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1. Introduction 
 

In recent years, the need to improve the seismic 

performance of buildings has led to the development of 

innovative systems such as rocking wall-moment frame 

(RWMF) combinations (Makris 2014). The rigid rocking 

wall (RRW) is restrained by the moment frame (MF) and 

allowed to pivot about its base. The function of the wall is 

to provide additional damping, impose uniform drift along 

the height of the frame and reduce drift concentration (Qu et 

al. 2014). 

The dynamic responses of a rocking block have been 

studied extensively (Housner 1963, Aslam et al. 1980, 

Makris et al. 2000). The idea of combining rocking walls 

and moment frames as enhanced earthquake resisting 

systems was introduced by Ajrab (2000). The actual 

implementation of an RWMF with supplementary energy 

dissipation devices was reported in recent years (Ajrab et al. 

2014, Wada et al. 2011, Grigorian et al. 2015, Qu et al. 

2014, Loo et al. 2015). Qu et al. (2014) adopted a pinned 

rocking wall with dampers for controlling the deformation 

pattern of an 11-story ductile frame structure. Nevertheless, 

Makris (2017) pointed out that the concept of the pinned 

wall should be used with caution since the pinned wall 

amplifies the response for most of the range of the 

spectrum. 
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The majority of existing literature emphasize on the 

inelastic behavior and capacity design of RWMF systems, 

without analyzing its dynamic response theoretically. Thus, 

in this paper, the dynamic perspective of a practical RWMF 

system with a post-tension cable under near-fault ground 

excitation is investigated, the nonlinear equations of 

motions are derived, and the influence of a rocking wall on 

the responses of the coupled system is examined. 

 

 
2. Dynamics of a RWMF system 
 

2.1 Analytical model 
 

A moment resisting frame coupled with a rocking wall 

can be categorized as a SDOF system, with the first-mode 

dominating its dynamic response. Accordingly, the MF is 

also idealized as a SDOF with a lumped mass ms, lumped 

stiffness ks and a viscous damping cs, as illustrated in Fig. 1. 

The RRW can oscillate around the centers of rotation O and 

O′. The wall has a size of 2 2R h b  , slenderness  

α=atan(b/h), mass mw and moment of inertia about the 

pivoting points O and O’, 2

0

4

3
wI m R . The weight of the 

rocking wall is lumped at the centroid of the wall. The 

coefficient of friction is large enough so that sliding does 

not occur between the pivot point and the wall base. 

The RRW is placed on top of a rigid foundation. The 

wall is pin-jointed to the frame at roof level with an arm 

length of L. A post-tension cable is placed along the vertical 

line passing through the centroid of the wall. The cable is 

unbonded to the surrounding wall material so that it can  
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Fig. 1 A rocking wall-moment frame 

 

 
(a) Positive rotation 

 
(b) Negative rotation 

Fig. 2 A RWMF system under ground motion 

 

 

deform freely. 

Under a positive horizontal ground acceleration üg (the 

ground is accelerating to the right), the MF will sway to the 

left and the RRW will initially rock to the left (rotation 

about point O’) with a negative rotation, θ<0, as shown in 

Fig. 2(b), and it will eventually assume a positive rotation 

with the MF swaying to right, as shown in Fig. 2(a). 

The post-tension force can be represented by two 

dimensionless parameters, η0 and ηα. If P(θ=0)=η0mwg and 

P(θ=α)=ηαmwg, then 

   0 0wP m g 


   



 
   

   
(1) 

During rocking motion, the center of mass of the RRW 

uplifts by vw, the left top corner uplifts by vt, and vt=2vw. 

The horizontal translation of the centroid of the wall is uw, 

the horizontal displacement of the left top corner is ut, and 

ut=2uw. 

Assuming that the roof diaphragm is rigid and the 

motion of the MF is only a translation. The initially 

horizontal coupling link rotates by an angle ψ, which is 

related to the horizontal displacement of the MF mass, us, 

via the expression 

cos 1 t su u

L



 

     
sin tv

L
 

 
(2) 

Considering cosψ2 + sinψ2=1, the following expression 

holds 

2

1 1s t tu u v

L L L

 
     

   

(3) 

Assuming that the coupling arm is long enough, 

(ut/L)2<<1, then us=ut=2uw.  

