6918.000.2337455.4029NGA10706.6918.000.2591376.1031NGA10896.6918.000.2595544.7032NGA12027.6288.000.2602473.9033NGA12057.6288.000.3852375.3034NGA14027.6288.000.3643520.4037NGA15067.6288.000.3643520.4038NGA15247.6288.000.3643520.4039NGA16337.3771.600.5051724.0040NGA17877.1369.000.3062684.9041NGA26226.2010.000.3363615.0044NGA26586.2010.000.3643624.9043NGA26276.2010.000.366364.4045NGA29426.2017.500.2461427.7046NGA32176.2017.500.3911664.40 <td>19</td> <td>NGA0991</td> <td>6.69</td> <td>18.00</td> <td>0.2558</td> <td>446.00</td>	19	NGA0991	6.69	18.00	0.2558	446.00
22NGA10076.6918.000.3492376.1023NGA10096.6918.000.2648392.2024NGA10106.6918.000.3391413.8025NGA10206.6918.000.2153602.1026NGA10396.6918.000.2291405.2027NGA10496.6918.000.3316446.0028NGA10556.6918.000.2337455.4029NGA10706.6918.000.2087401.4030NGA10896.6918.000.2591376.1031NGA12027.6288.000.2602473.9033NGA12057.6288.000.3852375.3034NGA14027.6288.000.3643520.4037NGA15067.6288.000.3643520.4038NGA15247.6288.000.3643520.4039NGA16337.3771.600.5051724.0040NGA24956.2010.000.3363615.0041NGA26226.2010.000.3363615.0043NGA26276.2010.000.6083664.4045NGA29426.2017.500.3911664.40	20	NGA0993	6.69	18.00	0.2071	446.00
23NGA10096.6918.000.2648392.2024NGA10106.6918.000.3391413.8025NGA10206.6918.000.2153602.1026NGA10396.6918.000.2291405.2027NGA10496.6918.000.3316446.0028NGA10556.6918.000.2337455.4029NGA10706.6918.000.2087401.4030NGA10896.6918.000.2591376.1031NGA12027.6288.000.2602473.9033NGA12057.6288.000.3852375.3034NGA14027.6288.000.3643520.4035NGA14857.6288.000.3643520.4036NGA14877.6288.000.3643520.4037NGA15067.6288.000.5283446.6039NGA16337.3771.600.5051724.0040NGA17877.1369.000.3062684.9041NGA26226.2010.000.3363615.0044NGA26586.2010.000.366364.4045NGA29426.2017.500.2461427.7046NGA32176.2017.500.3911664.40	21	NGA1006	6.69	18.00	0.3908	398.40
24NGA10106.6918.000.3391413.8025NGA10206.6918.000.2153602.1026NGA10396.6918.000.2291405.2027NGA10496.6918.000.3316446.0028NGA10556.6918.000.2337455.4029NGA10706.6918.000.2087401.4030NGA10896.6918.000.2591376.1031NGA11987.6288.000.2602473.9032NGA12027.6288.000.2602473.9033NGA12057.6288.000.3852375.3034NGA14027.6288.000.3643520.4035NGA14857.6288.000.3643520.4036NGA14877.6288.000.3643520.4037NGA15067.6288.000.5283446.6039NGA16337.3771.600.5051724.0040NGA17877.1369.000.3062684.9041NGA26226.2010.000.3363615.0043NGA26276.2010.000.3363615.0044NGA26586.2010.000.6083664.4045NGA29426.2017.500.2461427.7046NGA32176.2017.500.3911664.40	22	NGA1007	6.69	18.00	0.3492	376.10
25NGA10206.6918.000.2153602.1026NGA10396.6918.000.2291405.2027NGA10496.6918.000.3316446.0028NGA10556.6918.000.2337455.4029NGA10706.6918.000.2087401.4030NGA10896.6918.000.2591376.1031NGA11987.6288.000.2595544.7032NGA12027.6288.000.2602473.9033NGA12057.6288.000.3852375.3034NGA14027.6288.000.3643520.4035NGA14857.6288.000.3643520.4036NGA14877.6288.000.2583446.6037NGA15067.6288.000.5283446.6038NGA15247.6288.000.5283446.6039NGA16337.3771.600.5051724.0040NGA17877.1369.000.3062684.9041NGA26226.2010.000.3363615.0043NGA26276.2010.000.3363615.0044NGA26586.2010.000.6083664.4045NGA29426.2017.500.3911664.40	23	NGA1009	6.69	18.00	0.2648	392.20
26NGA10396.6918.000.2291405.2027NGA10496.6918.000.3316446.0028NGA10556.6918.000.2337455.4029NGA10706.6918.000.2087401.4030NGA10896.6918.000.2591376.1031NGA11987.6288.000.2595544.7032NGA12027.6288.000.2602473.9033NGA12057.6288.000.3852375.3034NGA14027.6288.000.3852375.3035NGA14857.6288.000.3643520.4037NGA15067.6288.000.2583446.6039NGA16337.3771.600.5051724.0040NGA17877.1369.000.3062684.9041NGA24956.2010.000.3363615.0043NGA26276.2010.000.3643624.9043NGA26586.2010.000.364364.4045NGA29426.2017.500.2461427.7046NGA32176.2017.500.3911664.40	24	NGA1010	6.69	18.00	0.3391	413.80
27NGA10496.6918.000.3316446.0028NGA10556.6918.000.2337455.4029NGA10706.6918.000.2087401.4030NGA10896.6918.000.2591376.1031NGA11987.6288.000.2595544.7032NGA12027.6288.000.4625492.3033NGA14027.6288.000.3852375.3034NGA14027.6288.000.3643520.4035NGA14857.6288.000.3643520.4036NGA14877.6288.000.3643520.4037NGA15067.6288.000.5051724.0038NGA15247.6288.000.5051724.0040NGA17877.1369.000.3062684.9041NGA26226.2010.000.3343553.4042NGA26226.2010.000.3633615.0044NGA26586.2010.000.3663664.4045NGA29426.2017.500.2461427.7046NGA32176.2017.500.3911664.40	25	NGA1020	6.69	18.00	0.2153	602.10
28NGA10556.6918.000.2337455.4029NGA10706.6918.000.2087401.4030NGA10896.6918.000.2591376.1031NGA11987.6288.000.2595544.7032NGA12027.6288.000.2602473.9033NGA12057.6288.000.4625492.3034NGA14027.6288.000.3852375.3035NGA14857.6288.000.3643520.4036NGA14877.6288.000.3643520.4037NGA15067.6288.000.5283446.6039NGA16337.3771.600.5051724.0040NGA17877.1369.000.3062684.9041NGA26226.2010.000.3342553.4042NGA26226.2010.000.3663615.0044NGA26586.2010.000.366364.4045NGA29426.2017.500.2461427.7046NGA32176.2017.500.3911664.40	26	NGA1039	6.69	18.00	0.2291	405.20
29NGA10706.6918.000.2087401.4030NGA10896.6918.000.2591376.1031NGA11987.6288.000.2595544.7032NGA12027.6288.000.2602473.9033NGA12057.6288.000.4625492.3034NGA14027.6288.000.3852375.3035NGA14857.6288.000.3643520.4036NGA14877.6288.000.3643520.4037NGA15067.6288.000.5283446.6039NGA16337.3771.600.5051724.0040NGA17877.1369.000.3062684.9041NGA24956.2010.000.3343553.4042NGA26226.2010.000.3363615.0044NGA26586.2010.000.6083664.4045NGA29426.2017.500.2461427.7046NGA32176.2017.500.3911664.40	27	NGA1049	6.69	18.00	0.3316	446.00
30 NGA1089 6.69 18.00 0.2591 376.10 31 NGA1198 7.62 88.00 0.2595 544.70 32 NGA1202 7.62 88.00 0.2602 473.90 33 NGA1205 7.62 88.00 0.4625 492.30 34 NGA1402 7.62 88.00 0.3852 375.30 35 NGA1485 7.62 88.00 0.3643 520.40 36 NGA1487 7.62 88.00 0.3643 520.40 37 NGA1506 7.62 88.00 0.2058 401.30 38 NGA1524 7.62 88.00 0.5283 446.60 39 NGA1633 7.37 71.60 0.5051 724.00 40 NGA1787 7.13 69.00 0.3062 684.90 41 NGA2622 6.20 10.00 0.2736 624.90 43 NGA2627 6.20 10.00 0.3663 614.40	28	NGA1055	6.69	18.00	0.2337	455.40
