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1. Introduction 
 

Buildings incorporating the use of a transfer plate, or 

transfer girders, as a structural feature at the podium level 

of the building can be commonly found in metropolitan 

cities in regions of lower seismicity. A transfer structure has 

the function of redistributing gravitational loads where there 

is a discontinuity in the load path to accommodate a major 

change in the architectural layout of floor spaces in the 

building. It can be regarded as a major feature of vertical 

irregularity which is expected to compromise the ductility 

of the building in projected seismic conditions (ASCE 

2010, CEN 2005). Even then many such buildings have 

been designed and built in regions of lower seismicity.  

Research has been undertaken to investigate the 

potential seismic performance of buildings featuring the use 

of a transfer structure at the podium level by the use of 

shaking table testing of scaled down models (Li et al. 2006, 

Lee and Hwang 2015). Analytical investigations have also 

been undertaken to reveal a significant increase in the 

ductility demand of the building as a result of this type of 

vertical irregularity (Mwafy and Khalifa 2017). Studies 

have also gained insights into the potential adverse effects 

of the flexural stiffness of the transfer structure on the 

seismic behaviour of the building both locally (in the 

vicinity of the location of the transfer structure) and 

globally on the building as a whole (Su et al. 2002, 2008, 

2009, Zhitao 2000, Qian and Wang 2006). A significant 

anomalous increase in the shear force on the tower wall 

above the transfer floor level (TFL) has been confirmed by 
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experimental investigations as reported in Li et al. (2005, 

2008) and Kuang and Zhang (2003). 

In a literature review publication by Su et al. (2011) the 

phenomenon of displacement controlled behaviour which 

puts the “cap” on the displacement demand behaviour of a 

flexible structure was introduced. An analysis methodology 

which incorporates considerations of the displacement 

demand behaviour of the building in comparison with its 

displacement capacity (Priestley et al. 2007, Priestley 1997, 

Tsang et al. 2009) would result in robust predictions of the 

seismic performance behaviour of the building which has 

incorporated the use of a transfer structure. 

The next section presents examples of the anomalous 

increase in the shear force demands on the tower walls 

which are supported by a transfer structure. The shear force 

increase is particularly pronounced above the podium level 

where the transfer structure is positioned. In subsequent 

sections of the paper a simplified method will be developed 

to quantify the adverse effects. In the final section of the 

chapter the introduced method of prediction is illustrated by 

the use of a worked example. 

                 

 

2. Shear force anomalies in tower walls above the 
TFL 
 

Earlier investigations on buildings featuring a transfer 

plate have highlighted the onset of high shear 

concentrations occurring in the tower walls above the 

transfer floor level (TFL) as the building is subjected to 

lateral loads (Su et al. 2002, Tang and Su 2014). These 

shear stress concentrations can be resulted mainly from out-

of-plane bending of the transfer structure supporting the 

tower walls. Differential rotation of the transfer structure 

along its length results in displacement incompatibility in 

between adjacent tower walls. The incompatibility induces 

high in-plane forces in elements (link beams and slabs)  
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connecting the tower walls thereby resulting in a significant 

increase in the shear force above the TFL. Similar shear 

force distribution anomalies have been reported for tower 

walls featuring setbacks (Yacoubian et al. 2017a).  

 The 2D model of an example building (Fig. 1) was 

employed to illustrate such shear force anomalies. The 

numerical FE model (of the building) is constructed on 

program ETABS where 2D shell elements have been used 

for the modelling of the tower walls and the transfer plate. 

Elastic frame elements have been employed for the 

modelling of the stiff podium column and the floor slabs 

represented by their effective widths (refer to Yacoubian et 

al. 2017b for more details). There are three tower walls in 

the considered example building. Each of the tower walls is 

assigned a number (1-3). The exterior walls are no. 1 and 3 

whereas the wall in the middle is no. 2 (refer Fig. 2(a)). The 

displacement ratio (∆𝑟) is introduced herein as the ratio of 

the lateral displacement of wall no. 1 (𝛿1), or wall no. 3 

(𝛿3), divided by the respective displacement (𝛿𝑜) of a 

control model wherein the transfer plate was modelled as 

infinitely rigid when bending out-of-plane. The building 

models (control and actual) have been subjected to the same 

 

 

lateral loads with magnitudes given in Fig. 2(e). In the 

control model all three walls have identical deflection 

profile. The increase in the shear force demand on wall no. 

3 (which is paralleled by a reduction in the shear force 

demand on wall no. 1) was the result of incompatible 

displacements between the tower walls (∆𝑟≠ 1)  at the 

level immediately above the TFL (refer Fig. 2(b)). These 

displacement incompatibilities are the direct result of the 

out-of-plane deformation of the transfer plate as shown in 

Fig. 2(f).  

Strutting forces that are developed in the connecting 

elements in between adjacent tower walls is shown in Fig. 

2(c). Interestingly, the amount of increase in the shear force 

demand as described diminishes rapidly up the height of the 

building and is negligible at only two-to-three storeys above 

the TFL (refer Fig. 2(d)).  

