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1. Introduction 
 

Since early 1990‟s, operational modal analysis (OMA) 

has drawn great attention in civil engineering community 

with applications for off-shore platforms, buildings, towers, 

bridges, etc (Zhang et al. 2005). OMA techniques are used 

to identify the modal characteristics of the system where 

only the structural output (response of the structure in 

operational condition subjected to ambient vibrations) is 

known. These estimates of the modal parameters can be 

used directly or within a model updating framework 

(Papadimitriou and Papadioti 2013, Zhang and Au 2016, 

Zhang et al. 2017, Jensen et al. 2017) for the assessment 

and control of vibrations, the rehabilitation or optimization 

of design, and the monitoring of performance and health 

state of structures (Ni et al. 2015, Zhang et al. 2016, Aras 

2016). An inclusive summary of OMA techniques is 

provided by Rainieri and Fabbrocino (2014). 

During the past few years there have been many studies 

conducted on different methods and applications of OMA 

and hundreds of articles have been published in this field 

(Masjedian and Keshmiri 2009). Peeters and De Roeck 

(2001) have reviewed some of these modeling techniques, 

including: state-space models, Auto-Regressive Moving 

Average (ARMA) models, and frequency-domain models. 

With the development of operational modal analysis, the 

advantages of using system identification methods that can 

deal well with the high „noise‟ levels that are met in 
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operational conditions, became clear (Reynders 2012). In 

this regard, ARMA methods aimed at modeling the 

dynamics of both the structural system and the noise 

(Rainieri and Fabbrocino 2014). These methods assume that 

the system input as well as the measurement noises has a 

continuous white noise nature. However, as these noises are 

not perfectly white (Reynders 2012), nonwhite system input 

and output measurement noises become part of the 

identified system resulting in lots of additional spurious 

poles, not related to the dynamics of the system under 

study. 

Different authors have developed theoretical models or 

stepwise algorithms to overcome this problem. Among the 

rest, Mohanty and Rixen (2004) have studied OMA in the 

presence of harmonic excitation. For this purpose, they have 

introduced a modification to the least-square complex 

exponential (LSCE) identification procedure to include 

explicitly the harmonic component. Rodrigues et al. (2004) 

have explored the idea of applying the random decrement 

(RD) functions for spectral estimation to be used in 

frequency domain OMA methods. Since the experimentally 

measured structural responses always have some noise 

content, the time segments averaging of the RD technique, 

reduces the noise in the resulting RD functions. Peeters et 

al. (2007) have introduced a harmonic filtering method to 

filter disturbing harmonics from broadband time data. The 

proposed technique works at four steps: a) estimating the 

fundamental harmonics of the system; b) re-sampling the 

data in angle domain; c) applying synchronous averaging to 

remove the harmonics; and d) restoring the signal in time 

domain. Shouyuan et al. (2008) developed a method for 

distinguishing harmonic noise modes from measured 

vibration signal based on the differences of the statistical 

properties of a stochastic signal and a harmonic signal. 
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Also, they have used the channel projection technique to 

reduce noise modes caused by random errors. Gouache et 

al. (2013) have used phase analysis adapted to a transient 

context to conduct operational modal analysis under a 

harmonic transient input. Bonness and Jenkins (2015) have 

presented a noise removal technique based on coherent 

output power (COP) between the recorded signal and the 

reference noise signal. The proposed technique has been 

demonstrated using vibration data and dynamic wall 

pressure measurements from a thin-walled aluminium 

cylinder filled with flowing water. Following the research 

conducted by Yu and Ren (2005), Qin et al. (2015) 

investigated output-only modal analysis for bridge 

structures by using an improved version of empirical mode 

decomposition (EMD). This is done by means of a 

bandwidth restricted EMD for decomposing non-stationary 

output measurements. The modal parameters are extracted 

by both random decrement technique and stochastic 

subspace identification. Recently, Ong et al. (2017) used 

impact-synchronous modal analysis (ISMA) for filtering out 

the non-synchronous cyclic load component, its harmonics, 

and noises. The Bayesian approach for operational modal 

analysis is another method for modal identification that 

accounts for the effect of measurement noise analytically 

(Au 2017). Zhang et al. (2018) and Ni et al. (2017) used 

this method for operational modal analysis of high-rise 

buildings. 