31NGA11987.6288.000.2595544.7032NGA12027.6288.000.2602473.9033NGA12057.6288.000.4625492.3034NGA14027.6288.000.3852375.3035NGA14857.6288.000.4730704.6036NGA14877.6288.000.3643520.4037NGA15067.6288.000.2058401.3038NGA15247.6288.000.5283446.6039NGA16337.3771.600.5051724.0040NGA17877.1369.000.3062684.9041NGA24956.2010.000.2736624.9043NGA26226.2010.000.3363615.0044NGA26586.2010.000.6083664.4045NGA29426.2017.500.2461427.7046NGA32176.2017.500.3911664.40	29	NGA1070	6.69	18.00	0.2087	401.40
32 NGA1202 7.62 88.00 0.2602 473.90 33 NGA1205 7.62 88.00 0.4625 492.30 34 NGA1402 7.62 88.00 0.3852 375.30 35 NGA1485 7.62 88.00 0.3643 520.40 36 NGA1487 7.62 88.00 0.3643 520.40 37 NGA1506 7.62 88.00 0.2058 401.30 38 NGA1524 7.62 88.00 0.5283 446.60 39 NGA1633 7.37 71.60 0.5051 724.00 40 NGA1787 7.13 69.00 0.3062 684.90 41 NGA2622 6.20 10.00 0.3343 615.00 42 NGA2627 6.20 10.00 0.3363 615.00 43 NGA2627 6.20 10.00 0.6083 664.40 45 NGA2942 6.20 17.50 0.2461 427.70	30	NGA1089	6.69	18.00	0.2591	376.10
33 NGA1205 7.62 88.00 0.4625 492.30 34 NGA1402 7.62 88.00 0.3852 375.30 35 NGA1485 7.62 88.00 0.4730 704.60 36 NGA1487 7.62 88.00 0.3643 520.40 37 NGA1506 7.62 88.00 0.2058 401.30 38 NGA1524 7.62 88.00 0.5283 446.60 39 NGA1633 7.37 71.60 0.5051 724.00 40 NGA1787 7.13 69.00 0.3062 684.90 41 NGA2495 6.20 10.00 0.3342 553.40 42 NGA2622 6.20 10.00 0.3663 615.00 43 NGA2627 6.20 10.00 0.3663 664.40 45 NGA2942 6.20 17.50 0.2461 427.70 46 NGA3217 6.20 17.50 0.3911 664.40 <td>31</td> <td>NGA1198</td> <td>7.62</td> <td>88.00</td> <td>0.2595</td> <td>544.70</td>	31	NGA1198	7.62	88.00	0.2595	544.70
34 NGA1402 7.62 88.00 0.3852 375.30 35 NGA1485 7.62 88.00 0.4730 704.60 36 NGA1487 7.62 88.00 0.3643 520.40 37 NGA1506 7.62 88.00 0.2058 401.30 38 NGA1524 7.62 88.00 0.5283 446.60 39 NGA1633 7.37 71.60 0.5051 724.00 40 NGA1787 7.13 69.00 0.3062 684.90 41 NGA2495 6.20 10.00 0.3342 553.40 42 NGA2622 6.20 10.00 0.2736 624.90 43 NGA2627 6.20 10.00 0.3663 615.00 44 NGA2658 6.20 10.00 0.6083 664.40 45 NGA2942 6.20 17.50 0.2461 427.70 46 NGA3217 6.20 17.50 0.3911 664.40 <td>32</td> <td>NGA1202</td> <td>7.62</td> <td>88.00</td> <td>0.2602</td> <td>473.90</td>	32	NGA1202	7.62	88.00	0.2602	473.90
34 NGA1402 7.62 88.00 0.3852 375.30 35 NGA1485 7.62 88.00 0.4730 704.60 36 NGA1487 7.62 88.00 0.3643 520.40 37 NGA1506 7.62 88.00 0.2058 401.30 38 NGA1524 7.62 88.00 0.5283 446.60 39 NGA1633 7.37 71.60 0.5051 724.00 40 NGA1787 7.13 69.00 0.3062 684.90 41 NGA2495 6.20 10.00 0.3342 553.40 42 NGA2622 6.20 10.00 0.2736 624.90 43 NGA2627 6.20 10.00 0.3663 615.00 44 NGA2658 6.20 10.00 0.6083 664.40 45 NGA2942 6.20 17.50 0.2461 427.70 46 NGA3217 6.20 17.50 0.3911 664.40 <td>33</td> <td>NGA1205</td> <td>7.62</td> <td>88.00</td> <td>0.4625</td> <td>492.30</td>	33	NGA1205	7.62	88.00	0.4625	492.30
36NGA14877.6288.000.3643520.4037NGA15067.6288.000.2058401.3038NGA15247.6288.000.5283446.6039NGA16337.3771.600.5051724.0040NGA17877.1369.000.3062684.9041NGA24956.2010.000.3342553.4042NGA26226.2010.000.2736624.9043NGA26586.2010.000.6083664.4045NGA29426.2017.500.2461427.7046NGA32176.2017.500.3911664.40	34	NGA1402	7.62	88.00		375.30
37 NGA1506 7.62 88.00 0.2058 401.30 38 NGA1524 7.62 88.00 0.5283 446.60 39 NGA1633 7.37 71.60 0.5051 724.00 40 NGA1787 7.13 69.00 0.3062 684.90 41 NGA2495 6.20 10.00 0.3342 553.40 42 NGA2622 6.20 10.00 0.2736 624.90 43 NGA2627 6.20 10.00 0.3363 615.00 44 NGA2658 6.20 10.00 0.6083 664.40 45 NGA2942 6.20 17.50 0.2461 427.70 46 NGA3217 6.20 17.50 0.3911 664.40	35	NGA1485	7.62	88.00	0.4730	704.60
38 NGA1524 7.62 88.00 0.5283 446.60 39 NGA1633 7.37 71.60 0.5051 724.00 40 NGA1787 7.13 69.00 0.3062 684.90 41 NGA2495 6.20 10.00 0.3342 553.40 42 NGA2622 6.20 10.00 0.2736 624.90 43 NGA2627 6.20 10.00 0.3363 615.00 44 NGA2658 6.20 10.00 0.6083 664.40 45 NGA2942 6.20 17.50 0.2461 427.70 46 NGA3217 6.20 17.50 0.3911 664.40	36	NGA1487	7.62	88.00	0.3643	520.40
38 NGA1524 7.62 88.00 0.5283 446.60 39 NGA1633 7.37 71.60 0.5051 724.00 40 NGA1787 7.13 69.00 0.3062 684.90 41 NGA2495 6.20 10.00 0.3342 553.40 42 NGA2622 6.20 10.00 0.2736 624.90 43 NGA2627 6.20 10.00 0.3363 615.00 44 NGA2658 6.20 10.00 0.6083 664.40 45 NGA2942 6.20 17.50 0.2461 427.70 46 NGA3217 6.20 17.50 0.3911 664.40	37	NGA1506	7.62	88.00	0.2058	401.30
40NGA17877.1369.000.3062684.9041NGA24956.2010.000.3342553.4042NGA26226.2010.000.2736624.9043NGA26276.2010.000.3363615.0044NGA26586.2010.000.6083664.4045NGA29426.2017.500.2461427.7046NGA32176.2017.500.3911664.40			7.62		0.5283	446.60
41NGA24956.2010.000.3342553.4042NGA26226.2010.000.2736624.9043NGA26276.2010.000.3363615.0044NGA26586.2010.000.6083664.4045NGA29426.2017.500.2461427.7046NGA32176.2017.500.3911664.40	39	NGA1633	7.37	71.60	0.5051	724.00
41NGA24956.2010.000.3342553.4042NGA26226.2010.000.2736624.9043NGA26276.2010.000.3363615.0044NGA26586.2010.000.6083664.4045NGA29426.2017.500.2461427.7046NGA32176.2017.500.3911664.40		NGA1787				
42NGA26226.2010.000.2736624.9043NGA26276.2010.000.3363615.0044NGA26586.2010.000.6083664.4045NGA29426.2017.500.2461427.7046NGA32176.2017.500.3911664.40						
43NGA26276.2010.000.3363615.0044NGA26586.2010.000.6083664.4045NGA29426.2017.500.2461427.7046NGA32176.2017.500.3911664.40						
44NGA26586.2010.000.6083664.4045NGA29426.2017.500.2461427.7046NGA32176.2017.500.3911664.40						
45NGA29426.2017.500.2461427.7046NGA32176.2017.500.3911664.40						
46 NGA3217 6.20 17.50 0.3911 664.40						
	47	NGA3507	6.30	29.00	0.2565	664.40

