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1. Introduction 
 

Bridges are one of the important components in the 

transportation networks. They play a fundamental role to 

maintain fast and smooth communication systems prior 

to and after the seismic disaster. Bridge damages during 

the earthquakes can lead to noticeable physical and 

economic impacts to the transportation system. A vast 

majority of highway bridges around the world do not 

meet the seismic detailing requirements imposed by 

current codes and guidelines (Caltrans 2013). 

In the past decades, several highway bridges have 

experienced remarkable damages due to major earthquakes 

(e.g., 1989 Loma Prieta, 1994 Northridge in the US and 

1995 Kobe earthquake in Japan). 

Field observations following the above-mentioned 

earthquakes revealed that highway bridges are seismically 

vulnerable. Hence, evaluation of the seismic vulnerability 

of the highway bridges is an important task in seismic 

risk management of transportation systems. 

The available procedure for seismic risk assessment 

(Whitman et al. 1975) revealed the importance of 

probabilistic evaluation of seismic vulnerability of 

structures. Deriving fragility functions is one of the 

common methods for assessing the seismic performance 

of structures. Seismic fragility curves provide a 

                                                            
Corresponding author, Assistant Professor 

E-mail: razzaghi.m@gmail.com 

 

 

probabilistic field to evaluate the seismic performance of 

a particular structure versus severity of ground motion 

(Hwang et al. 2001, Billah and Alam 2015). In 1991, the 

concept of using a continuous function for evaluating the 

seismic performance was proposed by ATC 25 (ATC 

1991) for the first time by introducing continuous damage 

function. Subsequently in 1997, a commercial-off-the-shelf 

loss and risk assessment software package based on the 

geographical information system (GIS) was released by 

FEMA, so-called HAZUS (HAZUS 1997). During the 

recent years, fragility curves have evolved as significant 

tools for stake holders and decision makers by providing a 

probabilistic approach for assessment of the seismic risk. 

Although there are at least four approaches for 

development of fragility curves (judgmental, empirical, 

analytical and hybrid), most of the researchers have 

used analytical approaches for fragility analysis of the 

bridges (Shinozuka et al. 2003, Moschonas et al. 2009, 

Huo and Zhang 2012, Padgett et al. 2013, Yazgan 2015, 

Mosleh et al. 2018a). Various analytical methods can be 

carried out for developing analytical fragility curves. 

Nonlinear static analysis (Monti and Nisticò 2002, Banerjee 

and Shinozuka 2007), nonlinear response history analysis 

(Hwang et al. 2001, Choi et al. 2004, Mosleh et al. 2016a, 

Mosleh et al. 2018b) and incremental dynamic analysis 

(Billah et al. 2012, Billah and Alam 2016) are some of the 

common methods for development of analytical fragility 

functions. It should be noted that nonlinear response 

history analysis is known as the most reliable method of 

developing fragility curves; but it is the most 
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computationally time-consuming method (Shinozuka et al. 

2003). Thus, development of fragility curves using 

nonlinear analysis (NA) is expensive; computationally time 

consuming and sometimes impractical particularly when 

complex systems are analyzed. Hence, soft computing 

techniques such as artificial neural networks (ANNs) 

seem to be good alternates, due to their capability in 

reducing the number of analysis in parametric studies 

(Hasanzadehshooiili et al. 2012). As a function of 

abstraction of the biologic neural structure, ANNs are 

powerful data analysis and pattern recognition tools. They 

are particularly able to solve problems which are too 

complex to be modeled with the aid of traditional 

procedures and classical mathematics (Adeli 2001). ANNs 

are also capable to capture and represent complex linear 

and nonlinear relationships between inputs and outputs 

(Perlovsky 2001). Despite neural estimating techniques 

are feasible to be implemented, it is noteworthy to 

mention that a deep attention is necessary to achieve 

reliable results (Kalantari and Razzaghi 2015). 

In this study a methodology based on nonlinear response 

history analysis and ANN is proposed. To this end, seismic 

performances of different pre-1990 RC bridges are 

investigated using NA. Furthermore, MLP neural network 

was carried out in order to predict the seismic 

performances of the bridges. Finally results of NA and 

ANNs were used for probabilistic seismic safety evaluation 

of RC bridges. 