As mentioned, for an effective identification of modal 

parameters, it is necessary to ensure that the recorded data 

has a good signal-to-noise ratio (Brincker et al. 2003). 

However, in many practical cases, influence of noise 

contamination in the recorded data makes it difficult to 

identify the modal parameters accurately. As in most cases, 

a good estimation of structural mode shapes is available 

prior to ambient vibration tests, this information may be 

used to handle noisy data and extract corresponding modal 

parameters during OMA. This paper presents an enhanced 

version of LSCF method for determination of vibration 

properties from noisy data based on the selected mode 

shape vector. For this purpose, a vector containing the 

correlation between predicted and measured cross-power 

spectral density (C-PSD) matrices is used to refine the 

measured data and eliminate effect of unwanted noises. The 

efficiency of the proposed method is illustrated using an 

example five story shear frame loaded by random excitation 

and different noise signals.  

 

 

2. Theory 
 

2.1 Least square complex frequency method 
 

The Least Squares Complex Frequency (LSCF) method, 

starts from a scalar matrix-fraction description (better 

known as a common-denominator model) for the measured 

set of cross-power spectral densities (C-PSD). This method 

is basically a curve-fitting technique based on the 

minimization of an equation error between the measured 

and the predicted PSD matrix. For a generic couple k of 

output channels (k=1, 2, …, l×l), the cross-power spectrum 

at frequency line f (f=1, 2, …, Nf) can be estimated using a 

common-denominator model (Rainieri and Fabbrocino 

2014) 
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where, the coefficients θk,j and ψj are the unknown 

parameters to be estimated; n is the order of numerator and 

denominator polynomials; Ωf is the generalized transform 

variable which for discrete-time domain is evaluated as: 

         ; and Δt is the sampling interval. The 

coefficients θk,j and ψj are obtained as a solution of a linear 

least squares problem defined by the following equations 
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where,  ̂      is the cross-power spectrum at frequency 

line for the k-th couple of output channels. As above 

equations are linear in the parameters, they can be re-

formulated in the matrix form 
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where, i=1,…,Nf; j=0,…,n and Γk and Υk are Nf×(n+1) 

matrices defined as it follows 
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The unknown parameters can be estimated directly from 

the Jacobian matrix [J] of Eq. (3). However, most 

estimators used in operational modal analysis form the 

normal equations explicitly, i.e., they compute [J]
H
[J] as 

this results in a significant reduction in computational time 

and faster implementation (where, 
H
 is the sign of Hermitian 

adjoint). The reduced normal equations are given as 
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When [M] is calculated, it can be used to find {ψ1..n} as  
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given by the following equation 
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Once the coefficients {ψ1..n} have been computed, the 

poles in the z-domain can be obtained as the roots of the 

denominator polynomial (zr). Then the natural frequency 

and the damping ratio of the r-th mode can be computed as 

follows 
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As the natural frequency and damping ratio become 

known, mode shapes can be obtained as a solution of a 

second least squares problem. For more information on 

determination of mode shapes one can refer to Rainieri and 

Fabbrocino (2014). 

 

2.2 Enhanced LSCF method 
 

As mentioned before, the proposed method makes the 

use of pre-defined approximate mode shape vectors to 

refine the cross-power spectral density matrix. For this 

purpose, suppose that 1× l vector, ϕ, is the mode shape 

vector corresponding to the r-th vibration mode. The outer 

product of this vector with itself, {ϕ}{ϕ}
T
, will be an l×l 

matrix holding the information about auto- and cross-

spectral densities of output channels at r-th vibration mode. 

The correlation between this matrix and the measured PSD 

matrix will be maximised near the r-th fundamental 

frequency since at this frequency the residue matrix will 

generally hold the information about the r-th mode shape 

 

 

vector. Meanwhile at other frequencies corresponding to 

noise, harmonic or other structural modes the correlation 

between these matrices will tend to zero. Hence this 

quantity can be treated as an index, namely the Correlation 

Index (CI), to refine the PSD matrix used by LSCF method. 