only needs the response velocity spectrum of each earthquake and the design velocity spectrum and therefore is simpler then the above method based on ε . Moreover, numerical analysis in this study has shown that selecting based on SI results in less scattering of structural responses compared with other methods (Talebi 2014) (not shown for brevity). For selection of earthquakes in this stage, the ratios of spectral intensities of the records at hand to that of the design spectrum are calculated. The earthquakes with

ratios nearer to unity are selected. The design spectrum, S_a , used for this analysis is that of ASCE7-10 introduced in Eq. (2)

$$S_{a} = S_{DS}(0.4 + 0.6\frac{T}{T_{0}}): \quad T \leq T_{0}$$

$$S_{a} = S_{DS}: \quad T_{0} \leq T \leq T_{S}$$

$$S_{a} = \frac{S_{D1}}{T}: \quad T_{S} \leq T \leq T_{L}$$

$$S_{a} = S_{D1}(\frac{T_{L}}{T^{2}}): \quad T \geq T_{L}$$
(2)

where S_{DS} and S_{D1} are the spectral accelerations at short periods and at 1 second, and T_0 , T_sT_0 , T_1 and T_L are anchor periods with $T_0 < T_s < T_l T_0 \le T \le T_L$ determining the edges of different parts of the spectrum, respectively. They are calculated as follows

$$S_{DS} = \frac{2}{3} F_a S_s$$

$$S_{D1} = \frac{2}{3} F_V S_1$$

$$T_0 = 0.2 \frac{S_{D1}}{S_{DS}}$$

$$T_S = \frac{S_{D1}}{S_{DS}}$$
(3)

in which F_a and F_V are the local soil factors, and S_s and S_1 are the short period and 1 sec spectral accelerations on bedrock, respectively.

Sample values of the above parameters for a seismically active area with a medium soil in the western North America are: $S_S=1.5$, $S_1=0.6$, $F_a=1.0$ and $F_V=1.3$. Also, T_l is a long period parameter varying between 4 and 16 in different regions. It is taken to be 8 sec in this research.

The above assumptions result in the design spectrum shown in Fig. 1.

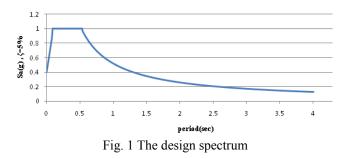


Table 2 Earthquakes selected after the medium screen and their spectral intensity ratios (RSI)

Row	NGA No.	RSI	Row	NGA No.	RSI
1	0126	0.5961	11	1202	0.4968
2	0265	0.3459	12	1205	0.3171
3	0755	0.3072	13	1485	0.3540
4	0787	0.3258	14	1487	0.3957
5	0811	0.3779	15	1506	0.3691
6	0864	0.4137	16	1524	0.3733
7	0952	0.3213	17	1633	0.5061
8	0963	0.6227	18	1787	0.3777
9	1010	0.2916	19	2495	0.5658
10	1198	0.3408	20	2627	0.3944

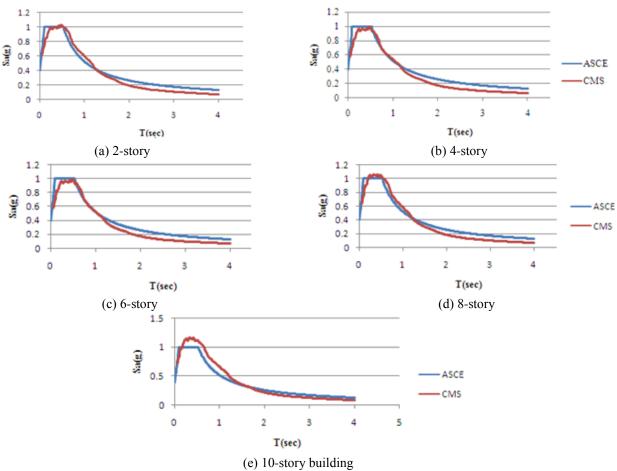


Fig. 2 The conditional mean spectra

Value of the spectrum intensity of the design spectrum is 1.811 m. Based on Eq. (1) and Fig. 1, 20 earthquakes with spectral intensity ratios closer to unity are selected and shown in Table 2.

2.3 Stage 3: The tight screen

Among the methods suitable for a tight screen, referred to in Sec.1, the CMS method is selected for analysis. Of course use of more advanced intensity measures is possible too, but they have been left aside after examining, for their unwanted complexity (Talebi 2014).

The CMS method needs a design spectrum and involves constructing a mean spectrum with the condition that it intersects with the design curve at a certain period. This period is taken to be the fundamental period of the buildings under study. These are introduced next.

2.3.1 Buildings studied

The structures designed for the purposes of this study, are 2, 4, 6, 8 and 10 story two-way steel moment resisting frames. There are three bays each way spanning 5 m between columns. The floor-to-floor heights of stories are uniformly 3 m. The fundamental periods of 2 to 10-story buildings are determined to be 0.42, 0.79, 1.07, 1.23 and 1.52 sec, respectively, using eigen value analysis by the design software.

2.3.2 The conditional mean spectra

The CMS must be constructed for each fundamental vibration period corresponding to each case study building. It is determined as follows:

1) Calculation of the mean, $\mu(Ln S_a)$ and standard deviation, $\sigma(LnS_a)$, of the natural logarithm of the spectral accelerations.

For the 20 earthquakes selected out the medium screen (Table 2), $\mu(Ln S_a)$ and $\sigma(Ln S_a)$ are calculated at each period *T* as follows

$$\mu_{\ln S_a}(M, R, T) = (1/20) \sum_{i=1}^{20} \ln S_a(T)_i$$
⁽⁴⁾

$$\sigma_{\ln S_a}(T) = \sqrt{(1/19)\sum_{i=1}^{20} (\ln S_a(T) - \mu_{\ln S_a}(M.R.T))_i^2} \quad (5)$$

2) Determination of ε and the correlation factor ρ .

The spectral shape parameter ε is calculated using Eq. (6) at the fundamental period *T*.

$$\varepsilon(T) = \frac{\ln Sa(T) - \mu_{\ln Sa}(M, R, T)}{\sigma_{\ln Sa}(M, R, T)}$$
(6)

The ρ factor is determined using Eq. (7) (Baker 2011)

$$\rho(T_{\min}, T_{\max}) = 1 - \cos(\frac{\pi}{2} - (0.359 + 0.163I_{T_{\min} < 0.189}))$$

$$<\ln\frac{T_{\min}}{0.189})\ln\frac{T_{\max}}{T_{\min}})$$
(7)

where *I* equals unity for $T_{\min} < 0.189$ and zero elsewhere. Also, for periods less than *T*, T_{\min} is the desired period and $T_{\max} = T$. For periods larger than T, The above definition is reversed.