The MF mass displacement us and its derivatives with 

respect to time for θ(t)<0 and θ(t)>0 are given by 

 2 sin sinsu R          
(4) 

 2 cossu R    
 

(5) 

   22 cos sinsu R               
(6) 

whenever there is a double sign (say ±) the top sign is for 

θ>0 and the bottom sign is for θ<0. 

Case 1: θ>0 

The balance of angular moment with respect to O leads 

to Eq. (7) 
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Substituting Eqs. (1), (4) to (6) into Eq. (7), defining 

/s wm m   the mass ratio, /s s sk m   the undamped 

frequency and 
2

s

s

s s

c

m



  the viscous damping ratio of 

the SDOF MF, and after suitable mathematical 

manipulations, we obtain 
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(8) 

Case 2: 0   

For negative rotations, the balance of angular moment 

with respect to O′ leads to Eq. (9) 
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The equation of motion of the coupled system for θ<0 is 
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(10) 

When the frame is absent (γ=ωs=ξs=0), Eqs. (8) and (10) 

reduce to the equation of motion of a rocking block 

restrained with an unbonded post-tensioning cable (Barthe 

2012) 
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Furthermore, when the post-tensioning cable is absent, 

P(θ)=0, Eqs. (8) and (10) reduce to the equation of motion 

of the free-standing rocking block (Zhang et al. 2000) 
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The equations of motion, Eqs. (8) and (10), are valid for 

nonzero values of the rocking rotation (θ≠0). 

 

2.2 State-space formulation 

 

The dynamic response of the RWMF system subjected 

to ground motion excitation is computed numerically via a 

state-space formulation which can accommodate the non-

linear nature of the problem 
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and the time-derivative vector, y(t), is 
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Eqs. (8) and (10) can be expressed in the compact form 
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The differential equations are solved numerically in 

MATLAB adopting the ODE45 solver, which uses the 4th-

5th order Runge-Kutta integration technique.  

Energy dissipation occurs during impact and can be 

calculated by the ratio of kinetic energy before and after the 

impact,  
2

2 1/r   . Damping effects due to wall rocking 

are included in numerical analysis by considering the 

restitution coefficient. At each impact (θ=0), the velocity at 

the previous step is automatically decreased by a factor 

equal to the restitution coefficient 
2 1/r   , and the 

boundary condition y(te) is updated accordingly. The 

reduction of the velocity numerically occurs by means of an 

event-identification function, which stops the integration 

when the condition θ=0 has been attained at time te. 

Experimental tests have been performed to identify the 

values of the restitution coefficients for specimens of 

various material and slenderness ratios (Sorrentino et al. 

2011, Costa 2012), which depends on many parameters 

including the interface material, plastic deformations at the 

pivot points, and imperfections of the contact surface 

(Prieto et al. 2004). By recognizing the difficulty in 

correlating with the maximum rotation before impact or 

with the theoretical value, an average restitution coefficient 

of 0.9 is assumed in the following analyses. 

 

 
3. Finite element validation 

 

A three-dimensional Finite Element (FE) model is 

developed to validate the proposed model. The frame is  
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Table 1 Dynamic parameters of the RWMF system 

b (m) h (m)  γ ks (N/m) ξs mw (N/g) KP (N/m) 

0.5 2 0.2450 1800 7.2E+008 0.05 1600 143256 

 

 

Fig. 3 Vertical displacement (m) of the FE model for a 

RWMF system 

 

 

idealized as a SDOF mass-spring-dashpot model. A MASS 

element is attached to the parallel Spring2 and Dashpot2 

elements, and the spring and dashpot are connected to the 

foundation with a dimension of 2.50.50.2 m. The 

connection between the frame and the wall is modeled 

using a connector element CONN3D2 which provides a 

pinned rigid link. 

Only linear elastic material model is employed. A 

Poisson's ratio of 0.2 is adopted for all materials. An elastic 

modulus value of 30 GPa is used for the concrete wall, 

while a value of 300 GPa is assumed for the rigid 

foundation. 

The connection between the wall and the foundation is 

modeled using a “surface to surface contact” interaction, 

with tangential behavior type “penalty” and normal 

behavior type “hard contact” under compressive stress. A 

friction coefficient of 0.35 is taken to simulate the 

tangential behavior. 

Truss elements are used to model the cable, which has a 

pinned connection to the ground and is rigidly connected to 

the top of the wall by means of the “beam” type multi-point 

constrain.  