In order to calculate CI for a given mode shape vector, the 

elements of {ϕ}{ϕ}
T
 matrix should be stored in an (l×l)×1 

vector as per the following equation 
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where, int(-), stands for the integer function. The correlation 

between this vector and the PSD matrix at each frequency 

can be estimated using 
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where the exponent, α, is used to calibrate the sensitivity of 

the method. As the CI(ωf) vector of dimension Nf×1 is 

calculated, the Eq. (5) can be re-written as 
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Application of this modified equation inside the 

framework of LSCF will result in an enhanced method 

which is capable of detecting the fundamental frequency 

corresponding to the adopted mode shape vector, by 

neglecting the peaks corresponding to noise and harmonic 

modes or even other structural poles.  

The sensitivity exponent, α, in Eq. (14) can take 

different values, changing the applicability of the proposed 

method. Using, α=0, the enhanced method will be 

simplified to traditional LSCF method. For an, α, value 

greater than zero, the correlation index will refine the PSD 

matrix. As the sensitivity exponent, α, increases the effect 

 

Fig. 1 Dynamic properties of the reference model; (a) mass and stiffness of stories; (b) natural frequencies (FDD method) 
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of selected mode shape vector will become more obvious. It 

is worthy to mention that if the parameter α is set to unity, 

the calculated CI will be somehow analogues to Modal 

Assurance Criteria (MAC) used in traditional OMA. A 

negative value for α may be used to remove the noise or 

harmonic modes with a known mode shape vector. 

The proposed method can be made even more efficient 

by introducing a CI rejection level defined as 
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However, as LSCF method is basically a curve-fitting 

technique, adoption of CI=0 for a wide range of frequencies 

may result in a numerical error. To avoid this problem, Eq. 

(15) may be modified as 
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where, ε, is a positive small value compared to other values 

in PSD matrix. In this study the value of, ε, is assumed to be 

equal to:           ̂      . Effect of this parameter is 

discussed in sec. 3.3.1. 

 

 

3. Discussion on the application of eLSCF 
 

3.1 Description of reference structure 
 

A five story shear frame is selected as the reference 

model to evaluate performance of eLSCF method. The mass 

and stiffness of all stories are assumed to be identical as 

shown in Fig. 1(a). The arrangement of sensors is shown in 

the figure. The model is loaded using a white noise 

composed of 100,000 data points (100 sec) and the 

 

 

 

Fig. 2 Stabilization of natural frequencies for the reference 

model obtained from LSCF method 

 

 

acceleration responses at different story levels is used as the 

input to LSCF and eLSCF methods. Fig. 1(b) displays 

application of well-known Frequency Domain 

Decomposition (FDD) method to the response of the 

reference model. Natural frequencies corresponding to each 

mode is summarized in Fig. 1(c). 

 

3.2 Application of exact mode shapes 
 

In the first phase, the capability eLSCF in detection of 

modal frequencies is evaluated and compared to the results 

obtained from traditional LSCF. Fig. 2 displays stabilization 

diagram from LSCF method used for detecting natural 

frequencies of the reference model. As it can be seen in the 

figure, when the order of system is below 100, only two 

modes (third and fourth) are detectable and other modes are 

missing. However as the order of system increases above 

this value, all modal frequencies start to stabilize. In fact, as  

 

 

 

Fig. 3 Results of eLSCF using exact mode shapes of 5 story frame (α=0.5, no use of Eq. (16)) 
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the selected structure has more degrees of freedom, the 

stabilization of all modes will require even a larger system 

order (Schanke 2015). 

As described before, an estimate of mode shape vectors 
for the target fundamental modes is needed prior to the 
extraction of modal frequencies using eLSCF. For the first 
attempt, the exact mode shapes of the reference model are 
calculated from modal analysis and used as an input to 
eLSCF. Fig. 3 displays adopted mode shapes and 

stabilization diagrams for the corresponding fundamental 
frequencies. To extract the plots of Fig. 3, the value of α is 
assumed to be 0.5, and no use made of Eq. (16). According 
to the figure, the proposed eLSCF method is very successful 
in detection of target modal frequencies. It is worthy to note 
that the stabilization of diagrams starts even with a very low 

system order which shows the computational efficiency of 
the method. 
 

3.3 Application of approximate mode shapes 
 

As in the case of real structures (building, bridge, dam, 

etc.) the exact mode shape corresponding to the target 

fundamental frequency is not usually available, it is 

important to evaluate efficiency of the proposed method 

where the approximate mode shape vectors are being used. 