3) Calculation of CMS.

The conditional mean spectrum is calculated using Eq. (8)

$$CMS(T_L) = Exp\left\{\mu_{\ln S_a}(M, R, T_i) + \rho(T_i, T^*)\varepsilon(T^*)\sigma_{\ln S_a}(T_i)\right\}$$
(8)

where (T_i) is the desired period.

Fig. 2 shows the CMS for each building along with the design spectrum.

2.3.3 Selection based on CMS

The similarity of each response spectrum to the CMS is measured in this method using the SSE and SF indices, introduced as follows (Baker 2011)

$$SSE = \sum_{j=1}^{n} (\ln Sa(T_j) - \ln S_{aCMS}(T_j))^2$$
(9)

$$Scale Factor = \frac{\sum_{j=1}^{n} S_{aCMS}(T_j)}{\sum_{j=1}^{n} Sa(T_j)}$$
(10)

where $Sa(T_j)$ is the value of the response spectrum at the descried period T_i and S_{aCMS} the CMS value at the same period. It is obvious that SSE and SF measure deviation of the response spectrum at hand from the CMS in two different ways. Then, 10 records with smaller SSE's and with SF's closer to unity are finally picked up for structural analysis. Table 3 lists the final earthquakes selected after the tight screen. Also, the response spectra of the selected earthquakes are shown in Fig. 3, for example, for the 2-story building along with the design spectrum.

3. Scaling of the selected ground motions

In this study a new scaling method is presented and evaluated for discrepancy along with two other more widespreadly used methods introduced in Sec. 1, namely the CMS and the code-based (prescribed) methods.

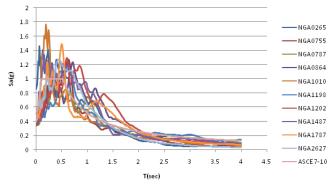


Fig. 3 Response spectra of the ground motions selected for nonlinear analysis of the 2-story building

Table 3 Final earthquakes selected after the tight screen stage

Row	2-story	4-story	6-story	8-story	10-story
1	NGA 0265	NGA 0265	NGA 0265	NGA 0265	NGA 0755
2	NGA 0755	NGA 0755	NGA 0755	NGA 0755	NGA 0787
3	NGA 0787	NGA 0787	NGA 0787	NGA 0787	NGA 0864
4	NGA 0864	NGA 0864	NGA 0864	NGA 0864	NGA 0952
5	NGA 1010	NGA 1010	NGA 1010	NGA 0952	NGA 1010
6	NGA 1198	NGA 1198	NGA 1198	NGA 1010	NGA 1202
7	NGA 1202	NGA 1487	NGA 1485	NGA 1198	NGA 1485
8	NGA 1487	NGA 1506	NGA 1487	NGA 1485	NGA 1487
9	NGA 1787	NGA 1787	NGA 1506	NGA 1487	NGA 1787
10	NGA 2627				

As mentioned in Sec.1, ASCE7-10 requires that earthquake records be scaled for each building such that their individual or mean spectra do not fall below the design spectrum in the periods range 0.2T-1.5T, with *T* being the fundamental period of the building. In this study, the quality of ASCE7-10 scaling is evaluated with two versions. If the individual response spectra are used, it is called the separative ASCE method, but if the mean response spectrum is utilized, the method will be called the combinatorial ASCE. In CMS, the scale factor is determined by Eq. (12).

The new method presented in this study for modification or scaling of the selected ground motions is called the Uniform Design Method (UDM). This method is presented in two versions, called separative and combinatorial. It will be seen that the second version is much more practical with a similar or superior accuracy.

3.1 The separative UDM

In this method first the building under study is designed for the response spectrum of the original (unmodified) earthquake record along with other loads. By design, here it is meant the result of determining only the section dimensions of the structural members including beams and columns in order to be able to calculate the fundamental vibration period of each building. Determining other structural details is not needed for this purpose. The fundamental period of the designed structure is called T_1^e . The same building is again designed but this time using the design spectrum of the building code. The fundamental period in this case is called T_1^{code} . In general, $T_1^e \neq T_1^{code}$. In order to arrive at a uniform (similar) design both with the response and the design spectra, similarity of design forces (spectral accelerations) resulting in similar lateral stiffnesses and similar fundamental periods is considered. Since stiffness is proportional to square of period, a scale factor is proposed as follows

Scale Factor =
$$\left(\frac{T_1^e}{T_1^{code}}\right)^2$$
 (11)

3.2 The combinational UDM

The separative UDM has the drawback that it is too

Table 4 The scale factors of the separative ASCE method

	2-st	tory	4-s	tory	6-s	tory	8-st	tory	10-s	tory
Row	buil	ding								
	NGA	S.F.								
1	0265	1.078	0265	1.228	0265	1.228	0265	1.427	0755	1.449
2	0755	1.624	0755	1.420	0755	1.449	0755	1.449	0787	1.349
3	0787	2.164	0787	1.582	0787	1.582	0787	1.493	0864	1.481
4	0864	2.434	0864	1.758	0864	1.542	0864	1.481	0952	2.134
5	1010	1.637	1010	1.637	1010	1.637	0952	1.695	1010	1.636
6	1198	2.278	1198	2.203	1198	1.777	1010	1.637	1202	1.237
7	1202	2.220	1487	1.103	1485	1.520	1198	1.737	1485	1.593
8	1487	1.103	1506	2.995	1487	1.628	1485	1.593	1487	1.628
9	1787	1.583	2495	1.542	1506	2.552	1487	1.628	1787	1.542
10	2627	1.668	2627	1.417	2627	1.191	2627	1.355	2627	1.955

Table 5 The scale factors of the combinatorial ASCE method

	2-st	ory	4-s	tory	6-s	tory	8-st	tory	10-s	story
Row	build	ling	buil	ding	buil	ding	buil	ding	buil	ding
	NGA	S.F.	NGA	S.F.	NGA	S.F.	NGA	S.F.	NGA	S.F.
1	0265	1.50	0265	1.193	0265	1.154	0265	1.301	0755	1.379
2	0755	1.50	0755	1.193	0755	1.154	0755	1.301	0787	1.379
3	0787	1.50	0787	1.193	0787	1.154	0787	1.301	0864	1.379
4	0864	1.50	0864	1.193	0864	1.154	0864	1.301	0952	1.379
5	1010	1.50	1010	1.193	1010	1.154	0952	1.301	1010	1.379
6	1198	1.50	1198	1.193	1198	1.154	1010	1.301	1202	1.379
7	1202	1.50	1487	1.193	1485	1.154	1198	1.301	1485	1.379
8	1487	1.50	1506	1.193	1487	1.154	1485	1.301	1487	1.379
9	1787	1.50	2495	1.193	1506	1.154	1487	1.301	1787	1.379
10	2627	1.50	2627	1.193	2627	1.154	2627	1.301	2627	1.379

Table 6 The scale factors of the CMS method

	2-s	tory	4-s	tory	6-s	tory	8-s1	tory	10-s	tory
Row	buil	ding								
	NGA	S.F.								
1	0265	0.925	0265	0.864	0265	0.829	0265	0.931	0755	1.172
2	0755	1.071	0755	1.029	0755	0.959	0755	1.032	0787	1.136
3	0787	1.293	0787	1.058	0787	0.978	0787	1.038	0864	0.891
4	0864	1.140	0864	0.832	0864	0.753	0864	0.811	0952	1.200
5	1010	1.049	1010	1.054	1010	1.015	0952	0.945	1010	1.030
6	1198	1.174	1198	1.022	1198	0.926	1010	1.135	1202	0.808
7	1202	1.068	1487	0.790	1485	0.758	1198	0.973	1485	0.977
8	1487	0.899	1506	1.074	1487	0.759	1485	0.834	1487	0.937
9	1787	1.098	2495	0.903	1506	0.931	1487	0.834	1787	1.001
10	2627	0.948	2627	0.839	2627	0.791	2627	0.875	2627	1.009

lengthy because each building must be designed once for each original record. The combinatorial UDM overcomes this difficulty with using the mean response spectrum of the original records for design. Therefore in this method the building is once designed using the mean response spectrum of the original records, with the resulting period T_1^e , and once with the design spectrum, resulting in period T_1^{code} . Then the scale factor is calculated using Eq. (11).

