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1. Introduction  
 

Probabilistic Seismic Demand Analysis (PSDA) is an 

approach for computing the probability of attaining or 

exceeding a specific seismic demand (d) for a given 

structure under a spectrum of possible earthquakes (Cornell 

1996). This concept has been adopted, by Pacific Earthquake 

Engineering Research (PEER) center, as a “foundation on 

which structural performance assessment can be based” 

(http://peer.berkeley.edu/news/2000spring/index.html), and 

constitutes the basis of some performance-based seismic 

guidelines, such asFEMA 350 (2000) for steel moment 

resisting frame (SMRF) buildings. The PSDAis 

mathematically expressed by 

    ( )
( , ) , | . | |IMdH im

P D IM d P D IM d IM im


         (1)
 

where, HIM (im) is the seismic hazard function of the 

desired earthquake intensity (im) at the designated site, v 

represents the mean annual rate of the occurrence of the 

events of interest, e.g., events with intensity measure greater 

than a designated minimum value, D(IM, Θ) reflects 
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seismic demand, and Θ is a vector of unknown parameters 

in the predictive demand model. In addition, the term 

 , |P D IM d IM im       indicated seismic fragility 

function computed by 
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In this equation, λLn(D|im)
 
and σLn(D|im) are the median and 

standard deviation of the seismic demand given im in the 

logarithmic space, Φ indicates standard normal distribution 

function, and P(Collapse) denotes the probability of 

collapse for a given im. 

As mathematically expressed, the demand model and 

collapse fragility function are essential to execute a PSDA. 

These models are commonly developed based on statistics 

obtained from nonlinear response history analyses and/or 

experimental tests. For example, Ramamoorthy et al. 

(2006), based on a large number of nonlinear response 

history analyses, developed bilinear probabilistic demand 

models for a hypothetical two-story reinforced concrete 

(RC) frame building before and after retrofitting. The 

predictive models of the maximum inter-story drift are 

utilized in fragility analyses to evaluate the retrofitting 

impact on reducing the vulnerability of the building during 

earthquake events. This approach is also applied in some 

other studies to develop demand models for structural 

vulnerability assessment under earthquake loading (Adeli et 

al. 2011, Bai et al. 2011, Bayat and Daneshjoo 2015, Bayat 

et al. 2015a, b, Ghowsi and Sahoo 2015, Jalali et al. 2012, 
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Le-Trung et al. 2010, O’Reilly and Sullivan 2016, Ruiz-

García and Miranda 2010, Tang and Zhang 2011). Some 

other studies focus on developing demand models based on 

available deterministic models and experimental tests. This 

methodology originally presented by Gardoni et al. (2002) 

became the basis of some subsequent studies to develop 

capacity models for structural element. Some novel works 

employing this methodology to develop demand models are 

Choe et al. (2008), Sharma et al. (2014), Tabandeh and 

Gardoni (2014), Zhu et al. (2007). Although developing 

probabilistic demand model based on nonlinear response 

history analyses and/or experimental test results might be 

adopted for research purposes, it is not appealing for 

practical purposes because of its computational cost. Thus, 

developing ready-made demand and collapse fragility 

function eliminating the need of time-consuming analyses 

would be of great interest for practical purposes. To this 

end, Kia and Banazadeh (2016) developed the first-

generation ofthe ready-made demand model of the low-to-

mid- rise regular steel moment frames, and then, Based on 

the proposed model, closed-form fragility analyses is 

performed to demonstrate applicability of this approach.  

This paper which is a continuation of our previous work 

presents next-generation generic demand model and new 

collapse fragility function of the low-to mid-rise regular 

steel moment resisting frames (SMRFs). The overall 

maximum inter-story drift which has been conventionally 

used as the vulnerability indicator for moment frames is 

selected as a target demand, and probabilistic model with 

thelinear formulation in the logarithmic space is developed 

to predict it. It is worth noting that in a parallel study 

developing predictive models for two other engineering 

demand parameters playing important roles in the next-

generation PBEE, i.e., maximum story drift ratio and peak 

absolute floor acceleration, are ongoing. A generic collapse 

fragility function is also presented and formulated by a 

cumulative lognormal distribution function to predict 

structural collapse probability. 