A mesh composed of 8-node linear brick elements and 

reduced integration is used both for the wall and the 

foundation. The maximum element size is 50 mm. The U1, 

U2 and UR3 degrees of freedom of all the wall nodes are 

constrained to the rigid body motion of the centroid of the 

wall by a kinematic coupling definition. 

For the model being studied, the dynamic parameters are 

presented in Table 1. 

Three loading steps are created: in the first load step the 

boundary conditions are set and the weight of the wall is 

applied at its centroid; in the second load step the  

 
Time (s) 

(a) 

 
Time (s) 

(b) 

 
Time (s) 

(c) 

Fig. 4 Comparison of the wall left corner uplift vwl (a), wall 

right corner uplift vwr and angular velocity   (b), 

displacement us (c) response of a RWMF (Ts=0.4 s, γ=1800, 

ξs=0.05, tan α=0.5/2) from the proposed model and FE 

analysis 

 

 

prestressing force is applied to the cable; in the third load 

step the nonlinear dynamic analysis is performed, and the 

model is subjected to a four-cycle sinusoidal pulse 

excitation with an amplitude of 0.4 g, angular frequency of 

ωp=2π and duration of 6 s.  

Fig. 3 shows the vertical deformation of the FE model 

of the RWMF system in meter. 

The response obtained by numerical solution of the 

proposed RWMF model, in terms of the left corner uplift 

uwl, right corner uplift uwr, angular velocity   of the RRW,  
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and MF mass displacement us, are compared to that 

obtained from FE analysis under the same excitation, as 

shown in Fig. 4. The matches between the dynamic 

response produced by the FE and the proposed model are 

excellent. Eq. (15) can be considered as a global 

approximation of the time history of the RWMF system.  

 

 
4. Response to near-fault trigonometric pulse 
excitation 

 

Many recorded strong near-fault ground motions contain 

one or more relatively long-duration coherent pulses (Zhang 

et al. 2000). A simple pulse defined by few parameters (i.e., 

 

 

 
pulse type, pulse period Tp , and pulse intensity (ag,max) can 
adequately describe the impulsive character of near-fault 
ground motions both qualitatively and quantitatively. 

Forward (non-reversing) ground displacements can be 
described with a one-sine pulse (Makris 2015) 

   sin ,0
2

p

g p p p

v
u T      

 
(16) 

where τ=t−t0, and t0 is the time in the record when the 
trigonometric pulse initiates. 

Some near-source ground motions result in a forward-
and-back pulse, which can be captured with a one-cosine 
pulse 

   cos ,0g p p p pu v T      
 

(17) 
 

 
Time (s) 

 
Time (s) 

(a) One-sine pulse (b) One-cosine pulse 

Fig. 5 Response of RWMF (Ts=0.4 s, γ=1800, ξs=0.05, tanα=0.5/2) and corresponding MF structure subjected to a one-sine 

(a) and a one-cosine (b) pulse excitation 

 
Time (s) 

 
Time (s) 

(a) One-sine pulse (b) One-cosine pulse 

Fig. 6 Response of RWMF (Ts=1 s, γ=1800, ξs=0.05, tanα=0.5/2) and corresponding MF structure subjected to a one-sine (a) 

and a one-cosine (b) pulse excitation 
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In this section, the responses of a RWMF system 

subjected to a one-sine pulse or a one-cosine pulse 

excitation with amplitude of 0.4 g, angular frequency of 

ωp=2π and duration of 1 s are investigated. 

The second rows in Fig. 5 and Fig. 6 show the 

normalized rotation θ/α, angular velocity   of the wall of 

a RWMF system (γ=1800, ξs=0.05, tan α =0.5/2). For very 

stiff frame (Ts=0.4 s in Fig. 5), the maximum rotation and 

angular velocity caused by the sine pulse (left) are less than 

the maximum rotation under the cosine pulse excitation 

(right). While for a frame with mild stiffness (Ts=1 s in Fig. 

6), the differences between the two maximum rotation and 

 

 

 

 

the two maximum angular velocities caused by two types of 

pulses are very small. 

The last rows in Fig. 5 and Fig. 6 are the comparison of 

displacement us of a RWMF system with that of the same 

MF structure without rocking wall. The rocking wall 

demonstrates good energy dissipation ability under both 

types of pulse excitation, without suppressing the maximum 

displacement usmax. For very stiff frame (Ts=0.4 s), usmax 

caused by the sine pulse is less than that caused by the 

cosine pulse excitation. While for a frame with mild 

stiffness (Ts=1 s), usmax caused by the sine pulse is larger 

than that caused by the cosine pulse. 

