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1. Introduction 
 

Composite materials have been used successfully in the 

civil engineering, aeronautics and other technological 

applications industries. However, traditional composite 

materials are unusable under a high temperature 

environment. Metals have been generally used in the field 

of technology for many years due to their excellent 

mechanical strength and hardness. However, under high 

temperature conditions, the mechanical strength of the 

metal becomes low as for traditional composite materials. 

Ceramic materials have excellent characteristics in 

resistance, thermal. However, the applications of ceramics 

are usually limited because of their low hardness. The 

development of composite materials has made it possible to 

associate specific properties to different materials within the 

same room. The local optimization of these properties by 

combining a high hardness material on the surface of the 

same tenacious material poses the problem of the interface, 

the abrupt transition in the properties of materials through 

the interface between discrete materials can cause a large 

inter-laminar stress or a high concentration of stresses 

leading to plastic deformation or cracking. A technique to 
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overcome these adverse effects and to use a graded material 

(FUNCTIONALLY GRADED MATERIALS (FGM)). 

Recently, a new class of composite materials known as 

Functionally Graded Material (FGM), or gradient materials 

properties, has attracted special attention (Bouderba et al. 

2013, Tounsi et al. 2013, Kar and Panda 2014, Ahmed 

2014, Zidi et al. 2014, Zemri et al. 2015, Akavci 2016, 

Ahouel et al. 2016, Bounouara et al. 2016, Bellifa et al. 

2016, Sekkal et al. 2017a, Bellifa et al. 2017a, Khetir et al. 

2017, Abdelaziz et al. 2017, Besseghier et al. 2017, Meksi 

et al. 2018). Several studies have been carried out to 

analyze the behavior of plates and beams in FGM material. 

For example, Reddy (2000) has analyzed the static behavior 

of FGM rectangular plates based on his third-order shear 

deformation plate theory. Reddy and Cheng (2001) have 

presented a three-dimensional model for an FGM plate 

subjected to mechanical and thermal loads, both applied at 

the top of the plate. Vel and Batra (2004) has come closer to 

real behavior of structure by studying free vibration of 

FGM rectangular plates with three-dimensional solution. 

Zenkour (2005) presented the sinusoidal shear deformation 

plate theory to study buckling and free vibration of simply 

supported FG plates. Zenkour (2006) presented a 

generalized shear deformation theory in which the 

membrane displacements are expanded as trigonometric 

function across the thickness. Kadoli et al. (2008) 

investigated the bending response of FG beams by utilizing 
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higher order shear deformation and numerical method. 

Malek zadeh (2009) studied the analysis of free vibrations 

of thick plates in FGM on elastic bases with two-parameter. 

Later some new shape functions were proposed by Ait 

Atmane et al. (2010), Benachour et al. (2011). Shahrjerdi et 

al. (2011) employed the second-order shear deformation 

theory to analyze vibration of temperature-dependent solar 

functionally graded plates. Behravan Rad (2012) 

investigated the static behavior of bi-directional 

functionally graded (FG) non-uniform thickness circular 

plate resting on quadratically gradient elastic foundations 

subjected to axisymmetric transverse and in-plane shear. 

Ould Larbi et al. (2013) presented an efficient shear 

deformation beam theory based on neutral surface position 

for bending and free vibration of FG beams. In the same 

way, Sobhy (2013) studied the vibration and buckling 

behavior of exponentially graded material sandwich plate 

resting on elastic foundations under various boundary 

conditions. Yaghoobi and Torabi (2013a) investigated the 

post-buckling and nonlinear vibration of imperfect FG 

beams. Yaghoobi and Torabi (2013b) examined analytically 

the large amplitude vibration and post-buckling of FG 

beams resting on non-linear elastic foundations. Ait Amar 

Meziane et al. (2014) presented an efficient and simple 

refined theory for buckling and free vibration of 

exponentially graded sandwich plates under various 

boundary conditions. Belabed et al. (2014) proposed an 

efficient and simple higher order shear and normal 

deformation theory for FG plates. Yaghoobi et al. (2014) 

