
Earthquakes and Structures, Vol. 14, No. 5 (2018) 459-465 

DOI: https://doi.org/10.12989/eas.2018.14.5.459                                                                  459 

Copyright ©  2018 Techno-Press, Ltd. 
http://www.techno-press.com/journals/eas&subpage=7                                      ISSN: 2092-7614 (Print), 2092-7622 (Online) 

 
1. Introduction 
 

The effectiveness of mass dampers has been proven in 

both theory and practice (Kareem et al. 1999, Soto and 

Adeli 2013). Appropriate TMD stiffness and damping 

parameters should be selected according to the mass of the 

TMD (mTMD) and the main structural characteristics, with 

favourable relations with which to find these values 

provided by Sadak et al. (1997). The latter researchers 

offered Eqs. (1)-(2) for determining the damping and 

stiffness factors of TMDs according to the ratio of the 

mTMD to the mass of the SDOF structure 
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In these relations, μ is the ratio of the mTMD to the 

mass of the structure, β is the damping ratio of the structure, 

f is the ratio of the frequency of the TMD to the frequency 

of the structure, and ξ is the damping ratio of the damper.  

TMD efficiency can be increased via the use of either 

active or semi-active methods. In an active system, a 

controller is added that enables the damper to apply the 
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appropriate force to the structure at each moment in time 

(Soleymani and Khodadadi 2014). This type of damper 

operates well against the forces of hurricane, wind and 

earthquake (He and Li 2014, Pourzeynali et al. 2007, 

Soleymani and Khodadadi 2014). In semi-active systems, 

stiffness and/or damping can be changed at any moment 

according to the external force on the building (Bajkowski 

et al. 2016, Das et al. 2012, Ghaffarzadeh et al. 2012). Here 

the controller determines the amount of appropriate 

stiffness and/or damping, based on the written control 

algorithm. There are several methods available with which 

to design a semi-active stiffness system, for example using 

a single mass with a variable stiffness spring, adaptive-

length pendulum semi-active TMDs, TMDs with resettable 

variable stiffness, and TMDs with a folding variable 

stiffness spring (Lin et al. 2015, Nagarajaiah 2009, 

Rafieipour et al. 2014, Varadarajan and Nagarajaiah 2004). 

Following on from articles evaluating the manner and use 

of nonlinear viscous damping for structures, some recent 

research has investigated the associated relationships and 

how to solve equation presentation (Lin et al. 2015, Shum 

2015). 

Assadi and Farshi (2011) used a set of linear springs to 

create a TMD with nonlinear stiffness. These springs are 

connected together in such a way that they each exhibit 

nonlinear behaviour in themselves. Eason et al. (2013) used 

a semi-active TMD to improve the performance of an 

existing TMD in a structure, with the new damper 

connected to the primary damper in series. Viet and Nghi 

(2014) introduced a nonlinear TMD with two degrees of 

freedom: one rotational and the other transitional in the bar 

direction. The authors stated that the regulating frequencies 

of these dampers for swing and translational motions should 

be close to the main frequency and the second frequency of  
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the main structure, respectively, with numerical solutions 

also offered. Sun et al. (2014) conducted an experimental 

investigation of a SDOF structure with both a nonlinear 

TMD and an adaptive pendulum TMD. It was found that 

the adaptive pendulum TMD not only improved the 

performance of the initial structure but also improved the 

performance of the nonlinear TMD. 

Ductility and hardening factors have recently become 

the focus of intense research in civil-earthquake 

engineering. With regard to this issue, in the present paper 

two new functional models for nonlinear TMDs are 

presented, with the modelling method and solutions to the 

 

 

nonlinear dynamic equations discussed. The two models 

proposed are as follows: TMD with softening nonlinear 

stiffness and TMD with hardening nonlinear stiffness. 

These systems and the selected structure are then modelled 

in state space and the obtained nonlinear dynamic equations 

solved via the Newton-Raphson method. 