This paper is organized into six sections. Following this 

introduction, next section discusses about methodology 

implemented to achieve objectives of the paper. Then, a full 

discussion about generic moment frames is presented. 

Formulations of probabilistic demand model and collapse 

function are next presented. Finally, as an application of the 

proposed probabilistic models, seismic fragility and demand 

curves of some example buildings are developed, and 

compared against those obtained from the incremental 

dynamic analysis.  

 

 
2. Methodology 
 

In this paper, a generic demand model with the linear 

formulation in the logarithmic space is proposed to predict 

overall maximum inter-story drift of the low to mid- rise 

regular steel moment resisting frames (SMRFs). A number 

of 81 generic SMRFs are initially developed that represent 

various geometrical characteristics and different design 

choices and styles. The frames are then modeled in 

OpenSees (Mazzoni et al. 2006) software using lumped 

plasticity method.Details about generic frame parameters 

and the corresponding ranges of assigned values are 

presented in section “Generic Steel Moment Resisting 

Frame” along with nonlinear modeling concerns and 

methods. Afterwards, the frame models are subjected to 

incremental dynamic analysis (IDA) (Vamvatsikos and 

Cornell 2002). Within the IDA, algorithmic nonlinear 

dynamic analyses are performed that utilize increasingly 

scaled levels of intensity measure (IM) for a selected set of 

ground motion records. The structural responses are then 

recorded at each IM level and scaling continues until 

structural side-way collapse occurrence is detected. In this 

paper, the spectral acceleration at the fundamental period of 

buildings (Sa(T1)) which is suitable for low to mid-rise 

SMRFs (Adeli et al. 2011b, Shome and Cornell 2000)was 

employed to represent earthquake intensity measure. The 

overall maximum inter-story drift (θmax) is also considered 

as a demand of interest to evaluate the seismic performance 

of existing buildings. In the present study, a ground motion 

bin consisting of 82 far-field records is developed. The 

majority of the ground motion records have been proposed 

by FEMA P-695(2009) guideline and others are added by 

the authors utilizing the same selection rules as those used 

in FEMA P-695. A comprehensive structural data-base is 

finally established due to these extensive nonlinear dynamic 

analyses. The data-base is divided into two parts, collapse 

and non-collapse data. The generated collapse and non-

collapse data are then respectively input to Bayesian 

regression analyses to develop regression-based collapse 

and demand models. Using the established regression-based 

models, the need of preparing structure-specific database to 

develop building demand model and collapse function will 

be eliminated. Finally, as an application of the proposed 

probabilistic models, demand curves of some example 

buildings are developed, and compared against those 

obtained through the computationally expensive procedure, 

i.e., IDA. 

 

 
3. Bayesian regression analysis  
 

A linear regression model consists of 4 parts, including: 

explanatory functions hi(x) formulated in terms of some 

physical measurable independent variables collected in 

vector “x”, regression coefficients “θi”, the term that reflects 

model error “ε” and a response variable “y” predicted by the 

model. It is supposed that ε is a normal random variable 

with standard deviation equals σ. The mathematical 

expression of the linear regression model is 

     1 1 2 2 ......... k ky h x h x h x         (3)
 

Even if explanatory functions in Eq. (3) have nonlinear 

formulation, it can be considered as a linear regression 

model because of the linear formulation respect to θi. In 

many cases a nonlinear problem can be treated by above 

linear explanatory function either in a logarithmic space or 

by discretizing into different linear parts. The main function 

of regression analysis is to calculate θi based on observed 

data. A classical regression analysis, based on developed 

finite-size sample population, provides a point estimation of 
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the model parameters. This methodology puts in a specific 

type of uncertainty named statistical uncertainty to the 

problem. To address this type of uncertainty, when a 

regression model is developed, the Bayesian statistical 

inference was introduced. In Bayesian regression, the 

statistical uncertainty is explicitly addressed by treating θi 

and σ as random, rather than constant, variables whose 

probability distributions are determined using Bayesian 

updating rule 

     , . , . ,i i if c L p       (4) 

where p(θi, σ) is the distribution of model parameters before 

gathering observation, L(θi, σ) reflects the probability of 

observing data corresponding to given θi values and is 

called likelihood function, c is a normalizing factor and f(θi, 

σ) denotes posterior (i.e., updated) distribution of (θi, σ) 

brought about by the new evidence of data. 