studied the post-buckling and nonlinear free vibration 

response of FG beams resting on nonlinear elastic 

foundation under thermo-mechanical loading using the 

variation iteration method (VIM). Behravan Rad and 

Shariyat (2015) obtained analytical solutions for FG porous 

variable thickness circular plates subjected to non-uniform 

shear and normal tractions and an external magnetic 

actuation. Ait Atmane et al. (2015) used a variationally 

consistent shear deformation theory for dynamic behavior 

of thick FG beams with porosities. Bourada et al. (2015) 

used the concept of the neutral surface position to develop a 

simple and refined trigonometric higher-order beam theory 

for bending and vibration behavior of FG beams. Attia et al. 

(2015) examined the dynamic response of FG plates with 

temperature-dependent properties by employing various 

four variable refined plate models. Bouguenina et al. (2015) 

presented a numerical analysis of FGM plates with variable 

thickness subjected to thermal buckling. Beldjelili et al. 

(2015) analyzed the hygro-thermo-mechanical bending 

response of S-FGM plates resting on variable elastic 

foundations using a four-variable trigonometric plate theory. 

Behravan Rad (2015a, 2015b) analyzed the two-

dimensional steady-state thermal stresses on a hollow, thick 

cylinder made of functionally graded materials and obtained 

a semi-analytical solution. Belkorissat et al. (2015) 

discussed vibration properties of FG nano-plate using a new 

nonlocal refined four variable model. Kolahchi et al. (2015) 

presented a size-dependent bending analysis of FGM nano-

sinusoidal plates resting on orthotropic elastic medium. 

Mahi et al. (2015) developed a new hyperbolic shear 

deformation theory for bending and free vibration analysis 

of isotropic, functionally graded, sandwich and laminated 

composite plates. Larbi Chaht et al. (2015) studied the 

bending and buckling behaviors of FG size-dependent 

nanoscale beams including the thickness stretching effect. 

Tagrara et al. (2015) investigated the bending, buckling and 

vibration responses of functionally graded carbon nanotube-

reinforced composite beams. Bousahla et al. (2016) 

examined thermal stability of plates with functionally 

graded coefficient of thermal expansion. Safari et al. (2016) 

studied the buckling of concrete columns retrofitted with 

Nano-Fiber Reinforced Polymer (NFRP). In another study, 

Bennai et al. (2015) proposed a novel higher-order shear 

and normal deformation theory for FG sandwich beams. 

Zamanian et al. (2017) analyzed the Agglomeration effects 

on the buckling behaviour of embedded concrete columns 

reinforced with SiO2 nano-particles. Bouderba et al. (2016) 

discussed thermal stability of FG sandwich plates using a 

simple shear deformation theory. Draiche et al. (2016) used 

a refined theory with stretching effect for the flexure 

analysis of laminated composite plates. Bennoun et al. 

(2016) studied the vibration response of FG sandwich plates 

using a novel five variable refined plate theory. Kolahchi 

and Moniri Bidgoli (2016a) used a new sinusoidal model of 

size-dependent beams for the dynamic instability of single-

walled carbon nanotubes. A buckling analysis of the armed 

concrete columns of carbon nanotubes was carried out by 

Jafarian and Kolahchi (2016b). Madani et al. (2016) used a 

differential cubic method for the analysis of the vibratory 

behavior of integrated FG-CNT reinforced piezoelectric 

cylindrical shells subjected to uniform and non-uniform 

temperature distributions. Kolahchi et al. (2016c) presented 

an analysis of the dynamic stability of visco-reinforced 

gradient plates based on an orthotropic elastomer medium. 

Study of the buckling of sandwich plates with FG-CNT 

reinforced layers based on an orthotropic elastic medium 

using Reddy's plate theory was carried out by Shokravi 

(2017). Chikh et al. (2017) presented thermal buckling 

analysis of cross-ply laminated plates using a simplified 

HSDT. El-Haina et al. (2017) proposed a simple analytical 

approach for thermal buckling of thick FG sandwich plates. 