3.3 The scale factors

The scale factors using the methods mentioned above, namely the separative and combinatorial ASCE and UDM,

Table 7 The scale factors of the separative UDM approach

						1			11	
	2-st	ory	4-st	ory	6-st	ory	8-st	ory	10-s	tory
Row	buile	ling	build	ling	buile	ling	buile	ling	buile	ling
	NGA	S.F.								
1	0265	2.57	0265	1.49	0265	2.49	0265	1.82	0755	1.32
2	0755	1.72	0755	1.65	0755	2.39	0755	1.86	0787	1.80
3	0787	1.66	0787	1.85	0787	2.40	0787	1.72	0864	1.76
4	0864	2.50	0864	1.59	0864	2.02	0864	1.54	0952	1.59
5	1010	1.95	1010	2.52	1010	1.99	0952	1.91	1010	1.67
6	1198	1.89	1198	1.84	1198	1.95	1010	1.67	1202	1.95
7	1202	1.70	1487	1.61	1485	1.90	1198	1.46	1485	2.06
8	1487	1.19	1506	1.35	1487	2.10	1485	2.45	1487	2.17
9	1787	1.22	2495	1.53	1506	1.87	1487	2.52	1787	1.52
10	2627	1.94	2627	1.62	2627	1.57	2627	1.36	2627	1.43

Table 8 The scale factors of the combinatorial UDM approach

	2-st	tory	4-st	tory	6-s	tory	8-s1	tory	10-s	tory
Row	buil	ding								
	NGA	S.F.								
1	0265	2.176	0265	1.507	0265	1.727	0265	1.542	0755	1.411
2	0755	2.176	0755	1.507	0755	1.727	0755	1.542	0787	1.411
3	0787	2.176	0787	1.507	0787	1.727	0787	1.542	0864	1.411
4	0864	2.176	0864	1.507	0864	1.727	0864	1.542	0952	1.411
5	1010	2.176	1010	1.507	1010	1.727	0952	1.542	1010	1.411
6	1198	2.176	1198	1.507	1198	1.727	1010	1.542	1202	1.411
7	1202	2.176	1487	1.507	1485	1.727	1198	1.542	1485	1.411
8	1487	2.176	1506	1.507	1487	1.727	1485	1.542	1487	1.411
9	1787	2.176	2495	1.507	1506	1.727	1487	1.542	1787	1.411
10	2627	2.176	2627	1.507	2627	1.727	2627	1.542	2627	1.411

and the CMS procedures, are calculated for the records mentioned in Table 3, corresponding to the buildings introduced in Sec.2.3.1. The results are given in Tables 4-8.

As an example, Fig. 4 shows the mean spectra before and after scaling in different methods along with the design spectrum, for the 2-story building.

4. Nonlinear dynamic analysis

Quality of the scaling methods mentioned in Sec. 3 is evaluated in this section with determination of the structural responses by a nonlinear dynamic analysis under each scaled earthquake and calculating the scattering of results. The analysis is implemented within Opensees (Mazzoni *et al.* 2007). The structural steel members are modeled with nonlinear hinges to be concentrated at their ends. At such a location, the $M - \theta$ curve is calculated with discritizing the section into a number (usually 100-200) of fibers. Each fiber has a longitudinal one-dimensional nonlinear stressstrain relation assigned to it. For this purpose, the Steel02 material of Opensees for a St37 (European) or A36 (American) standard steel, accounting for the strain hardening and Bauschinger effects, is used.

In the nonlinear analysis, story drifts and shear forces are calculated and their scattering among ground motions is measured. No consensus exists in the literature on a single measure of scattering of results. In this study, four more

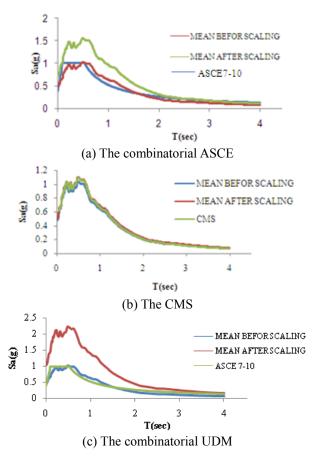


Fig. 4 The mean spectra before and after scaling, for the 2-story building

widespreadly used measures are utilized for the same purpose (NIST. 2011) The measures used are the coefficient of variation (COV), the logarithmic standard deviation (σ), relative difference of the averages (DA), and average of the 84 and 16 logarithmic percentiles of the responses (PA). Note that PA is an average, as well. If the distribution is close to normal, PA approaches to $\sigma \times COV$. The above parameters are determined based on Eqs. (12)-(15)

$$COV = \frac{\sigma}{\mu} \tag{12}$$

$$\sigma = \exp\left\{\sqrt{\frac{1}{N-1}}\sum_{i=1}^{N} (x_i - \overline{x})^2\right\}$$
(13)

$$DA = \frac{MEAN_{50} - MEAN_{10}}{MEAN_{50}}$$
(14)

$$PA = \frac{\ln X_{84} - \ln X_{16}}{2} \tag{15}$$

where MEAN50, refers to mean of response for 50 scaled records (5 scaling methods for 10 records), and MEAN10 refers to mean of responses under10 records for each scaling method. Also, X is the response considered, being the story drift or shear force in this study. The scattering measures introduced in Eqs. (12)-(15) are calculated for each method of scaling, as of Sec. 3, for each building and each story response parameter. The results are mentioned in

Table 9 Values of the scatter measures for different scaling methods, story drifts, 2-story building

	, , , ,	U	
	Modification Method	First Floor	Second Floor
	Combinatorial ASCE	0.511	0.458
>	Separative ASCE	0.732	0.665
C.O.V	CMS	0.435	0.423
C	Combinatorial UDM	0.374	0.365
	Separative UDM	0.620	0.572
	Combinatorial ASCE	0.590	0.539
	Separative ASCE	0.863	0.788
ь	CMS	0.579	0.558
	Combinatorial UDM	0.435	0.401
	Separative UDM	0.758	0.738
	Combinatorial ASCE	0.147	0.118
	Separative ASCE	0.194	0.149
A.C	CMS	0.422	0.382
Π	Combinatorial UDM	0.143	0.120
	Separative UDM	0.233	0.231
	Combinatorial ASCE	0.473	0.393
	Separative ASCE	0.697	0.629
P.A	CMS	0.404	0.387
	Combinatorial UDM	0.306	0.299
	Separative UDM	0.613	0.558

Table 10 Values of the scatter measures for different scaling methods, story drifts, 4-story building

	, , ,	5	U		
	Modification	First	Second	Third	Forth
	Method	Floor	Floor	Floor	Floor
	Combinatorial ASCE	0.481	0.545	0.565	0.578
>	Separative ASCE	0.584	0.604	0.637	0.651
C.O.V	CMS	0.550	0.607	0.705	0.627
C	Combinatorial UDM	0.459	0.519	0.495	0.469
	Separative UDM	0.620	0.548	0.621	0.578
	Combinatorial ASCE	0.451	0.513	0.510	0.524
	Separative ASCE	0.487	0.510	0.525	0.535
ь	CMS	0.438	0.479	0.510	0.471
	Combinatorial UDM	0.496	0.546	0.586	0.548
	Separative UDM	0.430	0.483	0.510	0.520
	Combinatorial ASCE	0.085	0.098	0.173	0.287
	Separative ASCE	0.247	0.232	0.155	0.044
O.A	CMS	0.274	0.283	0.324	0.405
Γ	Combinatorial UDM	0.070	0.041	0.183	0.626
	Separative UDM	0.181	0.191	0.160	0.023
	Combinatorial ASCE	0.447	0.447	0.410	0.378
	Separative ASCE	0.464	0.480	0.485	0.489
P.A	CMS	0.443	0.416	0.487	0.405
	Combinatorial UDM	0.380	0.450	0.403	0.386
	Separative UDM	0.521	0.565	0.576	0.577

Tables 9-18 where in each column the method resulting in the least scatter, associated with the smallest value of the measure is highlighted in dark color. Percentage of a measure being a minimum for a scaling method using data of drifts and story shears for all buildings altogether is also shown in Tables 19-23.