 

 
3. In-plane strains between tower walls above TFL 
 

Strutting forces occurring in between adjacent tower 

walls can be resulted from differential wall  

 
Fig. 1 2D model of the building featuring a transfer plate 

 

   
(a) 2D planar 

model of the 

building 

(b) Displacement 

ratio 

(c) Strutting forces 

in the connecting 

slabs 

(d) Shear force 

distribution in 

the tower walls 

(e) Applied lateral 

load profile 

(f) Out-of-plane 

bending of the 

transfer plate 

Fig. 2 Displacement incompatibility between connected walls and the resulting strutting (compatibility) slab force and wall 

shear force distributions 
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Fig. 3 Introducing 𝐹𝑆𝑇𝑅𝑈𝑇 , 𝜀𝑆𝑇𝑅𝑈𝑇 and ∆𝜃𝑇𝑃 

 

 

Fig. 4 Angle of rotation at base of tower walls 

 

 

deflections together with in-plane compatibility restoring 

actions of the connecting slabs (Fig. 3). The magnitude of 

the strutting force developed in a connecting member (e.g. 

link beam and slab) is the product of the in-plane strains 

that are associated with the differential deflection of 

adjacent tower walls and the axial stiffness of the member. 

Thus, the expression to solve for the strutting force (FSTRUT) 

is shown by Eq. (1) 

FSTRUT = εSTRUT × ECAeff (1) 

where STRUT is the in-plane strain in between two adjacent 

tower walls above the TFL and effective slab area 

(𝐴𝑒𝑓𝑓)  is the product of the width of the column-strip and 

the gross thickness of the slab. The amount of in-plane 

strain (STRUT) is in turn dependent on differences in the 

angle of rotation of two adjacent tower walls at their base. 

Parameter TP (which is TP1-TP2 or TP2-TP3) is 

introduced herein as the parameter characterising 

the differential wall rotation (refer Fig. 4). Should wall nos. 

1 and 3 have identical dimension then the value of TP1- 

TP2 and TP2-TP3 are dependent on the positioning of the 

wall along the supporting span. Direct correlation between 

STRUT and TP as modelling parameters is confirmed by 

the comparison of the STRUT profiles for varying values of 

TP (Fig. 5). This correlation has also been confirmed for a 

building which is subjected to simulated earthquake ground 

accelerations. The time histories of the 𝐹𝑆𝑇𝑅𝑈𝑇 (hence strut) 

and TP obtained from the analysis (also performed on 

ETABS) of record no. 3 (Table A-1) are plotted in Fig. 6 on 

the same graph. Clearly the two quantities are directly 

correlated. 

 

Fig. 5 In-plane strains between walls and differential angle 

of rotation at their base ∆𝜃𝑇𝑃 = 𝜃𝑇𝑃1- 𝜃𝑇𝑃2 

 

 
4. Analytical modelling of the flexibility index  
 

In section 3, the strutting force of a link element 

connecting two adjacent tower walls has been shown to be 

correlated with the value of TP. To further illustrate these 

dependencies, more linear time history analyses have been 

performed on several building models with different 

transfer plate rigidities (thicknesses). The parameter 𝛼𝑟 is 

introduced as a measure to quantify the relative flexural 

stiffness of the transfer plate (EcI)TP to that of the tower wall 

(EcI)wall (Eq. (2)). For each simulation, the maximum 

strutting strains in the floor slabs (STRUT) are plotted (in Fig. 

7) against corresponding values of TP at the base of walls 

1 & 3. The correlation (STRUT-TP) is consistently linear as 

shown in Figs. 7(a)-(f). The slope of the correlation is 

defined herein as the Flexibility Index (FI). Importantly, this 

slope (or value of FI) is shown to be dependent on the value 

of 𝛼𝑟. Thus, the in-plane strain (STRUT) may be expressed as 

the product of FI and TP as shown by Eq. (3).  

αr =  √
(ECI)TP

(ECI)wall

 (2) 

εSTRUT = FI × ∆θTP (3) 

The combined effects of TP and 𝛼𝑟 on the magnitude 

of the strutting forces 𝐹𝑆𝑇𝑅𝑈𝑇 between two adjacent tower 

walls are well demonstrated in Fig. 7. It is shown further in 

Fig. 8 that higher values of FI (meaning higher strutting 

forces) can be developed in between very stiff tower walls 

in which case the value of 𝛼𝑟  is less than 0.4. On the other 

hand the magnitude of the strutting forces can be reduced 

by as much as 60% with relatively flexible tower walls in 

which case the value of 𝛼𝑟 is greater than one. 

In cases with multiple tower walls above the TFL 𝛼𝑟 is 

calculated based on the sectional properties of the most 

flexible wall in the assembly (maximum of three walls for 

interior bays and two walls for the exterior bays). Where a 

stiff continuous core shaft is present, 𝛼𝑟  is calculated 

based on the properties of the transferred tower wall 

connected to the core (verifications are presented in Section 

6). 

In the most conventional building set-out, the tower  
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Fig. 8 Correlation of Flexibility Index with αr 

 

 

structure caters residential apartments or office spaces that 

are supported by transferred structural walls typically 

spaced at 4 m-8 m intervals. Accordingly, the in-plane 

stiffness of the connecting slabs (defined as 𝐸𝑐  𝐴𝑒𝑓𝑓/

𝐿𝑠𝑙𝑎𝑏) varies across the different walls in a storey depending 

on the span length of the slab (𝐿𝑆𝑙𝑎𝑏). Intuitively this 

variation (in-plane stiffness) entails that the strutting forces 

 

 

Fig. 9 2D model of a building with tower walls spaced at 

different intervals 
 

 
Fig. 6 Time-histories of In-plane strutting forces between walls and differential angle of rotation at their base  ∆𝜃𝑇𝑃 = 𝜃𝑇𝑃1-

 𝜃𝑇𝑃2  
 

 