Menasria et al. (2017) employed a new and simple HSDT 

for thermal stability analysis of FG sandwich plates. Fahsi 

et al. (2017) developed a four variable refined nth-order 

shear deformation theory for mechanical and thermal 

buckling analysis of FG plates. Fourn et al. (2018) proposed 

a novel four variable refined plate theory for wave 

propagation in FG material plates. Bakhadda et al. (2018) 

presented both dynamic and bending analysis of carbon 

nanotube-reinforced composite plates with elastic 

foundation. Recently, Tounsi et al. (2016) proposed a new 

3-unknowns non-polynomial plate theory for buckling and 

vibration of FG sandwich plate. The nonlinear steady-state 

and dynamic behaviors of a functionally graded material 

plates were studied by Wang and Zu (2017a, 2017b). 

Behravan et al. (2017) presented a static analysis of the 

variable thickness of Functional Gradient Functional Two-

layer Circular Plates (FGPM) based on a Hybrid Gradient 

Foundation with friction force and composite mechanical 

loads. Shokravi (2017) developed a sinusoidal shear 

deformation theory for the analysis of Dynamic pull-in and 
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pull-out of viscoelastic nanoplates under electrostatic and 

Casimir forces. Bellifa et al. (2017b) proposed a nonlocal 

zeroth-order shear deformation theory for nonlinear post 

buckling of nano beams. Kolahchi and Cheraghbak (2017a) 

investigated the effects of agglomeration on stability of 

viscoelastic microplates reinforced with SWCNTs using the 

Bolotin method. Behravan Rad (2018) studied the Static 

analysis of non-uniform 2D functionally graded auxetic-

porous circular plates interacting with the gradient elastic 

foundations involving friction force. For a longitudinally 

moving plate, the Rayleigh-Ritz method was applied to 

analyze the vibration under the condition of being immersed 

in an infinite liquid by Wang and Zu (2017c). A 

comparative study on the bending, vibration and buckling 

of viscoelastic sandwich nano-plates based on different 

nonlocal theories using DC, HDQ and DQ methods was 

studied by Kolahchi (2017b). Recently, Akbaş (2018) is 

presented a forced vibratory analysis of the porous deep 

beams functionally graded. Hadi et al. (2017) proposed 

sinusoidal-visco-piezoelastic theories for the dynamic 

buckling analysis of functionally gradient and functional 

gradient carbon nanotube functional layer sensors / 

actuators. Kolahchi et al. (2017c) proposed a dynamic 

buckling optimization method for sandwich nanocomposite 

plates with a sensor and actuator layer based on sinusoidal-

visco-piezoelastic theories using the Gray Wolf algorithm. 

The seismic response of concrete underwater pipes carrying 

SiO2 nanoparticle-reinforced fluids and a fiber-reinforced 

polymer (FRP) layer is studied by Zarei et al. (2017). 

Shokravi (2017) presented vibration analysis of silica 

nanoparticles-reinforced concrete beams considering 

agglomeration effects. Shokravi (2018) presented a 

buckling analysis of integrated laminated sheets with 

reinforced composite CNT layers agglomerated using FSDT 

and DQM. Recently, shear deformation theories with 

reduced variables are developed by Houari et al. (2016), 

Hachemi et al. (2017), Mouffoki et al. (2017), Zidi et al. 

(2017), Klouche et al. (2017), Belabed et al. (2018), Yazid 

et al. (2018), Attia et al. (2018), Kaci et al. (2018), Youcef 

et al. (2018), Mokhtar et al. (2018).  

The study of wave propagation in FG structures has also 

received a lot of attention from several researchers. Han and 

Liu (2002) investigated SH waves in FG plates, where the 

material property variation was assumed to be a piecewise 

quadratic function in the thickness direction. Chen et al. 