Values of the scatter measures as mentioned in Tables 9-18 and the percentages mentioned in Tables 19-23 clearly show that the combinatorial uniform design method have resulted in the least scattering of nonlinear structural 0.660 0.406

Modification Method	First Floor	Second Floor	Third Floor	Forth Floor	Fifth Floor	Sixth Floor
Combinatorial ASCE	0.578	0.595	0.646	0.672	0.677	0.586
Separative ASCE	0.482	0.513	0.562	0.604	0.620	0.504
CMS	0.529	0.533	0.552	0.58	0.577	0.535
Combinatorial UDM	0.696	0.666	0.652	0.66	0.619	0.564
Separative UDM	0.488	0.513	0.556	0.576	0.605	0.506
Combinatorial ASCE	0.981	1.103	1.158	1.21	1.119	0.937
Separative ASCE	0.624	0.664	0.76	0.885	1.189	0.663
o CMS	0.805	0.795	0.866	0.974	1.034	0.738
Combinatorial UDM	0.718	0.794	0.854	0.863	0.826	0.682
Separative UDM	0.575	0.677	0.847	0.806	0.783	0.516
Combinatorial ASCE	0.174	0.152	0.196	0.213	0.255	0.321
Separative ASCE	0.021	0.002	0.001	0.008	0.017	0.091
CMS	0.334	0.311	0.364	0.437	0.429	0.406
Combinatorial UDM	0.198	0.186	0.276	0.347	0.450	0.610
Separative UDM	0.332	0.276	0.283	0.311	0.250	0.209
Combinatorial ASCE	0.698	0.702	0.749	0.767	0.683	0.541
Separative ASCE	0.603	0.631	0.722	0.745	0.771	0.596
CMS	0.754	0.708	0.715	0.743	0.679	0.580
Combinatorial UDM	0.558	0.668	0.733	0.761	0.726	0.622

Table 11 Values of the scatter measures for different scaling

Table 12 Values of the scatter measures for different scaling methods, story drifts, 8-story building

0.705

0.678

Separative UDM 0.503 0.633

	Modification	First	Second	Third	Forth	Fifth	Sixth	Seventh	Eight
	Method	Floor	Floor	Floor	Floor	Floor	Floor	Floor	Floor
	Combinatorial ASCE	0.462	0.490	0.576	0.679	0.846	0.902	0.698	0.546
>	Separative ASCE	0.440	0.481	0.533	0.633	0.781	0.772	0.740	0.537
C.O.V	CMS	0.468	0.461	0.509	0.609	0.744	0.796	0.615	0.525
0	Combinatorial UDM	0.503	0.523	0.569	0.623	0.665	0.658	0.567	0.507
	Separative UDM	0.436	0.424	0.509	0.554	0.746	0.701	0.671	0.494
	Combinatorial ASCE	0.597	0.570	0.655	0.679	0.801	1.117	0.844	0.685
	Separative ASCE	0.530	0.593		0.690			0.913	0.687
ь	CMS	0.703	0.618	0.625	0.729	0.805	1.208	0.870	0.631
	Combinatorial UDM	0.659	0.630	0.681	0.680	0.745	0.750	0.698	0.639
	Separative UDM	0.466	0.456	0.528	0.547	0.740	0.908	0.774	0.612
	Combinatorial ASCE	0.054	0.064	0.087	0.119	0.139	0.194	0.132	0.191
_	Separative ASCE	0.080	0.077	0.059	0.028	0.009	0.005	0.058	0.056
D.A	CMS	0.298	0.313	0.344	0.367	0.422	0.444	0.381	0.426
	Combinatorial UDM	0.080	0.136	0.188	0.300	0.470	0.523	0.536	0.712
_	Separative UDM	0.192	0.163	0.184	0.158	0.081	0.119	0.036	0.040
	Combinatorial ASCE	0.477	0.536	0.599	0.680	0.792	1.168	0.892	0.677
	Separative ASCE	0.457	0.502	0.584	0.736	0.751	0.869	0.977	0.695
P.A	CMS	0.456	0.496	0.584	0.659	0.784	1.339	0.819	0.620
	Combinatorial UDM	0.508	0.537	0.633	0.674	0.764	0.713	0.599	0.538
	Separative UDM	0.316	0.349	0.454	0.604	0.706	0.777	0.804	0.540

Table 13 Values of the scatter measures for different scaling methods, story drifts, 10-story building

	Modification First Second Third Forth Fifth Sixth Seventh Eight Ninth Tenth								
	Modification								Floor Floor Floor
		¹ 0.484	0.459	0.468	0.513	0.644	0.732	0.790	0.721 0.676 0.449
>	Separative ASCE	0.513	0.471	0.473	0.490	0.644	0.711	0.715	0.709 0.618 0.363
Ó	CMS								0.666 0.663 0.567
0	Combinatoria UDM	¹ 0.507	0.509	0.505	0.502	0.594	0.630	0.616	0.583 0.502 0.431
	Separative UDM								0.774 0.597 0.478
	Combinatoria ASCE	¹ 0.745	0.725	0.855	0.840	0.920	0.941	0.954	1.087 1.248 0.511
	Separative ASCE	0.794	0.719	0.902	0.795	0.949	0.919	0.959	1.014 0.791 0.509
ь	CMS								1.061 1.049 0.839
	Combinatoria UDM	¹ 0.646	0.658	0.723	0.753	0.798	0.823	0.813	0.768 0.690 0.609
	Separative UDM								0.960 0.782 0.609
	Combinatoria ASCE	¹ 0.021	0.001	0.004	0.014	0.029	0.058	0.090	0.105 0.122 0.126
	Separative ASCE	0.162	0.168	0.172	0.152	0.074	0.047	0.021	0.012 0.060 0.068
D.A	CMS								0.315 0.267 0.254
	Combinatoria UDM	¹ 0.060	0.073	0.047	0.011	0.117	0.186	0.297	0.405 0.454 0.550
	Separative UDM	0.116	0.115	0.122	0.134	0.106	0.144	0.103	0.026 0.005 0.103
	Combinatoria ASCE	¹ 0.364	0.394	0.467	0.623	0.720	0.887	0.854	1.095 0.967 0.406
	Separative ASCE	0.499	0.493	0.474	0.539	0.748	0.909	0.862	0.937 0.670 0.231
P.A	CMS								1.029 1.043 0.729
	Combinatoria UDM	¹ 0.474	0.469	0.523	0.556	0.634	0.701	0.702	0.639 0.526 0.408
	Separative UDM	0.316	0.361	0.397	0.845	0.760	0.929	0.845	1.050 0.694 0.316

Table 14 Values of the scatter measures for different scaling methods, story shears, 2-story building