 
Time (s) 

 
Time (s) 

(a) γ=5 (b) γ=1800 

Fig. 7 Wall rotation of RWMF (ξs=0.05, tanα=0.5/2) with different frame period under a one-cosine pulse excitation 

 
Time (s) 

 
Time (s) 

(a) Ts=0.4 s (b) Ts=1 s 

Fig. 8 Wall rotation of RWMF (ξs=0.05, tanα=0.5/2) with different mass ratio under a one-cosine pulse excitation 

 
Time (s) 

 
Time (s) 

(a)Ts=0.4 s (b) Ts=1 s 

Fig. 9 Rotation of the RRW of a RWMF (γ=5, ξs=0.05, h=2 m) with different rocking wall width under a one-cosine pulse 

excitation 
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Time (s) 

Fig. 11 Spring force of RWMF (ξs=0.05, tanα=0.5/2) 

subjected to a one-cosine pulse excitation for different 

frame period, Ts, and different mass ratio 

 

 

Another major difference between the very stiff and the 

mild stiff frame cases is the rocking wall rotation. As 

observed in Fig. 7, under the one-cosine pulse excitation, a 

wall coupled with a frame of mild stiffness (Ts=1 s) 

oscillates less frequently but more strongly than that of a 

wall coupled with stiff frame (Ts=0.4 s). These oscillations 

can be so strong that they result in large frame 

displacement, as indicated in the last row of Fig. 6 (b). 

Fig. 8 shows the comparison between rocking rotations 

of RWMF systems (ξs=0.05, tanα=0.5/2) with different 

mass ratio under the one-cosine pulse excitation. For both 

the very stiff frame (Ts=0.4 s) and the mild flexible frame 

(Ts=1 s) cases, the mass ratio has marginal influence on the 

rocking rotation of the wall. 
The time histories of the rocking response of a 4 m tall 

RRW with b= 0.5 m and 1 m, respectively, to a one-cosine 

pulse excitation are plotted in Fig. 9 and Fig. 10.  

When the mass ration is small such as γ=5, for a RWMF 

with a frame of mild stiffness (Ts=1 s), higher wall 

slenderness leads to larger rotation (Fig. 9(b)). Damping 

because of impact is strongly influenced by the slenderness: 

the squatter the wall is, the more energy it loses in every 

impact. For a RWMF with very stiff frame (Ts=0.4 s), the 

rotation responses of RWW are not sensitive to the wall 

slenderness parameter (Fig. 9(a)). 

 

 
(a) One-sine pulse 

 
(b) One-cosine pulse 

Fig. 12 Displacement spectra of a RWMF system (ξs=0.05, 

tanα=0.5/2) for five values mass ratio γ=5, 10, 100, 1000, 

2000 when subjected to a one-sine (a) and a one-cosine (b) 

pulse excitation 

 

 

For large mass ratio γ=1800, the MF dominates the 

overall response the RWMF system, and the wall rotation 

has no dependence on the slenderness of the wall for both 

mild flexible frame (Ts=1 s) and very stiff frame  (Ts=0.4 s) 

cases, as shown in Fig. 10. 

Fig. 11 shows the maximum cable force increment of a 

RWMF (ξs=0.05, tanα=0.5/2) with a frame of different 

period Ts., and different mass ratio γ, when subjected to a 

one-cosine pulse excitation. The cable force increases as the 

frame period increases and provides stability against the 

overturning of the rocking wall. 
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Fig. 10 Rotation of the RRW for a RWMF (γ=1800, ξs=0.05, h=2 m) subjected to a one-cosine pulse excitation with different 

wall width 
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5. Displacement spectra of a RWMF system  

 

The equation of motions (15) is used to generate 

earthquake response spectra.  

Fig. 12 displays the displacement spectra of a RWMF 

system (ξs=0.05, tanα=0.5/2 for values of mass ratio γ =5, 

10, 100, 1000, 2000, when subjected to a one-sine (left) and 

a one-cosine (right) pulse excitation. 

Fig. 12 reveals that, the RWMF subjected to a one-

cosine pulse excitation exhibits lower maximum 

displacement responses, usmax, than that of a RWMF 

subjected to a one-sine pulse excitation. For values of Ts≤1 

s, the mass ratio appears to have marginal effect on usmax. 