(2007) studied the dispersion behavior of waves in a 

functionally graded plates with material properties varying 

along the thickness direction. Sun and Luo (2011a) also 

studied the wave propagation and dynamic response of 

rectangular functionally graded material plates with 

completed clamped supports under impulsive load. 

Considering the thermal effects and temperature-dependent 

material properties, Sun and Luo (2011b) investigated the 

wave propagation of an infinite functionally graded plate 

using the higher-order shear deformation plate theory. 

Kolahchi et al. (2017d) presented a study of the wave 

propagation of integrated viscoelastic FG-CNT reinforced 

sandwich plates with sensor and actuator based on the 

refined zigzag theory. Recently, Benadouda et al (2017) 

used A shear deformation theory for the study of wave 

propagation in functional beams to gradually take into 

account the effect of porosity.  

Porosities can occur within functionalized materials 

(FGM) during manufacturing due to technical problems that 

lead to the creation of micro-voids in these materials. The 

porous structures FG have many interesting combinations 

of mechanical properties. In order to deal with this type of 

problem, some studies on the effect of porosity in FG 

structures have been published in the literature; 

Wattanasakulpong et al. (2012) gives the discussion on 

porosities happening inside FGM samples fabricated by a 

multi-step sequential infiltration technique. Şimşek and 

Aydın (2012) examined the forced vibration of FG micro 

plates with porosity effects based on the modified couple 

stress theory. Wattanasakulpong et al. (2014) also give a 

discussion of the porosities occurring inside the FGMs 

produced by the sequential infiltration technique. Ebrahimi 

and Mokhtari (2015) provided DT method for vibration of 

rotating Timoshenko FG beams with porosities. Moreover, 

the wave propagation of an infinite FG porous plate based 

on various simple higher-order shear deformation theories 

has been studied by Ait Yahia et al. (2015). Kolahchi et al. 

(2017e) employed the visco-nonlocal-refined Zigzag and 

visco-nonlocal-piezoelasticity theories to analyze dynamic 

buckling of laminated nanoplates. Jahwari and Naguib 

(2016) investigated FG viscoelastic porous plates with a 

higher order plate theory and a statistical based model of 

cellular distribution. Boutahar et al. (2016) have presented 

non-linear free vibrations analysis of FG porous annular 

plates resting on elastic foundations. They concluded that 

porosity volume fraction and type of porosity distribution 

have a significant influence on the geometrically non-linear 

free vibration response of the FG annular plates at large 

amplitudes. Moreover, Mouaici et al. (2016) proposed an 

analytical solution for the vibration of FGM plates with 

porosities. The analysis was based on the deformation 

theory of shear with taking into account the exact position 

of the neutral surface. Akbas (2017a) studied the effect of 

porosity on Post-buckling. Boukhari et al. (2016) 

introduced an efficient shear deformation theory for wave 

propagation of functionally graded material plates. 

Recently, Ait Atmane et al. (2016) is study the effect of 

stretching the thickness and porosity on the mechanical 

response of a FG beam resting on elastic foundations. 

Akbas SD (2017) studied the thermal effects on the 

vibratory behavior of FG beams with porosity. A nonlinear 

static analysis of functional gradient girders with porosity 

under the thermal effect was carried out by Akbaş (2017b).  

In the present work, an analytical study of the free 

vibration and wave propagation in FG porous beams using a 

new displacement model was presented. The beams are 

made of an isotropic material with material properties 

varying in the direction of the thickness. The wave 

propagation equations in the FG beam are derived using the 

Hamilton principle, which takes into account the effects of 

shear deformation and inertia rotation. The analytical 

relations of dispersion of the beam FG are obtained by 

solving a problem of eigenvalue. The vibration and phase 

velocity curves of the wave propagation in a functionally 

graded beam are plotted. The influences of porosity, volume  
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Fig. 1 Coordinates and geometry of functionally graded 

beam 

 

 

fraction index and thickness ratio on the vibration and phase 

velocity of the wave propagation in the FG beam are clearly 

discussed. 