Fig. 7 Effects of 𝛼𝑟 on strutting forces in between tower walls (record nos. 3-9) 
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Fig. 10 Peak strutting strains vs. ∆𝜃𝑇𝑃 for the case study 

building 

 

Table 1 Sectional properties of the walls 

Wall 1 6000×600 𝛼𝑟 = 0.3 

Wall 2† 6000×300 𝛼𝑟 = 0.6 

Wall 3† 3600×300 𝛼𝑟 = 2.2 

Wall 4† 1500×300 𝛼𝑟 = 2.2 

Wall 5 1900×150  

† 
Wall sectional properties used for calculating the value of 𝛼𝑟 

 

 

in the slabs vary depending on their aspect ratio 

(slenderness). However, the extent of the in-plane slab 

strains (𝜀𝑆𝑇𝑅𝑈𝑇) has been found to be independent of the 

length of the slab’s clear span. This is clearly illustrated 

when plotting the peaks of 𝜀𝑆𝑇𝑅𝑈𝑇  along with the 

corresponding values of ∆𝜃𝑇𝑃 between walls 1|2 and 2|3 in 

the 2D case study building shown in Fig. 9. The 2D model 

of the building is similar to the building model examined 

earlier with the exception of the unequal span lengths 

between the transferred walls. 

It is illustrated in Figs. 10-11 that larger in-plane 

deformations (δ𝑠𝑙𝑎𝑏) are imposed on the longer slab by the 

tower walls in order that the magnitude of STRUT remains 

literally unchanged for a given value of TP and 𝛼𝑟 as 

inferred from Eq. (4). 

εSTRUT =
δ𝑠𝑙𝑎𝑏

Lslab 

=
FSTRUT

ECAeff

 (4) 

In summary the value of 𝐹𝑆𝑇𝑅𝑈𝑇 can be estimated using 

Eq. (5) which was derived by combining Eqs. (1)-(2).  

 𝐹𝑆𝑇𝑅𝑈𝑇 = 𝐹𝐼 × ∆𝜃𝑇𝑃 × 𝐸𝑐𝐴𝑒𝑓𝑓  (5) 

The robustness of the flexibility index which is defined 

diagrammatically in Fig. 8 is next examined for a tower 

structure comprising multiple connected structural walls. 

The building model shown in Fig. 12 is employed in linear 

time history analyses using records no.1-4 (see Table A-1 in 

Appendix A).  

The values of parameter 𝛼𝑟 for successive walls have 

been computed based on the sectional properties of the 

flexible wall in the assembly and were found to be 0.3, 0.6, 

2.2 and 2.2 for slabs connecting walls 1|2, 2|3, 3|4 and 4|5 

respectively (dimensions of the tower walls are summarised 

in Table 1).  

It is shown in Fig. 13 that larger compatibility forces (in 

the connecting slabs) are required to restore displacement 

 
(a) FSTRUT 

 
(b) TP 

Fig. 11 Sample time history results for (a) 𝐹𝑆𝑇𝑅𝑈𝑇 and (b) 

TP (rec Nos. 3-4) 

 

 

Fig. 12 Model of a building with multiple tower walls with 

different stiffness 

 

 

incompatibilities between the stiffer walls (i.e., walls 1|2) 

compared with the in-plane force demands in the floor slab 

connecting walls 3|4 (440 kN and 220 kN respectively). The  
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Fig. 13 Strutting (compatibility) force demands in the floor 

slabs 

 

 
(a) Sample results (peaks) 

 
(b) Comparison of predicted and observed FI values 

Fig. 14 Flexibility index values for the different tower walls 

 

 

proposed analytical model is therefore well capable of 

capturing the interdependency between the strutting force 

(and strain) as a function of the relative stiffness of the 

connected walls (as characterised by parameter 𝛼𝑟). This is 

achieved by the use of the flexibility index (shown in Fig. 

8) where higher values of FI are assigned to the stiffer 

tower walls (see Fig. 14 (a)-(b)).  

 
 

5. Analytical modelling of peak rotational demand on 
the building 
 

It was demonstrated in Sections 3 & 4 that the strutting 

forces that are developed in between adjacent tower walls 

depend on the value of TP which characterises the 

differential tower wall deflections. The calculation of the 

TP parameter can be computationally intensive. Thus, 

other displacement related parameters have been explored 

to obtain approximate estimate for this parameter. In a 

proposed simplified procedure for use in the design office 

the value of TP is approximated by the angle of drift of 

the building tower at its mid-height level (i.e., at the level of 

the centre of mass of the tower block). Good consistencies 

between the two angles of rotation mean that the amount of 

in-plane stresses, and strains, developed between two 

adjacent tower walls can be predicted conveniently by 

referring to the global displacement (and rotational) demand 

of the tower block as a whole.  

The degree of consistencies has been tested by way of a 

parametric study employing 2D building models of varying 

heights (see Fig. A-2 of Appendix A). The numerical 

models of the wall-plate subassemblies have been 

constructed on program ETABS. The connected tower walls 

have been subjected to plate rotations at their base and the 

CM drift of the tower (𝜃𝐶𝑀  at tower’s mid-height) has been 

examined in relation to the differences in transfer plate 

rotations (i.e., ∆θTP =  θTP1- θTP2). The good agreement 

between the two parameters (TP and mid-height drift of 

the tower) is well demonstrated in Fig. 15(a) (for two tower 

heights: 75 m and 225 m). The vertical line showing the 

angle of differential rotation between two adjacent tower 

walls at their bases is superimposed onto a graph showing 

the variable angle of drift at the centre line of the building 

up its height. The resulting storey displacement profiles 

show straight lines (i.e. constant drift) with the value of the 

slope approximately equal to the value of TP at the base 

(refer Fig. 15(b)). 