 

 

2. Introduction of the proposed models 
 

A TMD is a combination of its mass and specific 

stiffness and damping values. Fig. 1 depicts a damper 

connected to a SDOF system, where M, C and K are 

respectively the mass, damping and stiffness of the structure 

and m, c and k are respectively the mass, damping and 

stiffness of the damper. 

To create a nonlinear TMD, geometric softening and 

hardening of the members can be used. Hardening of the 

system displayed in Fig. 2 takes place when it is stretched 

under the influence of vertical load, while softening takes 

place under compression. 

Due to this issue, TMD softening and hardening systems 

can be employed, as shown in Figs. 3-4, respectively. 

 

 

3. Equations of motion for the structure and solving 
method for nonlinear equations 

 

When a building is affected under the influence of 

seismic loads, the equations of motion for the structure in 

the state space are expressed as in Eq. (3). 

{
*𝑢̇+

*𝑢̈+
}  [

𝑂𝑛×𝑛  𝐼𝑛×𝑛
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] {
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Fig. 1 Structure with TMD 

 

Fig. 2 Softening and hardening system 

 
(a) 

 
(b) 

Fig. 3 (a) Schematic model of a softening TMD; (b) Softening TMD under seismic loading 
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where [M], [K] and [C] are the mass, stiffness and damping 

matrix of the structure, respectively, vectors u, I and O are 

the displacement, unit and zero matrixes, respectively, and 

{r} is a 1× n vector such that all its elements are equal to 1 

for ordinary structures. 

Equations of motion for a structure with a damper are 

similar to Eq. (1), with the difference being that one degree 

is added to the degrees of freedom system. 

The stiffness matrix of any ductile member of the TMD 

is also expressed as in Eq. (4). 

𝐾  
  

 
[

𝐶 𝐶  𝐶  𝐶 
𝐶    𝐶    

 𝐶  𝐶 𝐶 𝐶 
 𝐶    𝐶   
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where C represents CosƟ, S indicates SinƟ, Ɵ is the angle 

between the member and the horizontal axis, and E, A and L 

are Young’s modulus, member cross-sectional area and 

member length, respectively. 

When a structure is subjected to seismic loads, the 

above equations can be solved using conventional methods. 

However, when a structure has a nonlinear stiffness, a 

method such as Euler, Runge-Kutta or Newton-Raphson 

should be used to correct the nonlinear factor in solving the 

equations. In the present study, the Newton-Raphson 

method was used to solve the nonlinear equations. 

According to the Newton-Raphson method, after solving 

the equations in linear mode the internal force of each 

member is found, followed by the difference between the 

external force and the resistant internal force; a new 

stiffness value is calculated during this step. Based on the 

new stiffness value and unbalancing force, the equations of 

motion are formulated and solved, with this loop repeated 

until convergence is achieved. It should be noted that due to 

the many changes in length, the angle between the ductile 

 

 
(a) Newton-Raphson with initial stiffness 

 
(b) Updating of Newton-Raphson at each time 

increment 

Fig. 5 Newton-Raphson method (Oller 2014) 

 

 

members and horizon will change and consequently the 

stiffness will also vary at any moment in time. 

Fig. 5 shows the process of solving equations carried out 

using the Newton-Raphson method. 

 
(a) 

 
(b) 

Fig. 4 (a) Schematic model of a hardening TMD; (b) Hardening TMD under seismic loading 
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Fig. 6 Fourier amplitude spectrum for the Borrego 

earthquake 

 

Table 1 Maximum displacement of structure (mm) 

 Maximum displacement 

Structure Without Damper 4.245 

Structure With TMD 2.407 

Structure with Softening TMD 2.405 

Structure with Hardening TMD 2.409 

 

 

4. The case study structure model 
 

To check the proposed systems, the following sections 

describe a case study involving a SDOF system and a steel 

11-storey building. 

 

4.1 Single degree of freedom structure 
 

At this stage a SDOF structure is examined for both the 

softening and hardening TMDs. This system and the 

designed passive dampers are in accordance with (Sadek et 

al. 1997), i.e., the SDOF system has a period of 0.25s, a 

damping ratio of 0.02, and the ratio of the damper mass and 

fundamental frequency to the mass and fundamental 

frequency of the main system are 0.1 and 0.9036, 

respectively. These systems are here modelled as being 

subjected to the Borrego earthquake, with the Fourier 

amplitude spectrum shown in Fig. 6. 