 

 

2. Theory and formulation 
 

Consider a porous FGM beam, with total height (h), 

length (L), and width (b) referred to the Cartesian 

coordinates (x, y, z) as shown in Fig. 1. The top and bottom 

faces of the beam are at z=±h/2, and the horizontal edges of 

the beam are parallel to axes x and y. The beam is subjected 

to transverse load of intensity q(x) per unit length. 

In this study, the FG beam is composed of a mixture of 

two types of material, for example a metal and a ceramic. 

The properties of the materials of the FG beam are assumed 

to vary continuously through the beam height. The beam is 

assumed to have porosities extending in thickness due to 

defect during production. Consider an imperfect FGM with 

a volume fraction of porosity, λ (λ<<1), distributed equally 

between metal and ceramic, the modified mixing rule 

proposed by Ankit Gupta and Mohammad Talha (2017) is 

used: 

Now, the total volume fraction of the metal and ceramic 

is Vm+Vc=1, and the power law of volume fraction of the 

ceramic is described as 
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λ is termed as porosity volume fraction (λ<1). λ=0 

indicates the non-porous functionally graded beam.  

Now, the total volume fraction of the metal and ceramic 

is Vm+Vc=1, and the power law of volume fraction of the 

ceramic is described as 
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Where „p‟ is the volume fraction index. The effective 

material property of porous FGM beam is given as 
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Where P denotes the effective material characteristic 

such as Young‟s modulus E and mass density ρ subscripts m 

and c denote the metallic and ceramic components, 

respectively. ξ it is the factor of the distribution of the  

Table 1 Factor of the distribution of porosity ξ. 
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porosity according to the thickness of the beam (Table 1). It 

is noted that the positive real number p (0≤p<∞) is the 

power law or volume fraction index, and z is the distance 

from the mid-plane of the FG beam. When p is sand to zero 

(p=0) the FG beam become a fully ceramic beam and fully 

metal beam for large value of p (p=∞). In this study, 

Poisson‟s ratio (ν) is considered to be constant (Yang et al. 

2005, Kitipornchai et al. 2006, Tounsi et al. 2013). The 

material properties of a perfect FG beam can be evaluated 

by sand ting α zero.  

 
2.1 Kinematics relations 

 
A new displacement field has been used in this article to 

reduce the number of unknowns in the HSDT theory 

(Bouchafa et al. 2015) 

),()(),(),,( 0
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w
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where u0 is the mid-plane displacement of the beam in the x 

direction, w is the bending and shear components of 

transverse displacement, respectively; and f(z) is a shape 

function determining the distribution of the transverse shear 

are chosen to satisfy the stress-free boundary conditions on 

the top and bottom surfaces of the beam, thus a shear 

correction factor is not required. By considering that 

 dxx)(  , the displacement field of the present model 

can be expressed in a simpler form as (Bourada et al. 2016) 
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It can be seen that the displacement field in Eq. (5) 

introduces only four unknowns (u0, w0 and θ).The nonzero 

strains associated with the displacement field in Eq. (5) are 
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And the integrals defined in the above equations shall be 

resolved by a Navier type method and can be written as 

follows 

x
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Where the coefficients A‟ is expressed according to the type 

of solution used, in this case via Navier. Therefore, A’, k are 

expressed as follows 
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Where κ is the wave number of wave propagation along x-

axis direction. By assuming that the material of FG beam 

obeys Hooke‟s law, the stresses in the beam become 
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where (ζx, ηxz) and (εx, γxz) are the stress and strain 

components, respectively. Using the material properties 

defined in Eq. (1), stiffness coefficients, Cij, can be given as 
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2.2 Equations of motion 
 

Hamilton‟s principle is used herein to derive the 

equations of motion. The principle can be stated in 

analytical form as 
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Where δU is the variation of strain energy; δV is the 

variation of the external work done by external load applied 

to the beam; and δK is the variation of kinetic energy. 