 

3.3.1 Detection of modal frequencies 
Fig. 4 displays results of eLSCF using the approximate 

mode shapes for the reference model. Graphs are obtained 

using Eq. (16) and assuming α=1.0. As it can be seen in the 

figure, the enhanced method is capable of detecting modal 

frequencies even if the input mode shape vector is 

approximate. However, it should be noted that when the 

similarity between the assumed and actual modal vectors is 

very low, the correlation index around the target frequency 

(calculated from Eq. (14)) may be less than the CI rejection 

level used in Eq. (16), resulting in a numerical error. 

As an example, assuming that the modal vector 

corresponding to the first fundamental frequency is equal to 

ϕ1={1, 0.92, 0.76, 0.55, 0.28}
T
 (i.e., inverse of the first 

mode shape) the value of CI will be less than 0.5 around the 

first structural pole. Usually, adoption of a lower value for 

parameter α or a lower CI rejection level can solve this 

problem (in the case of above example the first pole will 

stabilize using α=0.45). However, this can cause detection 

of additional unwanted poles, too. 

 

 

Fig. 5 Effect of parameter, ε, on stabilization of the fourth 

mode  

 

 

Fig. 6 Stabilization of damping ratio for the second model 

in Table 1 

 

 

Another parameter that can affect efficiency of the 

proposed method is the parameter, ε, introduced in Eq. (17). 

This parameter will be used when the CI rejection level 

defined by Eq. (16) is being utilized. Fig. 5 shows effect of 

this parameter on stabilization of the fourth mode. Graphs 

are obtained using α=1.0 and approximate mode shape 

vector ϕ4={1, -1, -1, 1, -1}
T
. According to the figure, when 

the parameter, ε, is very close to zero the target frequency 

may not stabilize due to the numerical problems. However, 

as this parameter increases, the proposed method gives 

more clear stabilization diagrams. For the model studied in 

this paper, the smallest suitable value of this parameter is 

 

Fig. 4 Results of eLSCF using the approximate mode shapes for 5 story frame (α=1.0, using Eq. (16)) 
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Table 1 Comparison of exact and predicted damping ratios 

 

First Mode Second Mode 

Exact 
Predicted 

Exact 
Predicted 

mean cov mean cov 

Model 1 0.05 0.043 5% 0.02 0.018 21% 

Model 2 0.1 0.092 3.1% 0.06 0.057 10% 

 

 

found to be:           ̂      . Further evaluations 

revealed that, even better functionality may be achieved 

when this parameter has a random nature over the 

frequency line. 

 
3.3.2 Detection of mode shapes 
In addition to modal frequencies, the proposed method 

may also be used for detection of actual mode shape 

vectors. The quantities estimated using the approximate 

mode shape vectors of Fig. 4, are plotted in Fig. 3. The 

comparison between exact and estimated mode shapes 

shows a close accordance between these two quantities. 

Since the estimated mode shapes are more accurate 

compared to the initially assumed vectors, they may be used 

as new input to the proposed method to further improve the 

accuracy of the predictions.   

 
3.3.3 Detection of damping ratios 
The reference model with two different damping levels 

is used to evaluate the capability of proposed method in 

detection of modal damping. As reported by Rahman and 

Lau (2012) and also Schanke (2015), damping estimates 

from LSCF algorithm are not as reliable as frequency 

estimates and sometimes the errors can be significant. The 

same result was observed in the current study using Eq. (6) 

i.e., damping estimates were scattered. To get a better 

estimate of the damping ratios, the unknown parameters of 

the denominator polynomial are estimated directly from the 

Jacobian matrix [J] of Eq. (3) as a least squares problem. 

The detection is done using Eq. (16) and approximate mode 

shape vectors. Results for two first modes of both models 

are summarized in Table 1. Also, the stabilization diagram 

for the model with higher damping level is plotted in Fig. 6. 

As it can be seen in the table, the proposed method is 

 

 

successful in detection of correct damping ratio 

corresponding to the selected mode shape vector. However, 

damping values are underestimated for all cases. Also, it 

should be mentioned that the coefficient of variation for the 

second mode is higher than the first mode for both models. 