By assuming a normally distributed error term, ε, and in 

the case of non-informative priors, Box and Tiao (2011) 

showed that the posterior distribution of model parameters, 

θi, and squared standard deviation, σ
2
, are multivariate t and 

inverse chi-square distributions, respectively.  

2

2

1
( ( )).
2( )

1
( ) ( )( )
2 2

( ) ( )
1

k T

k

k

k

T T

k s H H

f

H H

s









   








 

 


 
  
 

 
   

 
 

 

 2 2 2f s      

1

2

( ) ,

1
( ) ( ) ,

T T

T

H H H Y n k

s Y Y Y Y Y H

 







   

  

   
 

(5)
 

Where H is a n-by-k dimensional matrix which contains all 

n observations of explanatory functions and Y is the n-

dimensional vector of response variable observations. Once 

the posterior distribution is known, mean vector Mθ and 

covariance matrix Σθθ 
can be readily computed.  

 

 
4. Generic steel moment resisting frames 
 

4.1 Index frame configurations 
 
One of the main objectives of the present study is to 

develop generic demand models that can be directly applied 

in seismic vulnerability analysis of the low-to mid-rise 

regular SMRFs. It is important to develop astructural model 

that can balance between generality and accuracy. To this 

end, the concept of generic SMRF is adopted in this paper. 

This concept has been employed by various researchers to 

evaluate theseismic performance of the moment resisting 

frames (Ruiz-García and Miranda 2010, Chintanapakdee 

and Chopra 2003, Medina and Krawinkler 2004, Estevaand 

Ruiz 1989). In these studies, single-bay generic frames were 

used to simulate theresponse of multi-bay SMRFs. 

Although single-bay generic frames have been reported to 

provide reliable results, these frames are not able to 

realistically simulate the conditions of an interior joint 

(Zareian and Krawinkler 2006). Thus, in this study, a family 

of three-bay generic steel moment frames is used. To widen 

the generality of the obtained demand models, a number of 

properties of the developed generic frames have been 

selected to be varied. These properties, opted based on data 

provided in (Medinaand Krawinkler 2004, Zareian and 

Krawinkler 2006), include number of stories, N, 

fundamental period, T, pattern for beams’ Strength/Stiffness 

Distribution, SSD, along building height, and the ratio of 

yield base shear to the building weight, CY. In this study, 

generic SMRFs with the number of stories N equal to 4, 6 

and 8 are utilized to represent a range of low to mid-rise 

structures. For each number of stories, three fundamental 

periods equal to 0.1N, 0.15N
 
and 0.2N

 
are considered to 

cover a realistic variation range of the SMRFs fundamental 

periods (Goel and Chopra1997). For each period, three base 

shear levels are considered for the generic frames. The CY 

ratios corresponding to each level differ for various 

structures. These ratios, however, are determined in 

accordance with similar scenarios for all frames. These 

scenarios establish two lower and upper bounds for the 

yield base shear, represented by “Low” and “High” CY 

levels, according to the limit values postulated by ASCE 7-

10 (2010)for determining response modification factor, R, 

occupancy group, seismic design category, soil type and 

over-strength factor, Ω. A “Moderate” CY level is also 

defined which provides an intermediate level of yield base 

shear. The range of value considered for CY is presented in 

Table 1. In addition, three different patterns for beams’ 

Strength/Stiffness Distribution, SSD, along building height 

are considered. These three patterns are: “Shear”,” 