The results of the analyses are displayed in Table 1. 

In Eq. (2), the initial values of L, EA/L and Ɵ are 

respectively 1 m, 25.785 N/m and 45° for each member of 

the damper. The results obtained in the present study exhibit 

only minor differences with those reported in (Sadek et al. 

1997), in which both a structure without damper and a 

structure with TMD were analyzed. Furthermore, the 

softening TMD performed better than the linear TMD and 

hardening TMD.  

The same structure was then subjected to both the 

Borrego and Tabas earthquakes for Ɵ values of 5°, 15°, 30°, 

45°, 60°, 75° and 85°. In these scenarios, the initial length 

of members, stiffness and damping of the dampers were 

selected according to the first case study. The temporal 

history of Tabas earthquake acceleration is shown in Fig. 7. 

The results of the second scenario are shown in Tables 

2-3. 

As can be seen in Tables 2-3, for values of Ɵ above 60° 

 

Fig. 7 Temporal history of Tabas earthquake acceleration 

 

Table 2 Maximum displacement of structure for the 

Borrego earthquake (mm) 

Degree Ɵ=5° Ɵ=15° Ɵ=30° Ɵ=45° Ɵ=60° Ɵ=75° Ɵ=85° 

Structure 

Without 

Damper 

4.245 4.245 4.245 4.245 4.245 4.245 4.245 

Structure 

with 

Softening 

TMD 

2.407 2.4068 2.4063 2.4054 2.4037 2.3991 2.383 

Structure 

with 

Hardening 

TMD 

2.407 2.4071 2.4076 2.4085 2.4102 2.4147 2.4322 

 

Table 3 Maximum displacement of structure for the Tabas 

earthquake (cm) 

Degree Ɵ=5° Ɵ=15° Ɵ=30° Ɵ=45° Ɵ=60° Ɵ=75° Ɵ=85° 

Structure 

Without 

Damper 

1.8826 1.8826 1.8826 1.8826 1.8826 1.8826 1.8826 

Structure 

with 

Softening 

TMD 

1.3587 1.3588 1.3591 1.3597 1.3608 1.3637 1.375 

Structure 

with 

Hardening 

TMD 

1.3587 1.3586 1.3582 1.3575 1.3562 1.3593 1.3774 

 

 

the speed of maximum displacement changes is higher and 

thus in practice the risk of using these angles is greater. For 

values of Ɵ below 60°, whereas for the Borrego earthquake 

simulation the softening TMD system performed better, for 

the Tabas earthquake simulation the hardening TMD system 

performed better. Using the Fourier spectrum of each 

earthquake, the total energy per mass unit can be examined 

for different earthquakes to determine the effect of 

softening and hardening. 

For Ɵ=60° in the Borrego earthquake scenario, the 

softening and hardening systems respectively reduced 

maximum displacement by 43.38% and 43.22% in 

comparison to the structure without damper. For the Tabas 

earthquake scenario these values were lower at 27.72% and 

27.96%, respectively. 
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Table 4 Characteristics of the simulated 11-storey building 

Number of Story 
Mass of Story 

(KN.s/m) 

Stiffness of Story 

(MN/m) 

11 176 312 

10 203 437 

9 203 437 

8 203 437 

7 201 450 

6 201 450 

5 201 450 

4 200 450 

3 201 468 

2 201 476 

1 215 468 

 

 

Fig. 8 Temporal history of Chi-Chi Taiwan earthquake 

acceleration 

 

 

4.2 Multi degrees of freedom structure 
 

In this section an 11-storey structure is evaluated, with 

the characteristics of this structure detailed in Table 4. 