 

3.4 Detection of modal frequencies from noisy data 
 

The next step in evaluation of eLSCF method is to see 

its performance in the presence of noise signals. The noise 

signals required for this purpose is produced synthetically 

by addition of 1000 sinusoidal curves with a mean 

frequency equal to μf and standard deviation equal to σf. Fig. 

7 displays two examples of produced noises in time and 

frequency domains. The first plot contains a noise with a 

single average frequency and standard deviation (μf=10 Hz 

and σf=1 Hz), while the second signal include two peaks at 

two separate frequencies (μf1=5 Hz, μf2=10 Hz, σf1,2=1 Hz). 

Noise signals are added to the original records in time 

domain. 

In the first attempt, a noise signal with a single peak 

(μf=10 Hz and σf=1 Hz) and signal to noise ratio (SNR) of 

3.3, is added only to the first measurement channel 

(simulating electrical noise, malfunctioning sensor, 

operating mechanical devices, etc.). Fig. 8(a) displays auto-

power spectrum of channel 1 after addition of the noise 

signal. The stabilization diagram constructed by LSCF 

method is presented in Fig. 8(b). According to the figure, 

the added noise appears as a pole in stabilization diagram 

making it difficult to distinguish between structural and 

nonstructural poles. However, as it can be seen in Fig. 8(c), 

the proposed eLSCF method is capable of detecting 

fundamental frequency for each vibration mode even in the 

presence of the noise signal and adoption of approximate 

mode shapes (α=1.0, using Eq. (16)). 

The second case includes a separate noise signal in each 

measurement channel having two peaks at μf1=5 Hz and 

μf2=25 Hz (σf1,2=1 Hz) and SNR equal to 3.3. The auto-

power spectrum of the measurement channels after addition 

of noise is presented in Fig. 9(a). The stabilization diagram 

corresponding to these noisy signals is calculated using 

LSCF method and presented in Fig. 9(b). Same as the  

 

Fig. 7 Sample noise signals; (a) noise with μf=10 Hz and σf=1 Hz; (b) noise with μf1=5 Hz, μf2=10 Hz, σf1,2=1 Hz 
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previous case, additional poles appear at frequencies 

corresponding to the peaks of the noise signal. Fig. 9(c) 

shows results of eLSCF method using the approximate 

mode shapes (α=1.0, using Eq. (16)). According to the 

figure, the proposed method has a good capability in 

detection of modal frequencies by neglecting unwanted 

modes and noise signals. 

 

3.5 Removing noise from original signal 
 

As mentioned before, the proposed method may be 

 

 

 

utilized to remove noise signals from recorded data by 

adopting a negative value for the sensitivity exponent, α. In 

this case, the CI values calculated from Eq. (14) will vary 

from 1.0 (for most correlation) to infinity (for least 

correlation). Accordingly, Eq. (16) should be modified as it 

follows 
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In above equation, different values may be used as CI  

 

Fig. 8 Noise at channel 1 (μf=10 Hz and σf=1 Hz); (a) Auto-power spectrum of channel 1 after addition of noise; (b) 

Stabilization of natural frequencies from LSCF method; (c) Results of eLSCF method 

 

Fig. 9 Noise at all channels (μf1=5 Hz, μf2=25 Hz, σf1,2=1 Hz); (a) Auto-power spectra of measurement channels after 

addition of noise; (b) Stabilization of natural frequencies 
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rejection level. As the recorded signals may contain 

different types of noises, techniques for removing these 

contaminations are described in the following sub-sections. 

 
3.5.1 Similar noises at recording channels 
For recordings with similar noises at some channels, the 

pre-assumed modal vector should contain zeros at elements 

corresponding to non-noisy channels and ones at cells 

corresponding to noisy streams. Calculation of Ф vector 

should be done using Eq. (13) and CI should be obtained 

from Eq. (14) and Eq. (18). Fig. 10 displays two examples 

of data sets contaminated using a noise with μf=25 Hz, σf=1 

Hz and SNR≈3.3. In the first set, only 2
nd

 and 3
rd

 channels 

are contaminated while in the second set all channels 

include the noise signal. For the data set containing noise at 

 

 

2
nd

 & 3
rd

 channels, noise cleaning process is conducted 

using ϕ={0,1,1,0,0}
T
. The resultant Ф vector is displayed in 

the matrix form in Fig. 10(a) from which it can be seen that, 

in addition to diagonal elements (auto-spectral), the cells 

corresponding to cross-spectral density of 2
nd

 & 3
rd

 

channels are filled with ones meaning that the noise signals 

in 2
nd

 & 3
rd

 channels are correlated. For second data set 

(noise at all sensors), the appropriate noise removing vector 

will be in the form: ϕ={1,1,1,1,1}
T
. 