	Modification Method	First Floor	Second Floor
	Combinatorial ASCE	0.264	0.258
>	Separative ASCE	0.352	0.335
C.O.V	CMS	0.305	0.298
C	Combinatorial UDM	0.184	0.159
	Separative UDM	0.316	0.244
	Combinatorial ASCE	0.349	0.312
	Separative ASCE	0.491	0.455
ь	CMS	0.435	0.406
	Combinatorial UDM	0.200	0.172
	Separative UDM	0.447	0.254
	Combinatorial ASCE	0.044	0.019
	Separative ASCE	0.039	0.066
D.A	CMS	0.209	0.191
_	Combinatorial UDM	0.061	0.040
	Separative UDM	0.153	0.183
	Combinatorial ASCE	0.159	0.144
	Separative ASCE	0.307	0.265
P.A	CMS	0.219	0.218
	Combinatorial UDM	0.148	0.099
	Separative UDM	0.213	0.271

Table 15	Values of the	scatter	measures	for	different	scaling
methods,	story shears,	4-story	building			

			-		
	Modification Method	First	Second	Third	Forth
	Mounication Method	Floor	Floor	Floor	Floor
C.0.V	Combinatorial ASCE	0.346	0.363	0.370	0.369
	Separative ASCE	0.403	0.412	0.425	0.432
	CMS	0.419	0.437	0.461	0.465
C)	Combinatorial UDM	0.312	0.322	0.323	0.312
	Separative UDM	0.333	0.335	0.363	0.380
	Combinatorial ASCE	0.301	0.317	0.306	0.297
	Separative ASCE	0.313	0.321	0.319	0.336
ь	CMS	0.332	0.345	0.350	0.327
	Combinatorial UDM	0.368	0.373	0.398	0.371
	Separative UDM	0.292	0.296	0.312	0.318
	Combinatorial ASCE	0.055	0.048	0.065	0.114
_	Separative ASCE	0.117	0.134	0.118	0.061
∂ .C	CMS	0.185	0.174	0.174	0.240
Γ	Combinatorial UDM	0.016	0.032	0.009	0.194
	Separative UDM	0.138	0.120	0.130	0.099
	Combinatorial ASCE	0.288	0.279	0.251	0.265
	Separative ASCE	0.278	0.257	0.213	0.270
P.A	CMS	0.312	0.299	0.317	0.226
	Combinatorial UDM	0.232	0.234	0.210	0.249
	Separative UDM	0.328	0.308	0.321	0.300

Table 16 Values of the scatter measures for different scaling methods, story shears, 6-story building

	Modification	First	Second	Third	Forth	Fifth	Sixth
	Method	Floor	Floor	Floor	Floor	Floor	Floor
	Combinatorial ASCE	0.539	0.527	0.526	0.546	0.525	0.494
>	Separative ASCE	0.393	0.39	0.400	0.438	0.369	0.337
C.O.V	CMS	0.498	0.494	0.494	0.519	0.489	0.447
C	Combinatorial UDM	0.446	0.454	0.452	0.478	0.447	0.408
	Separative UDM	0.390	0.376	0.389	0.430	0.368	0.337
	Combinatorial ASCE	2.296	2.319	2.371	2.376	2.346	2.324
	Separative ASCE	0.555	0.526	0.588	0.670	0.504	0.451
ь	CMS	0.768	0.749	0.774	0.846	0.689	0.593
	Combinatorial UDM	0.557	0.597	0.623	0.642	0.603	0.502
	Separative UDM	0.526	0.489	0.545	0.628	0.462	0.432
	Combinatorial ASCE	0.126	0.103	0.122	0.130	0.167	0.217
_	Separative ASCE	0.036	0.030	0.062	0.058	0.054	0.019
D.A	CMS	0.232	0.208	0.248	0.257	0.275	0.340
	Combinatorial UDM	0.118	0.100	0.103	0.116	0.144	0.264
	Separative UDM	0.205	0.181	0.206	0.213	0.244	0.274
	Combinatorial ASCE	0.572	0.574	0.551	0.560	0.495	0.421
	Separative ASCE	0.389	0.423	0.407	0.471	0.357	0.341
P.A	CMS	0.673	0.660	0.623	0.619	0.598	0.519
	Combinatorial UDM	0.420	0.469	0.505	0.521	0.502	0.413
	Separative UDM	0.407	0.408	0.414	0.420	0.323	0.253

Table 17 Values of the scatter measures for different scaling methods, story shears, 8-story building

me	tilous, story		-	-		-			
	Modification							Seventh	
	Method	Floor	Floor						
	Combinatorial ASCE	0.427	0.409	0.412	0.416	0.454	0.418	0.370	0.372
>	Separative ASCE	0.402	0.380	0.373	0.377	0.413	0.384	0.342	0.353
C.O.V	CMS	0.450	0.438	0.449	0.455	0.482	0.447	0.479	0.405
	Combinatorial UDM	0.414	0.403	0.401	0.397	0.416	0.397	0.353	0.343
	Separative UDM	0.361	0.340	0.312	0.296	0.339	0.308	0.254	0.293
	Combinatorial ASCE	0.563	0.522	0.520	0.505	0.585	0.521	0.464	0.461
	Separative ASCE	0.526	0.483	0.477	0.462	0.543	0.475	0.421	0.431
ь	CMS	0.635	0.601	0.608	0.601	0.673	0.610	2.636	0.539
	Combinatorial UDM	0.545	0.539	0.539	0.486	0.526	0.495	0.434	0.422
	Separative UDM		0.377	0.355	0.326	0.398	0.351	0.289	0.315
	Combinatorial ASCE	0.038	0.044	0.052	0.047	0.057	0.042	0.039	0.058
	Separative ASCE	0.074	0.067	0.059	0.062	0.065	0.049	0.050	0.052
D.A	CMS	0.256	0.256	0.249	0.237	0.257	0.227	0.224	0.259
	Combinatorial UDM	0.059	0.071	0.080	0.067	0.089	0.088	0.087	0.138
	Separative UDM	0.162	0.163	0.162	0.155	0.159	0.133	0.126	0.127
	Combinatorial ASCE	0.424	0.426	0.432	0.435	0.515	0.427	0.372	0.392
P.A	Separative ASCE	0.405	0.386	0.391	0.409	0.485	0.405	0.353	0.379
	CMS	0.446	0.468	0.502	0.520	0.562	0.476	0.429	0.429
	Combinatorial UDM	0.408	0.395	0.413	0.413	0.464	0.424	0.329	0.357
	Separative UDM	0.290	0.257	0.268	0.309	0.373	0.315	0.235	0.309

responses in a large majority of cases. The separative UDM, and the combinational ASCE rank the next levels. Overall, the scaling method of CMS has performed inferior to other methods. While the combinatorial UDM associates with the least scatter of responses, it is very simple to use as mentioned in Sec. 3.2. In this method, the fundamental period resulting only from two different designs of a building, once using the mean spectra of original records, and once with the design spectrum, are needed. Therefore it can be a practical and accurate enough alternative for scaling of earthquake records.

4. Conclusions

In this paper a three-stage method for selection of earthquake ground motions suitable for nonlinear dynamic analysis of structures, along with a new scaling method for modification of the selected records were presented. The selection method uses the general characteristics of earthquakes as used in online databases for an initial selection. Then it uses two stricter measures for finally picking up the suitable records. It is a fast method. It has the advantage that the stricter measures are used with a far less number of records. In the presented scaling method it was Table 18 Values of the scatter measures for different scaling methods, story shears, 10-story building