The variation of strain energy of the beam is given by 
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where A is the top surface and the stress resultants N, M, 

and S are defined by  
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The variation of the external work can be expressed as 
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Where q and 0
xN

 
are transverse and in-plane applied 

loads, respectively.  

For the free vibration and wave propagation problems, 

the external work is zero. The variation of kinetic energy of 

the beam can be expressed as 
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Where dot-superscript convention indicates the 

differentiation with respect to the time variable t; ρ(z) is the 

mass density given by Eq. (1); and (Ii, Ji, Ki) are mass 

inertias expressed by 
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By substituting Eqs. (13), (15) and (16) into Eq. (12), 

the following can be derived 
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(18) 

Substituting Eq. (6) into Eq. (10) and the subsequent 

results into Eqs. (14), the stress resultants are obtained in 

terms of strains as following compact form 
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Where 
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and stiffness components are given as: 

  dzzfzfzzfzzC

HDBDBA

HDBDBA

HDBDBA

h

h

sss

sss

sss


















































2

1

1

)(),( ),(,,,1

2/

2/

22
11

666666666666

121212121212

111111111111




 

(21a) 

),,,,,(),,,,,( 111111111111222222222222

ssssss HDBDBAHDBDBA   (21b) 


 ,)]([ 2

44

2/

2/

5522 dzzgCAA

h

h

ss




  (21c) 

Introducing Eq. (19) into Eq. (18), the equations of 

motion can be expressed in terms of displacements (u0, w0, 

θ) and the appropriate equations take the form 
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where dij, dijl and dijlm are the following differential 

operators 
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2.3 Dispersion relations 
 

We assume solutions for u0, w0 and θ0 representing 

propagating waves in the x plane with the form 
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where U; W and X are the coefficients of the wave 

amplitude, κ is the wave numbers of wave propagation 

along x-axis direction, ω is the frequency, 1i  the 

imaginary unit. 

Substituting Eq. (24) into Eq. (22), the following 

problem is obtained 
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The dispersion relations of wave propagation in the 

functionally graded beam are given by 

    0  2  MK   (27) 

The roots of Eq. (27) can be expressed as 
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and )(33  W  (28) 

They correspond to the wave modes M1, M2 and M3 

respectively.  

The wave modes M1 correspond to the flexural wave, the 

wave mode M2 and M3 corresponds to the extensional wave. 

The phase velocity of wave propagation in the 

functionally graded beam can be expressed as 
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3. Numerical results and discussions  
 

In order to analyze the effect of porosity on the 

vibratory and behavior and phase velocity of the FGM 

beams, illustrative examples have been presented in this 

part. A functionally graded beam is made from two Si3N4/ 

SUS304 materials; whose properties of these are presented  
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in the following table:  

These properties change through the thickness of the 

beam according to the power law. The upper surface of 

FGM beam is rich in Si3N4 ceramic, while the lower surface 

of the FGM beam is rich in SUS304 metal. The thickness of 

the functionally graded beam is taken h=0.02 m. various 

numerical examples are presented and discussed to check 

the accuracy of present theory in investigating the wave 

propagation and free vibration of FG beams. The analysis 

based on the present model is carried out using MAPLE. 

Tables 2 and 3 present the frequencies and phase 

 

 

 

velocities of an FGM beam for the three formulas of the 

porosity distribution factor. From the results presented in 

this two tables, we can observe the values of the frequencies 

and the velocity obtained by the present model are in good 

agreement with those of the Gupta (Ankit Gupta et al. 

2017) model for the two cases λ=0,1 and λ=0, 2 regardless 

of the value of the ratio L/h. 