 

 
2. Numerical analysis 

 
2.1 Bridge models 
 

In order to investigate the seismic performances of the 
bridges, different existing bridge attributes were adopted 
considering the column height, mechanical properties of 
concrete and yield stress of the steel reinforcement. It 

should be noted that all of the selected bridges were 
designed and constructed before 1990s. The geometric 
specifications of the selected bridges are indicated in Table 
1. Several researchers (Priestley 1996, Avsar et al. 2011) 
are mentioned that the skew angle is one of the most 
important structural attributes of the highway bridges 

affecting their seismic performance considerably. However, 
based on the analysis of bridge inventory in this study, 
Mosleh (Mosleh 2016c) found that most of the selected 
bridges have skew angles less than 5°, therefore the effect 
of skew angle is eliminated in this study. Three-dimensional 
models were prepared using SAP 2000 (Computers and 

Structures Inc. 2009) software. As indicated in Fig. 1, 
structural components including superstructure and 
substructure are considered to create three-dimensional 
analytical structural model. The superstructure elements are 
expected to remain in the elastic range of behavior under 
the seismic load applied. The superstructure is composed of 

decks, girders, diaphragms, asphalt, parapets, and 
sidewalks. Span length for all selected bridges are 20 m, 
and bridge width is 12 m. Decks and diaphragms are 
modeled utilizing shell elements. Link elements are 
employed to model elastomeric bearings located between 

 

Fig. 1 Three-dimensional finite-element model using 

SAP2000 

 

 

the substructure and superstructure without any dowel or 

connecting devices. The column, girders, piles, and cap 

beams are modeled using frame elements having six 

degrees of freedom at each node. The models include 

different bridge lengths and column heights. The cap beam 

is a rectangular element of 1.9 by 2.0 m, which is suported 

by circular columns have a diameter of 1.3-1.4 m. Each 

column has 30 longitudinal bars with a diameter of 20 and 

18 mm spiral hoops spaced at 200 mm. Abutments and 

backfill soil are modeled as elastic spring in the 

longitudinal and transversal directions as proposed by 

Caltrans (2013). Rigid elements are utilized at the rigid 

zone of the cap beam, column, and superstructure end 

connections. 

A bilinear approximation of the force-deformation 

could be employed to express the abutment longitudinal 

response analysis. Expansion gap including a realistic 

value for the embankment fill response is a factor which 

impacts the bilinear demand consisted of the effective 

abutment stiffness. Taking into account the Caltrans 

recommendation Caltrans (2013), the initial stiffness Ki is 

considered as 14.35 KN/mm/m according to the force 

deflection results from large- scale abutment testing 

(Maroney 1995, Shamsabadi 2007, Stewart et al. 2007). 

The initial abutment stiffness could be derived in terms of 

the back-wall height of the abutment as 

)
7.1

( a
aiabut

h
wKK   (1) 

where ha and wa are the height and width of the back-wall 

for seat abutment, respectively.  

Column bents are fixed at the bottom and soil-

structure interaction is neglected. Based on Priestley et al. 

(1996) recommendation, lateral and vertical stiffness of the 

elastomeric bearings are modeled utilizing a spring. Shear 

bearing stiffness could be determined as 

h

GA
Kv   (2) 

where G is the shear modulus of the rubber (taken as 1 

MPa), A is gross rubber area, and h is total rubber height. 

Vertical bearing stiffness is adjusted as 
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where K is the rubber bulk modulus, and S is the shape 

factor.  

The mass and stiffness proportional Rayleigh damping 

coefficient for the first two modal periods are calculated for 

the response history analysis of the bridges (Aviram et al. 

2008). In order to assess the seismic vulnerability of the 

bridges, nonlinear analysis with direct integration, including 

P-delta effects, are taken into account in two orthogonal 

directions. 