	memous, story shears, ro-story bunding								
									Eight Ninth Tenth
	Method								Floor Floor Floor
(Combinatoria ASCE	^{ll} 0.402	0.395	0.399	0.411	0.422	0.415	0.419	0.398 0.360 0.374
>	Separative ASCE	0.415	0.399	0.401	0.409	0.417	0.407	0.409	0.395 0.348 0.410
Ö	CMS								0.421 0.419 0.439
0	Combinatoria UDM	^{ll} 0.331	0.328	0.337	0.355	0.360	0.359	0.365	0.334 0.282 0.308
	Separative UDM								0.416 0.375 0.392
	Combinatoria ASCE	^{ll} 0.634	0.639	0.677	0.672	0.631	0.628	0.667	0.600 0.521 0.495
	Separative ASCE	0.620	0.617	0.653	0.644	0.599	0.595	0.633	0.562 0.480 0.484
ь	CMS								$0.685\ 0.622\ 0.578$
	Combinatoria UDM	^{ll} 0.493	0.490	0.526	0.523	0.484	0.482	0.530	0.467 0.386 0.363
	Separative UDM								0.585 0.539 0.570
	Combinatoria ASCE	^{ll} 0.008	0.001	0.002	0.001	0.001	0.000	0.001	0.001 0.013 0.035
	Separative ASCE	0.112	0.092	0.095	0.086	0.074	0.075	0.071	0.053 0.032 0.047
D.A	CMS								$0.137\ 0.138\ 0.204$
	Combinatoria UDM	^{ll} 0.108	0.074	0.075	0.075	0.092	0.096	0.092	0.093 0.093 0.067
	Separative UDM	0.095	0.038	0.039	0.019	0.018	0.024	0.014	0.008 0.026 0.125
	Combinatoria ASCE	^{ll} 0.332	0.307	0.321	0.363	0.438	0.437	0.401	0.336 0.293 0.320
	Separative ASCE	0.370	0.359	0.347	0.371	0.430	0.435	0.372	0.292 0.304 0.339
ΡA	CMS								$0.359\ 0.377\ 0.390$
H	Combinatoria UDM	^{ll} 0.255	0.246	0.241	0.292	0.349	0.338	0.305	0.258 0.216 0.220
	Separative UDM	0.713	0.376	0.382	0.389	0.413	0.481	0.435	0.385 0.341 0.381

Table 19 Percentage of a measure being a minimum for a scaling method, 2-story building

Method	C.O.V	Σ	D.A	P.A
Combinatorial ASCE	0	0	50	0
Separation ASCE	0	0	25	0
CMS	0	0	0	0
Combinatorial UDM	100	100	25	100
Separation UDM	0	0	0	0

Table 20 Percentage of a measure being a minimum for a scaling method, 4-story building

Method	C.O.V	Σ	D.A	P.A
Combinatorial ASCE	0	25	0	12.50
Separation ASCE	0	0	25	0
CMS	0	25	0	25
Combinatorial UDM	100	0	62.50	62.50
Separation UDM	0	50	12.50	0

aimed to equalize the fundamental period of the studied building designed under the scaled response spectrum of the record and under the design spectrum.

With calculation of four different scatter measures for nonlinear responses of five steel structures ranging from 2 to 10 stories under the 10 selected and scaled earthquake

Table 21 Percentage of a measure being a minimum for a scaling method, 6-story building

	e			
Method	C.O.V	Σ	D.A	P.A
Combinatorial ASCE	0	0	0	0
Separation ASCE	16.67	16.67	100	25
CMS	16.67	0	0	0
Combinatorial UDM	0	0	0	0
Separation UDM	66.66	83.33	0	75

Table 22 Percentage of a measure being a minimum for a scaling method, 8-story building

C.O.V	Σ	D.A	P.A
0	0	62.50	0
0	0	25	0
0	0	0	0
18.75	12.50	0	18.75
81.25	87.50	12.50	81.25
	0 0 0 18.75	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 23 Percentage of a measure being a minimum for a scaling method, 10-story building

Method	C.O.V	Σ	D.A	P.A
Combinatorial ASCE	0	0	70	0
Separation ASCE	5	0	20	0
CMS	0	0	0	5
Combinatorial UDM	75	80	5	75
Separation UDM	20	20	5	20

records, it was shown that the proposed method resulted in the least scatter in most cases and retained a small value in the remaining cases. The quality of the ASCE and CMS scaling methods were shown to be ranked afterwards.

References

- ASCE Standard ASCE/SEI 7-10 (2010), Minimum Design Loads for Buildings and Other Structures.
- Azarbakht, A. and Dolsek, M. (2007), "Prediction of the median IDA curve by employing a limited number of ground motion records", *Earthq. Eng. Struct. Dyn.*, **36**(15), 2401-2421.
- Azarbakht, A. and Dolsek, M. (2011), "Progressive incremental dynamic analysis for first-mode dominated structures", J. Struct. Eng., 137(3), 445-455.
- Baker, J.W. (2011), "Conditional mean spectrum: A tool for ground motion selection", *J. Struct. Eng.*, **137**(3), 322-331.
- Bayati, Z. and Soltani, M. (2016), "Ground motion selection and scaling for seismic design of RC frames against collapse", *Earthq. Struct.*, 11(3), 445-459.
- Behnamfar, F. and Nafarieh, A. (2004), "A method for scaling of strong ground motions in performance based design", *1st National Conference on Civil Engineering, Sharif University of Technology.*
- Cantagallo, C., Camata, G. and Spacone, E. (2015), "Influence of ground motion selection methods on seismic directionality effects", *Earthq. Struct.*, **8**(1), 185-204.
- Ergun, M. and Ates, S. (2013), "Selecting and scaling ground motion time histories according to Eurocode 8 and ASCE 7-05", *Earthq. Struct.*, **5**(2), 129-142.
- Ergun, M. and Ates, S. (2014), "Comparing of the effects of scaled and real earthquake records on structural response", *Earthq. Struct.*, **6**(4), 375-392.

- FEMA 440 (2005), Improvement of Nonlinear Static Seismic Analysis Procedures, Federal Emergency Management Agency, Washington DC.
- Kayhan, A.H. (2016), "Scaled and unscaled ground motion sets for uni-directional and bi-directional dynamic analysis", *Earthq. Struct.*, **10**(3), 563-588.
- Luco, N. and Cornell, A. (2007), "Structure specific scalar intensity measures for near-source and ordinary earthquake ground motions", *Earthq. Spectra*, **23**(2), 357-92.
- Mazzoni, S., McKenna, F., Scott, M.H. and Fenves, G.L. (2007), Open System for Earthquake Engineering Simulation (OpenSees). User's Manual, Department of Civil Engineering, University of California at Berkeley.
- Mousavi, M., Ghafory-Ashtiany, M. and Azarbakht, A. (2011), "A new indicator of elastic spectral shape for the reliable selection of ground motion records", *Earthq. Eng. Struct. Dyn.*, **40**(12), 1403-1416.
- Naeim, F., Alimoradi, A. and Pezeshk, S. (2004), "Selection and scaling of ground motion time histories for structural design using genetic algorithms", *Earthq. Spectra*, 20(2), 413-426.
- National Institute of Standards and Technology (NIST) (2011), Effect of Ground Motion Selection and Scaling on Engineering Demand Parameter Dispersion, NIST GCR 10-917-9, NIST Engineering Laboratory, Gaithersburg, Maryland.
- Pacific Earthquake Engineering Research Center (PEER) (2009), Evaluation of Ground Motion Selection and Modification Methods: Predicting Median Interstory Drift Response of Buildings, PEER 2009/01, JUNE 2009, University of California at Berkeley.
- Pavel, F. and Vacareanu, R. (2016), "Scaling of ground motions from Vrancea (Romania) earthquakes", *Earthq. Struct.*, 11(3), 505-516.
- Pezeshk, S., Camp, C.V. and Chen, D. (2000), "Design of framed structures by genetic optimization", J. Struct. Eng., 126(3), 382-388.
- Takewaki, I. and Tsujimoto, H. (2011), "Scaling of design earthquake ground motions for tall buildings based on drift and input energy demands", *Earthq. Struct.*, **2**(2), 171-187.
- Talebi, M. (2014), "Selection and modification of ground motions for nonlinear dynamic analysis of structures", M.Sc. Thesis, Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Isfahan, Iran.
- Vose, M.D. (1999), The Simple Genetic Algorithm: Foundations and Theory, The MIT Press.
- Wood, R.L. and Hutchinson, T.C. (2012), "Effects of ground motion scaling on nonlinear higher mode building response", *Earthq. Struct.*, 3(6), 869-887.