Eq. (5) for estimating the value of 𝐹𝑆𝑇𝑅𝑈𝑇 may therefore 

be written as follows 

𝐹𝑆𝑇𝑅𝑈𝑇 = 𝐹𝐼 × 𝜃𝐶𝑀 × 𝐸𝐶𝐴𝑒𝑓𝑓 (6) 

The innovative idea of linking in-plane strains between 

adjacent tower walls to the (global) angle of drift of the 

tower wall as a whole (e.g., CM) is motivated by the 

development of a simplified hand calculation procedure 

which enables strutting forces in the link elements to be 

predicted with good confidence (provided that the structural 

configuration and gross dimensions of the tower walls and 

that of the podium are known, and the stiffness properties of 

the transfer plate and that of the tower walls are also 

known). Estimates of the strutting forces can therefore be 

made without the need to execute memory intensive finite 

element analysis of the complete model of the tower- 

podium assemblage.  

The simplified calculation model to be presented herein 

is based on simplifying the tower walls collectively as a 

rectangular “rigid-body” which is supported on the podium 

structure (Fig. 16). The elastic stiffness of the rotational 

spring (also positioned at the base of the rectangular rigid 

body) is to emulate effects of the shortening-lengthening 

(push-pull) actions of the columns in support of the podium 

and the building tower above it (Fig. 17(c)). The rotational 

spring is also to incorporate the effects of the transfer  
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Fig. 16 Schematic representation of the rigid body rotation 

model 

 

 

girder’s flexibility on the rotations evaluated at the centre of 

mass (𝜃𝐶𝑀) of the rigid block (Fig. 16). The sway deflection 

of the tower as described is actually contradictory to the 

rigid-body assumption of the simplified model which is, 

strictly speaking, not representing real behaviour. Thus, 

results so derived from the simplified calculation method 

(assuming rigid-body behaviour of the tower block of Fig. 

16) need to be verified to demonstrate that errors incurred 

by the idealisation are within acceptable limits in the 

practical context (as demonstrated by results presented later 

in this section and in Section 6).  

The value of the elastic stiffness of the translational, and 

rotational, spring of the rigid-body model (of Fig. 10) is 

defined by Eqs. (7) and (8) respectively. 

Kx = (
1

KT

+
1

KP

)
−1

 (7) 

where  KT and KP are lateral stiffness values for tower 

and podium structure respectively. 

Kθ =
1

1
KθTP

+
1

Kθ,podium

 
(8) 

 

 

where meaning of  𝐾𝜃,𝑝𝑜𝑑𝑖𝑢𝑚 is as indicated schematically 

in Fig. 17(c);  𝐾𝜃𝑇𝑃
is the rotational stiffness parameter 

which is defined as the aggregated bending  moment at the 

base of all the walls (∑ 𝑀) divided by the rotation at the 

CM of the tower structure  𝜃𝐶𝑀  (Fig. 4). The value of 

 𝐾𝜃𝑇𝑃
 can be estimated using Eq. (9). 

KθTP
= ECtTP

2 W√(𝐷 ℎ𝑇⁄ )3 (9) 

where D is gross dimension of the building tower (as a 

whole) in the direction of loading, tTP and W is the thickness 

and width of the transfer plate, and 𝐸𝐶  is the modulus of 

elasticity of the concrete which the transfer plate is built of.  

Eq. (9) has been derived empirically based on results 

obtained from an extended sensitivity study on the wall-

plate assemblages similar to those discussed earlier (see 

Fig. A-2). The connected tower walls have been subjected 

to rotations at their base and the CM drift of the tower 

(𝜃𝐶𝑀 at tower’s mid-height) has been examined in relation 

to the differences in transfer plate rotations (i.e., ∆𝜃𝑇𝑃 =
 𝜃𝑇𝑃1- 𝜃𝑇𝑃2). The net overturning moment at the base of the 

walls (∑ 𝑀) is evaluated for different scenarios and the 

rotational stiffness ( 𝐾𝜃𝑇𝑃
) has been computed as ∑ 𝑀 /

𝜃𝐶𝑀. It is worth noting that the 𝐾𝜃𝑇𝑃
 parameter is not just 

representing the flexural stiffness of the transfer plate on its 

own as it is also representing the degree of restraint on the 

rotation of the building tower at the centre of mass. Thus, 

the aspect ratio of the building tower: D/hT is a parameter in 

Eq. (9) for estimating the value of  𝐾𝜃𝑇𝑃
.  Values of 

 𝐾𝜃𝑇𝑃
 so obtained from the analyses have been found to be 

equal to unity when normalised with respect to the product 

of the square of the transfer plate thickness (𝑡𝑇𝑃
2 ), the width 

of the transfer plate (𝑊), elastic modulus of concrete (𝐸𝐶) 

and (
𝐷

ℎ𝑇
)

1.5

as shown in Figs. 18(a)-(b). Eq. (9) has 

therefore been verified. 

The good agreement between the analytical results and 

results obtained from the empirical expression (Eq. (9))  

 
 

(a) Angle of drift at position of CM in comparison with differential angle of 

rotation at base of wall  ∆θTP = θTP1- θTP2 
(b) Tower displacement profiles 

Fig. 15 Displacement of tower walls imposed by flexibility at their bases 
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contributes to validating the model for predicting the 

intricate interferences of the transfer plate on the response 

behaviour of the tower walls of the building. Further 

validations on a 3D case study building are presented in 

Section 6 of this paper.  