It is noteworthy to remark that nonlinear stress-strain 

relationship of concrete and steel can be employed to 

directly obtain the nonlinear behavior of the structure; 

therefore reliability of nonlinear bridge member depends on 

the accuracy of the material properties considered. To 

model reinforcing steel bars, bilinear steel material model 

with the kinematic hardening behavior is used due to the 

approach presented in the Caltrans provisions (Caltrans 

2013). Nominal yield strain (εy) and expected yield strain 

(εye) are determined as 0.0021 and 0.0013, respectively. 

The ultimate tensile strain (εsu) depending on bar size is 

considered as 0.12. Various stress-strain relationships were 

developed for the confined concrete by previous researches 

(Kent and Park 1971, Bažant and Bhat 1976, Sheikh and 

Uzumeri 1980, Mander et al. 1988). Some of the 

suggested methods have limitation in the range of 

condition (e.g., circular or triangular section), however the 

method proposed by Mander et al. (1988) can be employed 

for all section shapes and all level of confinement. 

Therefore to define stress-strain relationships method 

proposed by Mander et al. (1988) considered in this study. 

 

2.2 Ground motion 
 

An appropriate selection of the earthquake ground 

motions plays a key role in developing reliable fragility 

curves. 

The important effect of the seismic intensity measures 

(IM) of the ground motions on bridge fragility curves is 

undeniable. In fact, a specific method cannot be presented 

for deciding on the selection of the optimal intensity 

measure used in fragility analysis. Different ground 

motion intensity measures (such as PGA, PGV, PGD and 

ASI (acceleration spectral intensity)) can be employed to 

identify the seismic hazard level of earthquake ground 

motions. However, there is lack of agreement on the 

most suitable IM in order to develop fragility curves. 

Seismic intensity measures can be generally categorized 

into two groups, calculating intensity measures directly 

from ground motion records and obtaining IMs utilizing 

response spectrum of the ground motion for certain range 

of periods. PGA, as a representative of the first group, is 

 

 

Fig. 2 Response spectra of the selected ground motions (5% 

damping) 

 

 

the most commonly used intensity measure for bridge 

fragility curves (Agrawal et al. 2011, Brandenberg et al. 

2011, Torbol and Shinozuka 2012, 2014, Billah and Alam 

2015). Tavares et al. (2012) assessed the seismic 

vulnerability of typical as built highway bridges in eastern 

Canada through the development of fragility curve by 

employing PGA as an intensity measurement. In the study 

of Seo and Linzell (2012) fragility curves were generated 

by utilizing the seismic performance characteristics of a 

horizontally curved steel bridge with PGA being selected as 

an earthquake intensity indicator measure. On the other 

hand, several researchers argue that spectral acceleration at 

certain periods are the most appropriate since this method 

tends to reduce uncertainty in the demand model 

(Stefanidouand and Kappos 2017). The use of Sa, as an 

intensity measure, is recommended to quantify the 

collapse vulnerability of substandard RC bridge piers 

rehabilitated with different repair jackets under aftershock 

cascading events (Fakharifar et al. 2015). 

Accounting with the appropriate level of correlation 

between the hazard level of the ground motion and the 

degree of a constant seismic damage in the bridge is one 

of the most important principles in selecting the 

appropriate intensity measure. Hence, the reliability of 

fragility curves is proportional to the level of correlation 

with the seismic damage and the selected intensity measure. 

In this study, PGA is considered as an intensity indicator 

measure. The response spectra and mean value of the 

selected earthquake ground motions with a 5% damping 

ratio are depicted in Fig. 2. Two horizontal orthogonal 

components are considered in the nonlinear response 

history analysis Mosleh et al. (2016b). 