Uniform” and “Intermediate”. The value of SSD is 

calculated by Eq. (6) 

1 1 1
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(6) 

Where Ii and Mi indicate, respectively, moment of inertia 

and plastic moment of i
th

 story beams, and Vi represents 

design story shear calculated at thei
th

 story. According to 

Eq. (6), the overall SSD of a structure is computed by, first, 

calculating the SSD index at each story level using 

interpolation technique and, then, averaging the story 

indexes over building height. The SSD parameter takes 

values between 1 and 3 bands which correspond, 

respectively, to “Shear” and “Uniform” distributions. A 

“Shear” distribution implies that moment of inertia and 

bending strength of beams are distributed in proportion to 

the story shears obtained from applying the design code 

lateral load pattern. This distribution leads to a straight line 

deformed shape under mentioned loading (Zareian and 

Krawinkler 2006). A “Uniform” distribution, on the other 

hand, suggests equal moments of inertia and bending 

strengths for all beams along the height. That is, the cross 

section assigned to the beams of the first story is also 

considered for the beams of other stories and provide an  
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upper bound for beams stiffness and strength distributions. 

This pattern represents those structural designs in which the 

designer decides to use a similar cross section for beams in 

several stories because of availability of structural material, 

the cost of using joints with different detailing, simplicity in 

design and construction, etc. For intermediate beam 

strength/stiffness assignments performed in practical SMRF 

design problems, 1<SSD<3 values are logically expected.  

Columns moment of inertia is assumed to be equal to those 

of the story beams. However, this assumption, by 

considering the beam length is three times of column 

height, does not noticeably affect the performance of the 

studied low-to mid-rise SMRFs due to the minor 

contribution of columns in lateral deformation of the shear-

dominated frames (Zareian and Krawinkler 2006). 

Moreover, columns strength is assigned to each story with 

therespect to the strong column–weak beam concept. 

Considering these parameter values, a total number of 81 

generic frames are developed to be subjected to IDA. 

 
 
5. Frames modeling 
 

Concentrated plasticity concept is utilized to model 

nonlinear behavior of the generic SMRFs. For this purpose, 

elastic beam-column elements accompanied by nonlinear 

rotational springs at both ends are adopted to model 

members’ nonlinearity in OpenSees software. The hysteretic 

behavior of the rotational springs is modeled using Bilin 

material with parameters set to the mean value of data 

obtained from 350 experimental tests conducted on steel 

beam-to-column connections (Lignos and Krawinkler 2010) 

(Fig. 1). Basic strength, post capping strength and 

unloading stiffness deterioration modes are considered in 

theformulation of this material according to Rahnama and 

Krawinkler (1993) deterioration rule. P-Delta effects have 

also been accounted for in the models, and a Rayleigh 

damping matrix (defined as a linear combination of the 

mass matrix and stiffness matrix) is computed using 2% of 

the critical damping applied at the first and vibration period 

 

 

corresponding to 90% of the modal mass of the system. To 

properly model the structure, stiffness proportional damping 

is applied only to the frame elements and not to the highly 

rigid truss elements that link the frame and leaning column, 

nor to the leaning column itself. In addition, zero-length 

elements have no contribution in the stiffness proportional 

damping. It is noted, using plastic hinges in combination 

with Rayleigh damping in a nonlinear dynamic analysis 

requires special considerations. Without proper modeling of 

structural elements, damping force become unrealistically 

large at plastic hinges location. Thus, in the present study, 

the simple methodology first proposed by Medina and 

Krawinkler (2004) and then enhanced by Zareianand 

Krawinkler (2006) is implemented to solve this deficiency. 

 

 
6. Developing demand model 
 

6.1 General form of model 
 
According to the structural response observations 

provided by subjecting the generic frames to IDA, a linear 

model in the logarithmic space is employed to define 

demand model. This mathematical expression conforms to 

the perceptional of a structural performance curve (IDA 

curve). Also, expressing the model in logarithmic space 

ensures that the model satisfies the normality (implying that 

model error is normally distributed) and homoscedasticity 

(denoting that standard deviation of model error is constant) 

assumptions. Eq. (7) exhibits ageneral form of story-

specific demand models developed in the present study.  