In summary, the spring-connected rigid-body 

(“rocking”) model of the building as depicted in Fig. 16 is 

complete when the value of Kx and 𝐾𝜃  have been 

determined using Eq. (7)-(9) and distribution of mass up the 

height of the tower block is also known. The original 

computer model of the building may have thousands 

degrees-of-freedom (DOFs). The use of the rocking model 

has the number of DOFs reduced to just two: a translational 

and a rotational DOF. The problem is essentially one of 

dynamic rotational coupling. A similar approach of 

modelling has been adopted for analysing dynamic coupling 

of torsionally unbalanced buildings featuring plan 

irregularities. The building models employed in those 

studies have also been reduced to 2 DOFs (Lam et al. 

2016).  

The dynamic rotational coupling analysis of the rigid-

body model of the building towers (of Fig. 16) provides 

predictions for the value of the Peak Rotational Demand 

(PRD) of the building as a whole which is defined herein as 

the maximum rotations experienced at the CM of the tower 

imposed primarily by the local distortions of the transfer 

plate. The analytical details of the rotational coupling 

problem are next examined.  

The dynamic equilibrium equations (Eqs. (10)-(11)) are 

employed to solve for the coupled dynamic properties of the 

building and the displacement/rotation response behaviour 

of the tower when subjected to earthquake ground 

accelerations. 

mẍ + Kx(x + eθ) = 0 (10) 

Jθ̈ + Kx(x + eθ)θ + Kθθ = 0 (11) 

m in Eq. (11) represents the translational mass of  the 

building, J (in Eq. (11)) is the mass moment of inertia of the 

tower, 𝐾𝜃  is the total rotational stiffness of the tower 

structure above the TFL (defined in Eq. (8)) and 𝐾𝑥 is the 

equivalent translational stiffness of the building (Eq. (7)). 

Eqs. (10)-(11) are next normalised with respect to mr 

and mr
2
 respectively. The parameter r is the radius of 

 

 

gyration of the tower block undergoing rigid body 

rotations    (𝑟 =  √hT
2 +D

12
) and 𝑏2 is the ratio of the total 

rotational and translational stiffness( 𝑏2 =
𝐾𝜃

𝐾𝑥
). In Eq. (13) 

the normalised equations of dynamic equilibrium are 

presented in the matrix format. The “eccentricity” e 

defining the rigid body rotation of the tower block is 

representing the distance between the TFL and the CM of 

the tower (assumed at mid-height of the tower) as shown in 

Fig. 16.  

*
1 0
0 1

+ (
xr̈

θ̈
) + ωx

2 [
1 er

er (br
2 + er

2)
] (

xr

θ
) = (

0

0
) (12) 

where  xr =
x

r
; er =

e

r
  xr̈ =

ẍ

r
, ωx

2 =
Kx

m
 and  

br
2 =  

Kθ

Kx

(
12

hT
2 + D2

) (13) 

The coupled Eigen solution for conditions of free 

vibration is obtained for the coupled dynamic properties of 

the building. Parameters Ωi and  λi  are introduced as the 

coupled angular velocity and the angular frequency ratio for 

the i-th mode of vibration respectively (as shown by Eq. 

(14)). 

Ωi =  λi ωx (14) 

where  𝜔𝑥  is the translational angular velocity of the 

building. Full details of the derivations have been presented 

elsewhere (Lam et al. 2016, Lumantarna et al. 2013). The 

two coupled angular frequency ratios λi are obtained by 

solving the 2x2 matrix expressed in Eq. (15).  

𝜆𝑖
2 = (

1 + (𝑏𝑟
2 + 𝑒𝑟

2)

2
) ∓ √*

1 − (𝑏𝑟
2 + 𝑒𝑟

2)

2
 +

2

+ 𝑒𝑟
2 (15) 

The introduced analytical model prompts a framework 

for estimating the rotation of the tower at the CM (𝜃𝐶𝑀(𝑡)) 

which is primarily imposed by the distortions of the transfer 

plate as shown by Eq. (16).  

θCM(t) = ∑ (
θj

1 + θj
2 

)
uΩi,ζ(t)

r
 

i=2

i=1

 (16) 

 

  

(a)                       (b) (c) 

Fig. 17 Translational and rotational stiffness 
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where  

θj =
λi 

2 − 1

er

 (17) 

𝑢Ω𝑖,𝜁(𝑡) in Eq. (16) is the damped single-degree of freedom 

displacement response of an equivalent system with an 

angular velocity of Ω𝑖.  

The peak rotation demand (PRD) is defined herein as 

the maximum value of 𝜃𝐶𝑀 so obtained from the dynamic 

analysis (as shown by Eq. (18)). 

𝑃𝑅𝐷 = max(θCM(t)) ≥  max(∆θTP) (18) 

Building models similar to that shown in Fig. 1 were 

employed in a parametric study to investigate trends of 

PRD on the building structure for varying intensities of 

ground shaking. The building models have been 

proportioned to achieve a range of 𝑏𝑟 values varying from 

0.1 to 6. For all the models the value of 𝐾𝜃  was 

approximately equal to the value of 𝐾𝜃𝑇𝑃
. This was the case 

since the amount of deformation that was associated with 

the flexing of the transfer plate was by far higher than that 

of the (much more rigid) podium structure in below. Thus, 

the computed value of  𝑏r (Eq. (13)) is dependent on the 

flexural rigidity (hence thickness) of the transfer plate. The 

 

 

 

building models have been analysed using three suites of 

synthetic ground accelerations matching the Australian 

Standard code spectrum (AS1170.4 2007). Details of the 

accelerograms used in this study are summarised in Table 

A-1 of Appendix A. Results of analyses of buildings with 

increasing fundamental periods of vibration (𝑇𝑥) and 

𝑏𝑟 values are presented in Fig. 19.  