The variation curves of the natural frequency (ω) and 

the phase velocity for the first three modes of the various 

functionally graded beam, as a function of the material 

power index (p) for different values of the porosity were 

Table 2 Naturel frequencies of a porous FG beam for various thickness ratios, porosity parameters, power law 

indices and porosity distributions 

l/h p 

λ=0 λ=0,1 λ=0,2 

Nuttawit 

2013 

Gupta 

2017 
présent 

Nuttawit 

2013 

Gupta 

2017 
présent 

Nuttawit 

2013 

Gupta 

2017 
présent 

5 

0 48384,74 48384,74 48384,74 52657,67 50263,29 50262,47 59582,99 52412,18 52404,69 

0,5 32793,32 32793,32 32793,32 33266,79 33104,72 33104,59 33869,00 33424,90 33423,85 

1 28440,78 28440,78 28440,78 28350,97 28494,03 28494,01 28224,53 28537,72 28537,59 

5 22531,39 22531,39 22531,39 21925,12 22298,80 22298,90 21183,54 22037,26 22038,16 

10 21419,08 21419,08 21419,08 20744,85 21154,25 21154,36 19927,92 20858,52 20859,54 

10 

0 31574,16 31574,16 31574,16 34362,53 32962,52 32961,91 38881,75 34552,15 34546,61 

0,5 21375,69 21375,69 21375,69 21687,89 21684,49 21684,36 22087,94 22006,50 22005,43 

1 18560,14 18560,14 18560,14 18502,21 18691,14 18691,09 18420,97 18821,75 18821,33 

5 14868,36 14868,36 14868,36 14490,04 14822,66 14822,68 14026,84 14765,81 14766,02 

10 14117,28 14117,28 14117,28 13694,34 14050,12 14050,15 13182,73 13971,24 13971,52 

 

Table 3 The phase velocities of a porous FG beam for various thickness ratios, porosity parameters, power law 

indices and porosity distributions 

l/h p 

λ=0 λ=0,1 λ=0,2 

Nuttawit 

2013 

Gupta 

2017 
présent 

Nuttawit 

2013 

Gupta 

2017 
présent 

Nuttawit 

2013 

Gupta 

2017 
présent 

5 

0 4838,47 4838,47 4838,47 5265,77 5026,33 5026,25 5958,30 5241,22 5240,47 

0,5 3279,33 3279,33 3279,33 3326,68 3310,47 3310,46 3386,90 3342,49 3342,38 

1 2844,08 2844,08 2844,08 2835,10 2849,40 2849,40 2822,45 2853,77 2853,76 

5 2253,14 2253,14 2253,14 2192,51 2229,88 2229,89 2118,35 2203,73 2203,82 

10 2141,91 2141,91 2141,91 2074,48 2115,42 2115,44 1992,79 2085,85 2085,95 

10 

0 3157,42 3157,42 3157,42 3436,25 3296,25 3296,19 3888,17 3455,22 3454,66 

0,5 2137,57 2137,57 2137,57 2168,79 2168,45 2168,44 2208,79 2200,65 2200,54 

1 1856,01 1856,01 1856,01 1850,22 1869,11 1869,11 1842,10 1882,17 1882,13 

5 1486,84 1486,84 1486,84 1449,00 1482,27 1482,27 1402,68 1476,58 1476,60 

10 1411,73 1411,73 1411,73 1369,43 1405,01 1405,01 1318,27 1397,12 1397,15 
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Fig. 2 Variation of the natural frequency of the FGM beam according to the material power index (κ=10 and L/h=10) 
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Table 4 The property of the materials used 

Material E (GPa) ρ (kg/m3) ν 

Si3N4 2370 2370 0.3 

SUS304 201.04 8166 0.3 

 

 

respectively presented in Figs. 2 and 3. 

From Figs. 2 and 3, it can be observed that with 

increasing the power index, the natural frequency and the 

phase velocity in the FGM beams are decreased, regardless 

of the number of waves. In addition, it is deduced that the 

variations of natural frequency and the phase velocity are 

more sensitive to the porosity factor and especially for high 

material parameter. Therefore, the maximum frequency is 

obtained for a ceramic beam (p=0) and a porosity factor. 

λ=0,3. 

The phase velocity and natural frequency in a 

homogeneous beam is the highest compared to the other FG 

beams. This is due to the rigidity of the ceramic beam 

which is the greatest rigidity. Therefore, it is confirmed that 

the material parameter has a great influence on the phase 

velocity and the natural frequency in the perfect FG beams. 