    1Ln D a b Ln Sa T u  
 

(7) 

In this equation, overall maximum inter-story drift, D, is 

correlated to first mode spectral acceleration, Sa(T1), which 

reflects seismic intensity in units of g and includes 

uncertainty inherent in the earthquake hazard; the Ln sign 

denotes natural logarithm, u is a term reflecting model error 

and is supposed to be a normal random variable with zero 

mean and unknown standard deviation, σD, and Θ=(a,b) is a 

 

Fig. 1 Modified Ibarra-Medina-krawinkler deterioration model (Reprinted from OpenSees wiki)
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vector of unknown normal random model parameters. 

Application of the demand models in the form of Eq. (7) 

requires the model parameters a, b, and σD to be known. On 

the other hand, providing structure-specific estimations for 

these statistical parameters requires collecting a large 

quantity of observations that is often time-consuming and 

impractical for design purposes. Therefore, developing 

regression models to predict mean and standard deviation of 

the model parameters a, b, and σD in terms of generic frame 

characteristics T, N, SSD, and CY would be of great interest. 

To develop each of these sub-models, Bayesian statistical 

inference is implemented to consider statistical uncertainty 

arising from theuse of finite-size sample population (see 

section “Bayesian Regression Analysis”). This paper 

assumes the normal marginal distribution for regression 

coefficients to reflect statistical uncertainty associated with 

the proposed regression equations.This assumption is 

supported by the fact that t-distribution, posterior 

distribution resulting from Bayesian regression, 

asymptotically approaches a normal distribution when the 

number of data is large. 

In the initial modeling efforts, a variety of sub-model 

forms in which T, N, SSD, and CY were directly utilized as 

explanatory variables were examined. Failure of the tried 

forms to acceptably predict a, b, and σD parameters led us to 

replace each individual explanatory variable by an 

explanatory function, h(x), in the form of Eq. (8), where the 

power terms m1 to m4 are picked from the vector {-3,-2,-1, 

0, 1, 2, 3}. This change led to a large number of different 

sub-model forms which were successively assessed for 

selecting the one with lowest regression residual. 

  31 2 4. . .
mm m mh x T N SSD CY  (8) 

Although finding the best model form is an essential 

step in a model fitting program, it is not sufficient for 

demonstrating the reasonableness of the selected model. 

Therefore, theassessmentproceeded with plotting the model 

predictions against observed data, the model residuals 

versus the predicted values of the dependent variable and 

quantiles of the model residual against normal theoretical 

quantiles. The latter which is known as Q-Q plot depicts the 

residual values against the value of inverse Normal CDF at 

u/n
 
point, with u being the number of the residual in ordered 

vector of residuals and n denoting the number of 

observations. In thecase of normally distributed residuals, 

the points align with a 45° line. Similarly, the degree to 

which plotted prediction data align with a 45° line implies 

the accuracy of the model. In addition, the proposed 

regression model is acceptable regarding the 

heteroscedasticity if the residuals fall within fairly 

horizontal lines on both sides of the zero axis. Further 

information about regression diagnosis techniques can be 

found in technical texts (for example Haldar and 

Mahadevan2000).  

 

 
7. Overall maximum inter-story drift model 
 

According to the above description, a large number of 

regression model forms are examined among which some 

Table 1 The range of values for seismic yield base shear 

coefficient, CY  

N=4  

T=0.8 T=0.6 T=0.4  

0.20 0.25 0.30 
Lower

yC  

0.30 0.375 0.45 
Moderate

yC  

0.40 0.50 0.60 
Upper

yC  

N=6  

T=1.2 T=0.9 T=0.6  

0.15 0.2 0.25 
Lower

yC  

0.25 0.35 0.40 
Moderate

yC  

0.35 0.50 0.60 
Upper

yC  

N=8  

T=1.6 T=1.2 T=0.8  

0.10 0.15 0.20 
Lower

yC  

0.18 0.275 0.35 
Moderate

yC  

0.32 0.40 0.50 
Upper

yC  

 