The PRD trends shown in Figs. 19-21 suggest that the 

parameter exhibits displacement-controlled behaviour 

where the values of PRD are insensitive to the building’s 

period (i.e., constant for a given value of  𝑏𝑟). The value of 

PRD is also shown to decrease with an increase in the 

transfer plate rigidity and a decrease in the RSDmax of the 

ground motion (compare Figs. 19(a)-(c)).  

The displacement controlled phenomenon which has 

been shown to govern the PRD on the building prompted 

the development of a deterministic solution for predicting 

the value of the PRD given that the values of 𝑅𝑆𝐷max and 

𝑏𝑟 are known (Eqs. 19(a)-(b) and Fig. 20(a)). 

PRD

φave̅̅ ̅̅ ̅̅
=  −0.2 × ln(br) + 0.6 (19a) 

where br  is a dimensionless parameter representing the 

stiffness properties of the rotational spring which restrains  

 

 

(a) Sample results of 𝑘𝜃𝑇𝑃
/𝐸𝑐  𝑡𝑇𝑃

2 𝑊 (b) Correlation between analytical 𝑘𝜃𝑇𝑃
 and the empirical 

formulation (Eq. (9)) 

Fig. 18 Results from the parametric study for determining the parameter 𝑘𝜃𝑇𝑃
 

 
(a) Record Nos. 3-9 

(𝑅𝑆𝐷max = 107 mm) 

(b) Record Nos. 10-16 

(𝑅𝑆𝐷max = 67 mm) 

(c) Record Nos. 17-23 

(𝑅𝑆𝐷max = 38 mm) 

Fig. 19 Effects of (𝑏𝑟) and (𝑅𝑆𝐷max) on the Peak Rotational Demand (PRD) 
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(a) Normalised PRD values 

obtained from the study 

(b)Schematic description 

of the parameter φave̅̅ ̅̅ ̅̅  

Fig. 20 Analytical model for the estimation of PRD on a 

building 

 

 
Fig. 21 Results of parametric studies on PRD (br=2.5) 

(based on use of records nos. 3-9 (refer Table A1 of 

Appendix A) 

 

 

the rigid-body from rotation (Eq. (13)).  

φave̅̅ ̅̅ ̅̅ =
RSDmax

hx

 

(refer Fig. 20(b) for the diagrammatic illustration) 
(19b) 

where ℎ𝑥 is the effective height of the building and may be 

taken as 0.7 times the total height of the building (ℎ𝑏); and  

RSDmax is the highest response spectral displacement value. 

It is demonstrated further in Figs. 22-23 that PRD as 

 

 

an output parameter from the dynamic rotational coupling 

analysis (of the simplified rigid-body model of the building) 

can be used to constrain the values of the differential wall 

rotation (TP
 
) and in-plane strain (STRUT) developed in 

between adjacent tower walls of the building. 

Essentially, PRD is used as the parameter to 

approximate the value of TP and CM in order that Eqs. (5) 

and (6) can be replaced by Eq. (20) as shown in below. 

FSTRUT =  FI × PRD × ECAeff (20) 

The simple expression of Eq. (20) for estimating 

𝐹𝑆𝑇𝑅𝑈𝑇  provides a conservative estimate for the additional 

shear forces on the tower walls transferred from the 

connecting slabs |∆𝑉𝑆𝑙𝑎𝑏|. 
A step-by-step flow-chart of the newly developed 

analytical model for estimating the magnitude of 𝐹𝑆𝑇𝑅𝑈𝑇 is 
outlined in Fig. 24.  

First, the value of PRD is determined based on the 
translational and rotational stiffness of the building and the 
value of RSDmax of the design level earthquake (obtained 
from the design displacement response spectrum). The 
relative stiffness ratio ( 𝛼𝑟 ) is computed based on the 
sectional properties of the transferred wall (most flexible 
wall in an assembly) and the flexural rigidity of the transfer 
plate. The additional shear force on the wall can then be 
determined by the use of Eq. (20). The calculated force 
(𝐹𝑆𝑇𝑅𝑈𝑇) will need to be added, arithmetically, to the design 
shear force of the transferred wall.  

Designers are cautioned that these forces (FSTRUT) are 

internal and thus might not have been identified in an 

analysis of the building should the usual “rigid diaphragm” 

assumption be adopted. Thus, shear demands on the tower 

walls might have been misrepresented in certain FE 

analyses of the building (as discussed in details in another 

publication by the authors Yacoubian et al. (2017a)). 

 

 
6. Case study of the 3D analysis of a building to 
illustrate the use of the simplified procedure and to 
verify its accuracies 

 

 

 

 
(a) Record Nos. 3-9           (b) Record Nos. 10-16       (c) Record Nos. 17-23 

Fig. 22 Peak rotational demand as a parameter to constrain in-plane strutting forces 
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Fig. 24 Design flow chart for calculation of the additional 

shear force demands on the tower walls above TFL 

 

 

The case study of the 3D model of a building featuring a 

transfer structure as shown in Fig. 25 is used to illustrate the 

application of the simplified analytical procedure 

introduced in this paper and to verify its accuracies of 

quantifying the strutting force developed in between 

adjacent tower walls and the anomalous increase in the 

shear force demand on tower walls above the TFL. The 120 

m reinforced concrete building features a four-storey 

podium and a 2.7 m thick transfer plate. The 102 m tower 

structure comprises structural walls and a central core that 

are coupled by 200mm thick reinforced concrete flat slabs.  