Comparing stability diagrams corresponding to LSCF 

and eLSCF methods, it can be seen that the proposed 

method is very efficient in detection of structural poles by 

rejecting the noise contamination. According to the left 

graphs (LSCF method), addition of noise to the recorded 

signals not only cause detection of an additional pole 

 

Fig. 10 Similar noises at (μf=25 Hz and σf=1 Hz); (a) 2
nd

 & 3
rd

 channels; (b) all channels 

 

 

Fig. 11 Non-similar noise at recording channels; (a) noise at first sensor (μf=25 Hz and σf=1 Hz); (b) noise at all sensors (ch 

1: μf=5 Hz; ch 2: μf=10 Hz; ch 3: μf=15 Hz; ch 4: μf=20 Hz; ch 5: μf=25 Hz; and σf=1 Hz) 
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around 25 Hz, but also it diverts the pole corresponding to 

the 5
th

 vibration mode. Meanwhile the plots corresponding 

to eLSCF method show stabilization of all structural poles 

without detection of any additional spurious pole. 

 

3.5.2 Non-similar noises with different dominant 
frequencies 

The noise contaminations of each sensor may originate 

from different sources resulting in non-similar noises with 

different dominant frequencies at recording channels. To 

study this case, let‟s consider the addition of a non-white 

noise only at one channel. 

Fig. 11(a) displays the case in which the first channel 

contains a noise signal with μf=25 Hz, σf=1 Hz and 

SNR≈3.3. According to the previous sub-section, the 

appropriate vector for removing noise signal from this data 

set will be of the form ϕ={1,0,0,0,0}
T
. As shown in the 

figure, the additional pole at 25 Hz that is reported by LSCF 

is removed using eLSCF and assumed noise removing 

vector. For data sets with other single noisy channels the 

similar noise removing vectors may be used (i.e., 
ϕ={0,1,0,0,0}

T
 for 2

nd
 channel, ϕ={0,0,1,0,0}

T
 for 3

rd
 

channel, etc.). However, for the case in which multiple 

channels include non-similar noises with different dominant 

frequencies, the vector described in the previous sub-section 

will not work anymore. As an example, if the channels 3 

and 4 contain non-similar noises, the vector ϕ={0,0,1,1,0}
T
 

will not be the correct selection, because the adoption of 

this vector means that the noise signals in 3
rd

 and 4
th

 

channels have simultaneous auto-spectral peaks and are 

correlated to each other. Instead, this case can be treated as 

two single noisy channels with separate modal vectors, 

ϕ1={0,0,1,0,0}
T
 and, ϕ2={0,0,0,1,0}

T
. 

To remove noise signals from both channels, the CI 

values calculated for individual noise removing vectors 

(from Eq. (18)) should be multiplied to each other as 

follows 





j

i

fiftot CICI
1

)()(   (19) 

 

 

where, ∏, is the product operator. Generally, for “j” number 
of recording channels containing non-similar noises with 
different dominant frequencies, the CI should be calculated 
“j” times using modal vectors corresponding to each 
individual channel. The total CI at each frequency will be 
computed from above equation. 

Fig. 11(b) shows the application of this technique to 

remove the noise from a data set with non-similar noise at 

all recording channels (ch 1: μf=5 Hz; ch 2: μf=10 Hz; ch 3: 

μf=15 Hz; ch 4: μf=20 Hz; ch 5: μf=25 Hz; and σf=1 Hz). As 

it can be seen in the left graph, using traditional LSCF 

method five additional poles appear around the noise 

frequencies. However, the right graph shows that the 

proposed method is able to refine the polluted data set using 

the noise removing vectors presented in the figure. It is 

worth mentioning that when using negative, α, in Eq. (14), 

adoption of an exponent closer to zero makes the proposed 

method more efficient in removing noise signals. But care 

should be taken since if this value is selected very close to 

zero, it may cause deletion of some structural poles, too. 