In order to generate fragility curves, earthquake ground 

motions are collected from pacific earthquake engineering 

research (PEER) strong motion databases 

(http://peer.berkeley.edu/smcat/). The distribution of ASI 

versus PGA of the accelerograms was assessed in order to 

select the ground motions. For the ground motion  

Table 1 Structural attributes for the bridge samples 

Column Height 

(hcol), (m) 

Column 

sections 

Column 

Diameters (m) 

Longitudinal 

steel ratio (%) 

Number 

of spans 

Total Bridge 

length (m) 

Concrete strength 

(fc), (MPa) 

Steel yield stress 

(fy), (MPa) 

10.5-21 Circular 1.3-1.4 0.91-1.06 6-7 120-140 20-30 300-400 
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Fig. 3 Final selection of ground motions 

 

 

selection, a suite of 60 earthquake ground motions were 

selected. Fig. 3 shows the distribution of PGA versus 

ASI of the selected 60 ground motions. There is not a 

uniform distribution for the intensity measures among 

the selected ground motions. Accelerograms with low 

intensities induce limited seismic damages on the bridges, 

and a small number of ground motions display high 

intensities. Accordingly, it was found time consuming to 

employ all of the selected 60 ground motions for response 

history analysis. Therefore, a reduced set of data of ground 

motions due to different levels of PGA was considered 

based on the study of Mosleh (2016c). A total of 20 

unscaled ground motions were selected. Some of the 

features and characteristics of the ground motions selected 

are presented in Table 2. In this table, d represents the 

epicenteral distance. All bridges are considered recorded on 

hard soil, for what soil flexibility at the bridge foundations 

are not taken into account in the analytical models. 

It should be noted that the following criteria were 

considered to select the convenient earthquake records: 

- All of the selected bridges are rested on hard soils. 

Therefore, ground motion records were selected from sites 

having Vs≥360 m/s.  

- Ground motions having PGA≥0.1 g 

- Moment magnitude, Mw, is greater than 5.0 

- Far fault earthquakes are taking into account.  

- The frequency contents of the selected records were 

appropriate for dynamic excitation of the selected bridges.  

 

 
3. Neural prediction 

 
Artificial neural networks (ANNs), are recently drawn 

remarkable attention in variety of engineering applications. 

There are different types of artificial neural networks. 

The multi-layer perceptron (MLP), radial basis function 

network (RBFN), the probabilistic neural network (PNN), 

the cascade correlation neural network (Cascor) and the 

learning vector quantization (LVQ) are some of the 

popular neural network architectures (Rafiqet al. 2001, 

Razzaghi and Mohebbi 2011). However, RBF and MLP are 

the most widely used in engineering problems (Kalantari 

and Razzaghi 2015). In present study the MLP neural 

networks are implemented. 

3.1 MLP neural networks 
 
The theoretical background of MLP neural networks is 

presented in many research articles (Rafiq et al. 2001, 

Waszczyszyn and Bartczak 2002, Graham et al. 2006, 

Lagaros and Fragiadakis 2007, Mehrjoo et al. 2008, 

Elshafey et al. 2010). The MLP neural networks include a 

single input layer, one or more hidden layer(s) and an 

output layer. Each layer includes one or more artificial 

neuron(s). All neurons in a MLP network are fully 

connected to the neurons of the neighboring layer; however 

neurons within a same layer are not connected together. 

The path connecting neurons i and j is associated with 

synaptic strength, w
ij
. The particular neuron j sums up all the 

input coming to it as follows 





m

i

iijj Owx
1

 (4) 

where O
i denotes the output of the neuron i. It should be 

noted that the activation of each neuron depends on an 

activation function and a threshold value. Hence x
j would 

be an output of neuron j provided that the neuron is 

activated. Generally various activation functions are 

available for MLP neural networks. In this study the 

sigmoid function is used as follows 

)(
1

1
)(

jjxj
e

xS



  (5) 

where θj is the threshold value of the neuron j. 

The information distributes from input layer to the 

hidden layer(s). Then the hidden layer passes the 

information onto the output layer. Such a neural network is 

called a feed forward neural network. A MLP neural 

network requires a training algorithm for learning a 

relationship between input and output vectors.  One of the 

most common training algorithms is back propagation 

algorithm. It minimizes the error function by using the 

gradient search method. The error function is the mean 

square difference of the desired and the predicted output. 

The error can be mathematically describes as follows 

 
m

mm

T tAwxyAwTE 2))),;((
2

1
),(  (6) 

where T is the training set having m input-target pairs 

(T=[x
m
,t

m
]), A denotes the architecture of ANN, w is the 

weight parameter assigned to the neuron connections. 

y(x
m
;w,A) is defined as mapping between input vector x

m
 

and output vector y.  