Fig. 4 shows the frequency curves of the different FG 

beams as a function of the number of waves kp. From these 

curves, we notice that the frequency increases with the 

increase of the number of waves for the same material 

parameter. We can also observe that the frequency becomes 

maximal for a perfect beam (λ=0). 

Fig. 5 shows the variation of the phase velocity of FG 

beam as a function of the number of waves with different 

values of the porosity. The material parameter is taken equal 

to p=2 and the thickness ratio L/h=10. 
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Fig. 5 The phase velocity curves of different functionally 

graded beam in terms of wave number (p=2 and L/h=10) 
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Fig. 3 Variation of the phase velocity of the FGM beam according to the material power index (κ=10 and L/h=10) 
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Fig. 4 The natural frequency curves of different functionally graded beam in terms of wave number (p=2 and L/h=10) 
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Fig. 6 Influence of thickness ratio on the natural frequency 

of the FG beam (kp=10 and L/h=10) 

 

 

Figs. 6 and 7 illustrate the influence of the thickness 

ratio of the FG beam on the natural frequency and the phase 

velocity.  

From these two figures (Figs. 6 and 7), It can be 

observed that the thickness ratio (L/h) has a considerable 

effect on the phase velocity and natural frequency of the FG 
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Fig. 7 Influence of thickness ratio on the phase velocity of 

the FG beam (kp=10 and L/h=10) 

 

 

decrease in the frequency and the phase velocity. 

Figs. 8 and 9 present respectively the influence of the 

thickness ratio and the material parameter on the natural 

frequency and the phase velocity of the beams FG. 

From the curves presented in Figs. 8 and 9 it can be seen 

that there is a clear effect of the thickness ratio on the 

natural frequency and the phase velocity. It can be also 
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Fig. 8 Influence of the thickness ratio on the natural 

frequency and the phase velocity (kp=10 and p=2) 

 

 

observed that with increasing the material parameter both 

the natural frequency and phase velocity decreases. 

 
 
4. Conclusions 
 

In this research, an analysis of the vibrational 

characteristic and wave propagation of functionally graded 

porous beams with a new form of porosity distribution is 

presented. A theory of hyperbolic shear strain (HSDT) with 

a new displacement field that introduces undetermined 

integral variables was used for this study. The properties of 

the material are considered varied in the direction of 

thickness as a function of the modified mixing rule. The 

equations of wave propagation in the functionally graded 

beam are derived using the Hamilton principle. The 

analytical dispersion relationship of a porous FG beam is 

obtained by solving an eigenvalue problem. From the 

current work, it can be said that various factors such as 

porosity parameter, porosity distribution, thickness ratio and 

power law index have a significant effect on natural 

frequencies and phase velocity of FG beams with porosity. 

Which emphasizes on the importance of inspected porosity 

volume fraction effect. Therefore, the porosity effect should 

be considered in the analysis of vibration behavior of FG 

structures. Applications of this study for the thicker FG 

structures can be extended in future with considering new 

formulations developed by other works (see, e.g., Bessaim 

et al. 2013, Belabed et al. 2014, Hebali et al. 2014, 

Bousahla et al. 2014, Hamidi et al. 2015, Bourada et al. 

2015, Bennoun et al. 2016, Draiche et al. 2016, Bouafia et 
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Fig. 9 Influence of the material parameter on natural 

frequency and phase velocity (kp=10 and L/h=10) 

 

 

al. 2017, Sekkal et al. 2017b, Abualnour et al. 2018, 

Benchohra et al. 2018, Younsi et al. 2018, Karami et al. 

2018a; Bouhadra et al. 2018,; Hebbar et al. 2018) and to 

consider recent development continuum models (Karami et 

al. 2017, 2018b, c, Zine et al. 2018) to investigate the 

mechanical behaviour of FG structures more complex 

geometrical configurations. 
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