 

3.5.3 Uncorrelated noises with similar dominant 
frequency 

Another case that can be encountered in OMA tests is 

the existence of uncorrelated noises with similar dominant 

frequency in different recording streams. As in this case, the 

noise signals existing in different channels are uncorrelated, 

it is not possible to use a single noise removing vector for 

all channels (as in sec. ‎3.5.1). Again, for each individual 

channel a separate modal vector should be considered, same 

as the previous sub-section. However, as in this case noisy 

channels will have simultaneous auto-spectral peaks, the CI 

for these noise removing vectors should not be calculated 

individually. Instead, the individual modal vectors 

calculated from Eq. (13) should be added up together prior 

to the calculation of CI 





j

i

itot

1

 (20) 

Once the total Φ vector is known, CI will be calculated  

 

 

Fig. 12 Uncorrelated noises with μf=25 Hz and σf=1 Hz; (a) noise at 2
nd

 & 3
rd

 channels; (b) noise at all channels 
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using Eq. (14), and Eq. (18). Application of this procedure 

on two noisy data sets is illustrated in Fig. 12. The first set 

contains two different noises with μf=25 Hz, σf=1 Hz and 

SNR≈3.3 at 2
nd

 & 3
rd

 channels (Fig. 12(a)). The next set 

contains five different noises with same μf, σf and SNR at all 

recording channels (Fig. 12(b)). Each figure includes the 

resultant Ф vector in the matrix form according to which, it 

can be seen that only diagonal elements are filled with ones 

meaning that the noisy channels have simultaneous auto-

spectral peaks. As the noise signals are uncorrelated, the 

cells corresponding to cross-spectral density (non-diagonal 

cells) are filled with zeros. Comparing results obtained from 

LSCF and eLSCF methods, it can be seen that the 

additional pole corresponding to the noise signal is omitted 

in the stability diagram of proposed method. 

 

3.5.4 General case 
In real applications, the recorded data may contain a 

mixture of above-mentioned noise types. As an example, a 
data set may include similar noises at all channels peaking 
at a certain frequency; meanwhile containing non-similar 

noises at some data lines peaking at other frequencies. 
Moreover, a data set may include two or more noises from 
one type (e.g., non-similar noises at 1

st
 and 2

nd
 channels 

peaking at f1 plus non-similar noises at 2
nd

, 3
rd

 and 4
th

 
channels peaking at f2). For a data set including a mixture of 
noise types discussed in the former sub-sections, each noise 

type should be considered separately. Once the CI for each 
noise type is determined (from Eq. (18)), the total CI for all 
noises may be calculated using Eq. (19). By means of this 
CI, one can remove all considered noises from recorded 
data and obtain real structural poles.  

 

 
4. Conclusions 

 

The presence of measurement and other noises in 

structural output recordings requires refinement of recorded 

data to minimize their effects and eliminate them during 

detection of actual structural modes. This paper presents an 

enhanced version of LSCF method for determination of 

vibration properties from noisy data. The proposed method 

makes the use of pre-defined approximate mode shape 

vectors to refine the PSD matrix. For this purpose, a vector 

containing the correlation between predicted and measured 

C-PSD matrices (namely CI) was used to refine the 

measured data and eliminate effect of unwanted noises. A 

five story shear frame was adopted as the reference model 

to evaluate performance of eLSCF method in detection of 

modal properties using exact and approximate mode shapes. 

Based on the results, the enhanced method is capable of 

detecting modal frequencies even if the input mode shape 

vector is approximate. Also, it was shown that using eLSCF, 

the stabilization of diagrams starts even with a very low 

system order which shows the computational efficiency of 

the method. The natural frequencies found for the selected 

mode shape vectors were pretty accurate and close to the 

exact values. However, the damping ratios were harder to 

pick and estimates were not that good. The accuracy of 

eLSCF in detection of modal frequencies from noisy data 

was also examined. Evaluations showed that the proposed 

method is capable of detecting fundamental frequencies 

associated with the selected mode shape vector even in the 

presence of the noise signal. Also, the proposed method was 

utilized to remove noise signals from recorded data and 

noise removing techniques were discussed. Comparing 

results of LSCF and eLSCF methods, it was shown that the 

proposed method is very efficient in detection of structural 

poles by rejecting the noise contamination. 
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