In order to minimize the error function and determine 

the optimum weight parameter, iterative algorithms are 

used as follows 

kkk WWW  )1(  (7) 

k

Tk

W

E
W




   (8) 

The superscript k is an iteration counter and η is a 

constant learning rate and η∈[0,1]. 

In the present work, the MLP neural networks are  
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Fig. 4 Proposed MLP structure 

 

 

employed for the assessment of seismic performance of 

highway bridges. Multi-layered perceptron neural networks 

utilized herein consist of a single input and output layer 

and two hidden layers. As input vectors, PGA, fc, fy and 

hcol are considered and the displacement ductility ratio is 

considered as an output of the network. Fig. 4 illustrates a 

schematic structure of MLP neural network applied in this 

study. 

 

3.2 Structure of MLP neural network 
 
In order to select the optimum structure for neural 

networks the mean squared error (MSE) and the squared 

correlation coefficient (R
2
) are considered as criteria. MSE 

and R
2 

can be determined by utilizing the following 

equations 

  2)ˆ(
1

tt yy
n

MSE  (9) 


 


2

2

2

ˆ

)ˆ(
1

t

tt

y

yy
R  (10) 

 

 

Fig. 5 Performance curve of the selected neural network 

 

 

where n is the pattern, ŷ
t is the output value and y

t is the 

target value. 

In order to train and construct the ANN model, the back 

propagation (BP) is applied. Moreover, 70% of the results 

of the numerical analysis were selected for training the 

ANNs. To test the reliability of ANNs, 15% of the 

results were used and the remaining results were 

utilized to validate the proposed ANN model. 

Furthermore, the sigmoid transfer function is employed 

for each of the ANNs. 

Generally there is no unique reliable method for 

deciding the number of hidden layers and their neural units 

required for a particular problem. To select the best 

configuration, the decision may made based on few trials 

(Mukherjee and Biswas 1997). Hence, in this study several 

structures of MLP neural networks were examined and the 

structure with the minimum MSE and the maximum 

coefficient of correlation was elected as the most relatively 

proper neural network. It should be noted that the 

selected neural network had two hidden layers with nine  

Table 2 Important features of the selected ground motions 

 Earthquake Station Year Mw d (Km) PGA (g) 

1 Chi-Chi CWB 99999 TCU015 1999 7.62 101.62 0.1125 

2 Chi-Chi CWB 9999917 NSY 1999 7.62 63.29 0.1348 

3 Chi-Chi CWB 9999917 ALS 1999 7.62 37.83 0.1748 

4 Chi-Chi CWB 99999 TCU070 1999 7.62 47.86 0.2058 

5 Chi-Chi CWB 99999 CHY029 1999 7.62 39.70 0.2595 

6 Chi-Chi CWB 99999 TCU047 1999 7.62 86.39 0.3643 

7 Chi-Chi CWB 99999 TCU095 1999 7.62 95.70 0.5283 

8 Chi-Chi CWB 99999 CHY042 1999 7.62 59.80 0.0823 

9 Northridge USC 90015 LA - Chalon Rd 1994 6.69 14.92 0.2148 

10 Northridge CDMG 24688 LA - UCLA Grounds 1994 6.69 18.62 0.3908 

11 Northridge CDMG 24400 LA - Obregon Park 1994 6.69 39.39 0.4673 

12 Northridge CDMG 24278 Castaic - Old Ridge Route 1994 6.69 40.68 0.4898 

13 Northridge USC 90014 Beverly Hills - 12520 Mulhol 1994 6.69 16.27 0.5102 

14 Northridge CDMG 24538 Santa Monica City Hall 1994 6.69 22.45 0.5908 

15 Sanfernando CDMG 24278 Castaic - Old Ridge Route 1971 6.61 25.36 0.2994 

16 Whittier Narrows CDMG 14403 LA - 116th St School 1987 5.99 21.26 0.3408 

17 Capemendocino CDMG 89509 Eureka - Myrtle & West 1992 7.01 53.34 0.1668 

18 Capemendocino CDMG 89324 Rio Dell Overpass - FF 1992 7.01 22.64 0.4244 

19 Tabas 9102 Dayhook 1978 7.40 20.63 0.3505 

20 Tabas 9101 Tabas 1978 7.40 55.24 0.8128 
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Fig. 6 Comparison of NA results with neural predictions for 

ductility ratios of the bridges (µ) 