The damping for the structure was calculated using the 

Rayleigh method (Pourzeynali et al. 2007). the damping 

ratio of 1% was used for this building. To create the 

damper, the top floor was used (Chey et al. 2010a, b; Zahrai 

et al. 2013), with the stiffness and damping of the damper 

set at 6402500 N/m and 619340 N.sec/m, respectively 

(Sadek et al. 1997). In Eq. (2), the initial values of L, EA/L 

and Ɵ were respectively set at 10 m, 3201250 N/m and 60° 

 

 

for each member of the damper. The modelled structure and 

damper systems were then subjected to Chi-Chi and Tabas 

earthquake scenarios. The temporal history of Chi-Chi 

earthquake acceleration is shown in Fig. 8. 

The results of this analysis are shown in Tables 5-6. 

According to the results shown in Tables 5-6, the softening 

TMD was able to reduce the max displacement of the tenth, 

fifth and first floors of the structure in the Chi-Chi 

earthquake scenario by 54.2%, 54.2% and 54.7%, 

respectively, and in the Tabas earthquake scenario by 

60.2%, 62.5% and 59.5%, respectively. In contrast, the 

hardening TMD was able to reduce max displacement for 

the tenth, fifth and first floors in the Chi-Chi earthquake 

scenario by 54.6%, 55.3% and 56.3%, respectively, and by 

60.0%, 62.3% and 59.5% in the Tabas earthquake scenario.  

As can also be seen in the two tables, in both the Chi-Chi 

and Tabas earthquake scenarios the softening TMD itself, 

i.e., the eleventh floor, experienced less displacement than 

the hardening TMD. The displacement record of the 

structure’s tenth floor under the Chi-Chi and Tabas 

earthquakes is shown in Figs. 9-10, respectively. 

A decrease in RMS displacement reduces the effects of 

fatigue failure on structure members, providing reassurance 

for potential residents. As can be seen in the figures, TMD 

application considerably reduces displacement at any 

moment in time. For example, analysis of Tables 5-6 reveals 

that when the modelled structures were subjected to the 

Chi-Chi earthquake scenario, RMS displacement of the 

tenth floor in the structure without TMD, with softening 

TMD and with hardening TMD was equal to 4.72 cm, 0.27 

cm and 0.25 cm, respectively. In the Tabas earthquake 

scenario these values were equal to 1.22 cm, 0.04 cm and 

0.04 cm, respectively. 

 

 

5. Conclusions 
 

As technology advances, engineers are able to look for 

methods with which to increase project safety factor values 

and at the same time ensure their economic viability. One 

such method designed to achieve the above objectives is the 

use of softening and hardening TMDs. In this paper two 

functional models for a softening TMD and hardening TMD  

 

 
 
 

Table 5 RMS and maximum displacement of floors for the Chi-Chi earthquake scenario (cm) 

Number of Story 
Without Damper Softening Damper Hardening Damper 

RMS Displacement RMS Displacement RMS Displacement 

1 0.0872 14.2625 0.0055 6.4664 0.0048 6.2333 

2 0.3361 28.0431 0.0211 12.7030 0.0183 12.2931 

3 0.7369 41.5696 0.0461 18.8529 0.0401 18.3073 

4 1.2807 54.8445 0.0796 24.9675 0.0696 24.3072 

5 1.9133 67.0490 0.1180 30.6920 0.1038 29.9444 

6 2.5861 77.9300 0.1581 35.8671 0.1400 35.0683 

7 3.2473 87.2809 0.1966 40.2985 0.1755 39.5167 

8 3.8647 95.1695 0.2312 43.9357 0.2084 43.2195 

9 4.3694 101.1524 0.2579 46.5447 0.2351 45.9546 

10 4.7210 105.1097 0.2743 48.0912 0.2535 47.6989 

11 4.9601 107.7153 0.8001 81.5588 1.0657 93.6801 
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Fig. 9 Displacement of the tenth floor in the ChiChi 

earthquake scenario 

 

 

were introduced, with the behaviour of the two dampers and 

the associated structure studied at the onset of two 

earthquake scenarios. The results showed that in the Tabas 

earthquake scenario, the softening TMD and hardening 

TMD reduced the maximum floor displacement by an 

average of 58.50% and 58.32%, respectively, and the 

average RMS displacement by 95.24% and 95.21%, 

respectively, in comparison to the structure without damper. 
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