The building model has been created in accordance with 

design guidelines stipulated in Australian Standard (AS 

3600, 2009). The lateral load resisting system of the 

 

  
(a) Elevation view of the 

case study building 

showing the analysed walls 

(b) 3D render of the FE 

model of the case study 

building 

Fig. 25 Case study building 

 

 

Fig. 26 ∆𝜃𝑇𝑃  versus  𝜀𝑆𝑇𝑅𝑈𝑇 (for records nos. 3- 9) 

 

 

building is designed for wind loads but without taking into 

account the occurrence of seismic actions. 

Floor loads were uniformly applied following Australian 

Standard recommendations (2002) and are summarised in 

Table A-3. This coupling analysis provides predictions for 

the Peak Rotational Demand (PRD) which is central to the 

simplified analytical methodology introduced in this paper. 

The verification of the accuracies of results from the 

dynamic coupling analysis is therefore important in terms of 

verifying the simplified analytical methodology as a whole. 

A summary of the input parameters and their use in  

 
(a) Record Nos. 3-9 

(𝑅𝑆𝐷max = 107 mm) 

(b) Record Nos. 10- 

16 (𝑅𝑆𝐷max = 67 mm) 

(c) Record Nos. 17 – 23 

(𝑅𝑆𝐷max = 38 mm) 

Fig. 23 Comparison of ∆𝜃𝑇𝑃 and the PRD values obtained from the analyses of the building models 
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Table 2 Design details of Wall nos. 1 & 2 

Design 

parameter 
Value Section detail 

𝑙𝑤 , 𝐦𝐦 2000 

 

𝑡𝑤, 𝐦𝐦 300 

𝑓𝑐
′, 𝐌𝐏𝐚 40.0 

𝜌𝑣, % 0.8 

𝜌𝑡, % 0.38 

Shear capacity ∅𝑉𝑛 

(AS 3600, 2009),𝒌𝑵 
862 

 

 

calculations as per the simplified calculation procedure are 

presented in Table A-2 (in Appendix A). In Fig. 27 the roof 

displacement time histories derived from program ETABS 

are compared with results of analysis from the 2DOF model 

to demonstrate consistencies. It is shown further in Fig. 27 

that the 2DOF model of the building is capable of 

accurately estimating the displacement response behaviour 

of the building. Proportionality between the two parameters: 

(a) relative transfer plate rotations ∆𝜃𝑇𝑃(which is equal  

 

 

 

 

Fig. 27 Comparison of roof displacement time-histories as obtained from the 2DOF model (of Fig. 10) 

and from the FE Model in ETABS 

 
(a) Wall 1 

 
(b) Wall 2 

Fig. 28 Slab strutting (in-plane) force and relative base rotation trends for the walls 
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to  𝜃𝑇𝑃1 − 𝜃𝑐𝑜𝑟𝑒 , 𝜃𝑇𝑃2 − 𝜃𝑐𝑜𝑟𝑒 ) and (b) strutting forces 

FSTRUT developed in the connecting slabs in between two 

adjacent tower walls (wall nos. 1 and 2) have been well 

demonstrated in Figs. 28(a)-(b) in which time-histories of 

both parameters are superimposed on the same graph. 

The flexibility index (FI) for the wall/plate assembly 

took the value of 0.4 as per recommendations of Fig. 8 

(refer also Table A-2 which has every design parameters 

listed). This value of FI which defines the slope of linear 

correlation between ∆𝜃𝑇𝑃 and  𝜀𝑆𝑇𝑅𝑈𝑇  is consistent with 

results of FE analysis by program ETABS of the 3D model 

of the building (noting that Fig. 26 also shows slope of 0.4 

in the linear correlation of data retrieved from the FE 

analysis).  

 

 

7. Conclusions 
 

Good consistencies between the value of ∆𝜃𝑇𝑃 at the 

base of wall nos. 1 and 2 as derived from FE analyses by 

program ETABs and the value of PRD (as defined by Eqs. 

19(a)-(b)) have also been demonstrated in Fig. 29 in the 

form of bar charts. 

Verification of the FI and PRD parameters are essential 

as the value of FSTRUT is controlled by the two parameters in 

Eq. (20). The force transfer by the connecting floor slabs in 

 

 

 

between the tower walls (which has been shown to be the 

primary contributor to the shear force anomalies in the 

tower walls) was examined next. Fig. 30 presents the 

anomalous increase in the shear force demand on the tower 

wall nos. 1 and 2 at the storey above TFL (the design details 

of the tower walls 1 and 2 are summarised in Table 2). It is 

shown that the anomalous increase in the shear force 

demand on the tower walls above TFL was not revealed by 

program ETABS when “rigid-diaphragm” assumptions were 

specified. When the “semi-rigid diaphragm” constraints 

were applied on the floor slabs the additional shear force 

demand on the walls was found to be of the order of 500 kN 

(as shown in Fig. 30 which reports median results from 

analysis using record nos. 3-9). This prediction from 

ETABS analysis is also in good agreement with the 

prediction of 557 kN as per the simplified method 

introduced in this paper (as listed in Table A-2). 