 

 

neurons at each hidden layer. The MSE of the selected 

structure was 0.00378 and its R
2 

was 0.85. The 

performance curve of the selected neural network is 

indicated in Fig. 5. Moreover, Fig. 6  indicates the ANN 

predictions versus results of NA for validation samples. 

 

 

4. Development of fragility curves 

 
 A fundamental requirement for seismic safety 

evaluation of existing bridges is the ability of quantifying 

the potential for damage as a function of the severity of 

strong ground motion. Fragility functions can relate the 

probability of occurring or exceeding from a particular limit 

state to the level of seismic hazards (e.g., PGA). Such a 

probabilistic function can be expressed as follows 

])1[( IM
S

S
PP

c

d
f   (11) 

where Pf is the probability of reaching or exceeding a 

particular damage state, IM is the ground motion intensity 

measure, Sd is structural demand and Sc is capacity of the 

bridge. 

The cumulative lognormal distribution is 

mathematically convenient for characterizing the 

uncertainties and randomness associated with the seismic 

performance of a particular structure (Straub and Der 

Kiureghian 2008, Hancilar et al. 2013). Hence, during the 

past decades, several researches assumed that the  

 

 

earthquake damage distribution can be represented by the 

cumulative standard lognormal function (Kircher et al. 

1997, Shinozuka et al. 2000, Choi et al. 2004, Hancilar et 

al. 2013, Razzaghi and Eshghi 2014). In this study, 

cumulative standard lognormal function was considered for 

earthquake damage distribution of the bridges. Hence, the 

Eq. (15) can be rewritten as follows 

)](
1

[])1[(
c

d

c

d
f

S

S
lnIM

S

S
PP


  (12) 

where Φ is the standard normal distribution function and β 

is the logarithmic standard deviation of variables. 

 

4.1 Capacity limit states 
 
In order to calculate the structural capacities, 

appropriate limit states should be defined. During the 

recent years several quantitative and/or qualitative 

damage states have been proposed and employed. 

HAZUS (FEMA 2003) provided five qualitative damage 

states (see Table 3). For member and structure responses, 

qualitative and quantitative limit states were employed 

based on the study of Priestley et al. (1996). In the study 

of Kawashima (2000), a quantitative strain and ductility 

limit corresponding to the three damage levels were 

proposed for the seismic damage assessment. Kowalsky 

(2000) specified two damage limit states for the seismic 

damage assessment namely: “serviceability” and “damage 

control”. To develop analytical fragility curves, three 

damage states were considered by Avsar and Yakut (2012). 

Four limit states were defined for evaluation of the seismic 

damages due to the study of Jara et al. (2013). Hose et al. 

(2000) utilized five limit states and performance level for 

the seismic damage of the bridges based on the crack 

width. Displacement ductility ratios of the columns have 

been implemented by several researchers for fragility 

analysis of the bridges (Hwang et al. 2001, Mosleh et al. 

2015, Mosleh et al. 2016b). The damage states considered 

in the present study are adopted from Hwang et al. (2001). 

The definition of limit states in the present study is 

indicated in Table 3. As indicated in Table 3, five damage 

states, which are equivalent to those defined by HAZUS, 

are defined for seismic vulnerability assessment of 

highway bridges. 

 

 

Table 3 Description of damage states, adopted from HAZUS (FEMA 2003) and Hwang et al. (2001) 

Limit 

state 

Quantitative 

definition 

Equivalent HAZUS 

Damage state 
Qualitative description 

LS0 μ<μ1 
DS1 

(no damage) 
No damage 

LS1 μ1≤μ1<μy DS2 (slight/minor) 
Minor spalling at the column, abutments, hinges or deck (damage 

requires no more than cosmetic repair). Minor cracks at shear keys. 