For values of Ts>1.4 s, the usmax response of a RWMF with 

large mass ratio is larger than that of a RWMF with small 

mass ratio under the one-sine pulse excitation, while the 

difference in mass ratio has negligible effect on the usmax 

response of the RWMF under the one-cosine pulse 

excitation. 

Fig. 13 plots the displacement spectra of an RWMF for 

five values of mass ratio γ=5, 10, 100, 2000, 20000, and 

two values of wall slenderness, tanα=0.5/2 and tanα=1/2, 

when excited by the near fault north-south component of 

ground motion recorded at El Centro Terminal Substation 

during the 18 May 1940 Imperial Valley, California 

earthquake, as portrayed in Fig. 13 (c). 

When observing Fig. 13, one can conclude that only the 

relative heavier wall, γ=5 or 10, could suppresses the usmax 

response of very flexible frame (Ts>1.5 s). For frames with 

mild stiffness (Ts=0.6 s to 1.5 s), the presence of the rocking 

wall amplifies usmax for the most of the spectrum with the 

 

 

heavier wall (γ=5) being most detrimental. For very stiff 

frames (Ts<0.6 s), the mass ratio difference has no visible 

influence on usmax. 

Clearly, in some cases (γ2000, and Ts>1.5 s), the 

response of the flexible frame dominates the overall 

response the RWMF system, and the rotational inertia effect 

of the rocking wall is negligible. Nevertheless, in some 

cases (γ10 and Ts=0.6 s to 1.4 s), the dynamic of the 

rocking wall is not negligible and it may be unfavorable 

because it may drive the structure. The utility of any 

rocking wall, as part of a building structure, depends upon 

the relative stiffness of the frame and the rocking wall. 

For small mass ratio γ=5 and very flexible frames 

(Ts>1.5 s), the maximum displacement response is more 

attenuated in the case of the RWMF system with a squatter 

wall, tanα=1/2, as shown in Fig. 13 (b). 

 

 

6. Conclusions 
 

This paper investigates the transient response of a post-

tensioned RWMF system. The full nonlinear equations of 

motions are developed. The model is validated through 

comparison of the predicted response of the combined 

system against that obtained from FE analysis when excited 

by near-fault trigonometric pulse and earthquake-induced 

ground acceleration. An extensive parametric analysis on 

the rotation, angular velocity of the rocking wall and the 

frame displacement leads to the following conclusions: 

The RWMF remains a SDOF system throughout the 

loading history of the structure. The response of the coupled 

 
Time (s) 

 
Time (s) 

(a) tanα=0.5/2 (b) tanα=1/2 

 
Time (s) 

(c) Acceleration time history of the N-S Component of 1940 EL Centro earthquake 

Fig. 13 Displacement spectra of a RWMF system ( ξs=0.05, h = 2 m) for five values of mass ratio γ =5, 10, 100, 2000, 20000 

and two values of wall slenderness, tanα=0.5/2 (a) and tanα=1/2 (b) when subjected to the North-South Component of 1940 

EL Centro earthquake 
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rocking wall-moment frame system depends on its mass 

ratio, frame stiffness, wall slenderness, together with the 

energy loss during impacts. 

The forward pulses and forward-and-back pulses with 

the same amplitude, angular frequency and duration result 

in different dynamic response of a RWMF system. The 

trigonometric pulses adopted in this paper illustrate the 

effects of different types of ground acceleration with 

excellent clarity. 
The rocking wall demonstrates good damping ability for 

a RWMF system. A restitution coefficient of 0.9 is applied 

in this paper resorting to experimental information. 

The presence of the wall suppresses the maximum 

displacement response in particular for very flexible frame 

coupled with a heavier wall. Nevertheless, this effectiveness 

could vanish for a RWMF system with very stiff frame or 

affect the response in negative way, resulting in larger 

displacement for a RWMF system with frames of mild 

stiffness. 

The post-tension cable allows separation to occur 

between the wall-foundation interfaces, and provides 

restoring forces for the rocking wall against overturning. 

The cable is most effective for a RWMF system with very 

flexible frame. 

For a multistory MF coupled with a strong rocking wall, 

the RWMF system can also be categorized as a SDOF 

system, since the first mode of vibrations is enforced by 

allowing the RRW to suppress all higher modes. The 

concept of base shear effective modal mass and modal 

height might be adopted in the equivalent SDOF model, as 

suggested by Chopra (2017). 
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