This paper is primarily aimed at addressing the adverse 

effects of the flexing of the transfer structure on the shear 

force demand on the tower walls above the TFL. The shear 

force anomalies have been resulted from significant 

strutting forces (FSTRUT) that are developed in the 

connecting slabs (or beams) in between adjacent tower 

walls.  

The amount of strutting force (and the in-plane strain: 

FSTRUT) has been shown to be linearly correlated with the 

 
(a) Records Nos.17-23 

(RSDmax=38 mm) 

(b) Records Nos.10-16 

(RSDmax=67 mm) 

(c) Records Nos.3-9 

(RSDmax=107 mm) 

Fig. 29 Comparison between the maximum relative transfer plate rotations (for Walls 1 and 2) with the PRD computed for 

individual record 

 

Fig. 30 Shear force distribution above TFL from ETABS (record nos. 3-9) 
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differential rotation of adjacent tower walls at their base 

(TP). The slope of the correlation is the Flexibility Index 

(FI) which is a function of the relative stiffness of the 

transfer structure and the tower wall. The differential wall 

rotation is in turn correlated with the angle of drift of the 

building at mid-height level. A 2DOF model of the building 

tower has been used to provide predictions for the value of 

the Peak Rotational Demand (PRD) of the building tower 

as a whole which can be taken as a conservative estimate of 

the value of TP. The value of FSTRUT may then be 

expressed as the product of FI, PRD and 𝐸𝐶𝐴𝑒𝑓𝑓 which is 

the axial stiffness of the connecting element. 

The actual modelling of the interference by the transfer 

structure is highly complex and bears much weight on the 

rigour employed in the construction of the numerical (FE) 

model of the building. In the absence of detailed guidelines 

on modelling such effects, this simple analytical tool (which 

can be conveniently programmed on a single spreadsheet) is 

intended to assist the design engineer in quantifying the 

adverse slab-wall interactions (occurring above the TFL) 

which are imposed by the transfer structure. 

It should be noted that the model assumes linear elastic 

behaviour of the building components. Thus, the proposed 

methodology has limitations and need be further developed 

for use as a seismic safety tool. Nevertheless, this 

assumption may well be justified for practical purposes in 

structural design. From a broader perspective, the 

developed technique sheds light on the appropriateness of 

the use of displacement-based principles for simplifying 

highly complex interferences by the transfer structure on the 

response behaviour of the building. 
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Appendix A 
 

Table A-1 Description of the accelerograms used in the 

study 

Record 

Reference 

Earthquake 

name 
Source 

No. 1 Friuli (1976) PEER(PEER, 2015) 

No. 2 
Northridge 

(1994) 
PEER(PEER, 2015) 

No.3-9 D-x 

Code compliant suite of records for 

Site class D (AS1170.4, 2007) 

SeismoArtif (SeismoSoft) 

No.10-16 C-x 

Code compliant suite of records for 

Site class C (AS1170.4, 2007) 

SeismoArtif (SeismoSoft) 

No.17-23 A-x 

Code compliant suite of records for 

Site class A (AS1170.4, 2007) 

SeismoArtif (SeismoSoft) 

    

Table A-2 Detailed calculation summary for the case study 

building 

𝐊𝐓, kN/m 
Step-by-step calculation procedure 

summarised in Yacoubian et al. 2017b 
17841 

𝐊𝐏, kN/m 
Step-by-step calculation procedure 

summarised in Yacoubian et al. 2017b 
3369410 

𝐊𝐱, kN/m    (1 17841⁄ + 1 3369410⁄ )−1 17747 

𝐫, m √(1022 + 282) 12⁄  30.53 

𝐊𝛉𝐓𝐏
 kNm/rad 

(Eq. (9)) 

31.62 × 106 × 2.72 × 20 

× (28 102⁄ )1.5 
7.41 × 108 

𝐊𝛉, kNm/rad 

(Eq. (8)) 

For infinitely stiff podium columns and 

fixed at the base 𝐊𝛉 = 𝐊𝛉𝐓𝐏
 

7.41 × 108 

𝐛𝐫 *√7.41 × 108 17747⁄ + / 30.53 6.69 

𝐏𝐑𝐃 (Eq. 

(19a)-(19b)), 

rad 

(107 99346⁄ )[−0.2 ln(6.69) + 0.6] 0.00024 

(67 99346⁄ )[−0.2 ln(6.69) + 0.6] 0.00015 

(38 99346⁄ )[−0.2 ln(6.69) + 0.6] 8.44× 10−5 

𝛂𝐫 

(Eq. (2)) 
√(

1

12
2.73 × 5.02) (

1

12
2.03 × 0.3)⁄  6.42 

𝐅𝐈, 1/rad From Fig. 8 0.4 

𝐅𝐒𝐓𝐑𝐔𝐓, 𝑘𝑁 

Records No: 

3-9 

0.4 × 0.00024 × 5.88 × 106 557 

𝐅𝐒𝐓𝐑𝐔𝐓, 𝑘𝑁 

Records No: 

10-16 

0.4 × 0.00015 × 5.88 × 106 349 

𝐅𝐒𝐓𝐑𝐔𝐓, 𝑘𝑁 

Records No: 

17-23 

0.4 × 8.44 × 10−5 × 5.88 × 106 198 

      

Table A-3 Floor load assignment 

 Tower Podium 

Additional dead loads, 𝒌𝑵/𝒎𝟐 1 1.2 

Live loads, 𝒌𝑵/𝒎𝟐 2 5 

 

 

 

Fig. A-1 Spectral displacements for the records used in the 

study 

 

 

Fig. A-2 2D model used in the parametric study (Section 5) 

constructed on the program ETABS 
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