LS2 μy≤μ<μ2 
DS3 

(moderate) 

Moderate cracking and spalling of any column (column structurally 

still sound), moderate movement of the abutment (<0.05m), extensive 

damage to shear keys. 

LS3 μ2≤μ<μc 
DS4 

(extensive) 

Extensive damage to columns. Unsafe columns without collapse, 

significant residual movement at connections, vertical offset of the 

abutment. 

LS4 μ≥μc 
DS5 

(collapse) 

Collapse of any column. Tilting of substructure due to the geotechnical 

aspects. Deck collapse. 
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In Table 3, μ denotes the displacement ductility ratio 

which can be calculated by the following equation 

1


  (13) 

where ∆ is the maximum relative displacement of the top of 

the columns due to a particular seismic event and Δ1 is 

relative displacement at the top of a column at the 

corresponding limit state 1 (as indicated in Fig. 7) and can 

be determined as follows 

2

11
3

1
L  (14) 

where L is the distance from the plastic hinge to the point of 

contra-flexure and φ1 is the curvature corresponding to the 

relative displacement of a column when the vertical 

reinforcing bars at the bottom of the column reaches the 

first yield. The displacement ductility ratio corresponding to 

the first yield point, μ1, is always equal to 1. The second 

damage state, μy, denotes the yield displacement ductility 

ratio, can be calculated using the following equation (See 

Fig. 7) 

1

2

1 3

1









Lyy

y


  (15) 

The equivalent curvature (φy) corresponds to the relative 

displacement of the column when the vertical reinforcing 

bars at the bottom of the column reach the yield point. φy is 

obtained by extrapolating the line joining the origin and the 

point corresponding to the first yielding point of a 

reinforcing bar up to the nominal moment capacity Mn [108, 

124]. Eq. (16) gives the curvature φy, where My and φy1 are 

the moment and curvature at first yielding of a vertical 

reinforcing bar. The curvature φy and My are the curvature 

and moment at yielding of a vertical reinforcing bar, given 

by Eq. (17). 
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The displacement ductility corresponding to the third 

damage state, which is nominated: μ3, can be calculated as 

follows (Hwang et al. 2001) 
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as which θp and Lp denote the hinge rotation and the plastic 

hinge length, respectively. The plastic hinge rotation can be 

determined as 

pyp L)( 2    (19) 

where φ2 denotes the curvature of a column when εc=0.002 

or εc=0.004 for the columns with or without lap splices, 

respectively (Hwang et al. 2001). In this study the effect of 

lap splice is not considered therefore εc=0.004. Several  

 

Fig. 7 Definition of limit states on the moment-curvature 

plot of a bridge pier 

 

 

relations are available for calculating plastic hinge length 

(Bae and Bayrak 2008, Bayrak and Sheikh 2001, Priestly et 

al. 1996). Although there is some scatter among the plastic 

hinge lengths calculated by different relations, the estimated 

limit state is not noticeably sensitive to the plastic hinge 

length. In this study the plastic hinge length is calculated 

according to Priestley et al. (1996) as follows 

blyeblyep dfdfLL 044.0022.008.0   (20) 

where fye denotes the yield strength of the reinforcing bars 

and dbl denots the diameter of the longitudinal reinforcing 

bars. Finally, the forth damage state which is nominated μc 

can be calculated as μc=μ2+3 (FHWA 1995, Hwang et al. 

2001). 

 

4.2 NA based fragility curves 
 

Totally, 306 bridge-earthquake analyses were 

performed. Results of these numerical analyses were used 

for development of seismic fragility curves. 

Lognormal distribution functions were employed as a 
mathematical expression of fragility curves. Peak ground 

acceleration of the strong ground motions were considered 

as intensity measure of the earthquakes. Squared correlation 

coefficient of this set of fragility curves are in the range of 
R

2
=0.79-0.93 which is reasonable for engineering 

purposes (O’Rourke and So 2000, Razzaghi and Eshghi 

2014). Fig. 8 presents NA based fragility curves for 

different limit states. It should be noted that the fragility 

curves illustrated in Fig. 8 belong to all of the bridges with 
various mechanical properties of reinforcements. NA 
based fragility curves for certain values of reinforcement 

yield stress (fy) had significant low correlation coefficients 
(generally less than 0.7). The number of data is very 

important in every statistical or probabilistic problem. In 

other words, the accuracy of results in probabilistic methods 

is highly dependent to the number of available data. Hence, 

the insufficient number of analyses, may lead to 

unreasonable scatter in the results of fragility analyses 

(O’Rourke and So 2000, Razzaghi and Eshghi 2014). 

Hence, the insufficient number of bridge-earthquake cases 

for certain reinforcement yield stresses can be considered as 

one of the most important reasons for inappropriate 

coefficients of correlations. In other words, development of 

appropriate NA based fragility curves for bridges with  
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Fig. 8 Fragility curves corresponding to four damage limit 

states for three groups of classification 

 

 

 

certain values of fy requires remarkable number of 

numerical analyses. 

 

4.3 ANN based fragility curves 
 

As expressed before, conventional NA based method is 

computationally time consuming, expensive and sometimes 

impossible because of convergence problems. In such a 

case soft computing techniques may be useful. Hence, in 

the present study, ANN predictions were used to derive 

fragility functions. To this end, the trained neural network 

was employed to simulate new bridge-earthquake cases and 

predict their seismic performances. Hence, the total number 

of 600 neural samples were created and used to develop 

 

Fig. 9 Fragility curves created by both ANN-based and NA-

based approaches 

 

 

 

ANN based fragility curves. Fig. 9 indicates the ANN based 

fragility curves for all of the bridges comparing to NA 

based ones. As illustrated in Fig. 9, NA based and ANN 

based fragility curves are somewhat different for LS1, LS2 

and LS3 but very similar in LS4. It should be noted that 

squared correlation coefficients of this ANN based fragility 

curves are in the range of R
2
=0.85-0.96. 

In addition to the above mentioned fragility curves, 

ANN based fragility curves were developed for bridges 

with certain values of reinforcement yield stress (fy=300, 

350 and 400 MPa). Squared correlation coefficients of this 

set of fragility curves are in the range of R
2
=0.82-0.94. The 

ANN based fragility curves for bridges with certain values 

of fy are shown in Fig. 10. As indicated in Fig. 10, the yield 

  
(a) LS1 (b) LS2 

  
(c) LS3 (d) LS4 

Fig. 10 ANN-based fragility curves using interpolation method 
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stress of reinforcement plays a considerable role in seismic 

fragility of RC bridges. In other words, it can be considered 

as one of the most important sources of uncertainty in 

probabilistic seismic performance assessment of the 

bridges. 

 

 
5. Conclusions 

 
A methodology based on numerical analysis and 

artificial neural networks was presented for the 

development of seismic fragility curves of RC bridges. 

Nonlinear dynamic response history analyses were 

performed by using appropriate records of strong ground 

motions. To consider uncertainties involved in fragility 

analysis of RC bridges, 306 bridge-earthquake cases were 

numerically analyzed. Based on the results of numerical 

analyses, the fragility curves were developed. Meanwhile, 

artificial neural networks were employed to predict seismic 

performances of RC bridges. Herein, MLP neural networks 

were employed. The proper structure of ANN was selected 

by minimizing the MSE and maximizing R
2
.  

Results of this study revealed that MLP neural networks 

are useful tools to predict the seismic performance of RC 

bridges. Hence, ANN can be used to develop seismic 

fragility curves for bridges. It was shown that by generating 

the new reliable cases, ANN can produce the strong 

database. Thus, it would be capable of developing fragility 

curves for special cases in which NA is weak. For instance, 

in the present study NA was not capable of developing 

reasonable fragility curves in terms of fy. Whilst, by using 

ANN, appropriate fragility curves were developed for 

various yield stresses.  

Furthermore, ANN-based fragility curves which 

developed in terms of fy showed that the grade of the 

reinforcing bar can considerably change the fragility of RC 

bridges. In other words, the yield stress of the bars can be 

considered as one of the important sources of uncertainty in 

seismic fragility of RC bridges. 
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