Table 2 Posterior statistics of the regression coefficients 

implemented in Eq. (9)-Eq. (11) 

 

a b σD 

Mean 
Standard 

deviation 
Mean 

Standard 

deviation 
Mean 

Standard 

deviation 

α1 -4.35 0.046 1.01 0.021 0.447 0.0231 

α2 15.22 0.844 0.583 0.14 2.77e-5 2.12e-6 

α3 1.01 0.031 -0.124 0.014 -0.08 0.018 

α4 0.0067 0.001 0.039 0.004 2.42e-4 7.08e-5 

α5 -3.34 0.171 0.003 0.0002 0.01 0.0013 

σ 0.067 0.0056 0.03 0.0025 0.032 0.0027 

 

 

exhibited inadequate prediction while some other suffered 

from heteroscedasticity, non-normality and/or non-linearity. 

In conclusion, according to the procedure described at the 

end of theprevious section, the models that best predict a, b, 

and σD are 

1 2 3

2 2

4 5

CY T
a T

N

N SSD CY
CY

T

  

  


  

 
  

 (9)
 

2

1 2 32 2

4 5 2

CY
b T

N T

N
SSD

T CY

  

  

  


  


 (10)
 

2 2

1 2 32

2

4 5 2

1

D

N T
T

SSD CY

N SSD

T T CY

   

  


  




  



 (11)
 

In these relations, ε is a standard normal random 

variable, σ is thestandard deviation of the regression model  
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Table 3 Correlation matrix of the regression coefficients 

implemented in Eq. (9) ~ Eq. (11) 

 
Correlation matrix of the regression coefficients 

implemented in Eq. (9) α1 α2 α3 α4 α5 

α1 1.00     

α2 0.39 1.00    

α3 -0.86 -0.58 1.00   

α4 0.45 0.56 -0.38 1.00  

α5 -0.72 -0.84 0.68 -0.77 1.00 

 
Correlation matrix of the regression coefficients 

implemented in Eq. (10) α1 α2 α3 α4 α5 

α1 1.00     

α2 -0.46 1.00    

α3 -0.86 0.53 1.00   

α4 -0.4 0 0 1.00  

α5 -0.7 0.08 0.54 0 1.00 

 
Correlation matrix of the regression coefficients 

implemented in Eq. (11) α1 α2 α3 α4 α5 

α1 1.00     

α2 0.43 1.00    

α3 -0.91 -0.60 1.00   

α4 -0.3 0.10 0.01 1.00  

α5 -0.84 -0.33 0.74 0.05 1.00 

 

 

 

 

Fig. 2 Graphical diagnoses of the Eq. (9) (a) Prediction 

model plot; (b) Quantile-Quantile plot to assess the 

normality; (c) Residual plot to assess homoscedasticity
 

 

 

error and T, N, CY, and SSD represent SMRF characteristics 

previously introduced in section “Index Frame 

Configurations”. Table 2 shows posterior statistics of Eqs. 

(9) to (11) parameters. The posterior correlation coefficients  

 

 

 

Fig. 3 Graphical diagnoses of the Eq. (10) (a) Prediction 

model plot; (b) Quantile-Quantile plot to assess the 

normality; (c) Residual plot to assess homoscedasticity 

 

 

calculated between the regression coefficients are also 

presented in Table 3.  

In addition, graphical diagnoses of the proposed 

regression models are performed in Fig. 2, for Eq. (9) 

regarding the descriptions given in section “General Form 

of Model”. Fig. 2(a) exhibits the median model predictions 

versus observed data. The points are relatively close to the 

45
o
 line (solid line) which is an indication that the model 

provides reasonable predictions. In Fig. 2(b), the residual 

quantiles of the model are plotted against normal theoretical 

quantiles. Again, the relative alignment of the data points to 

the 45
o
 solid line demonstrates the acceptable normality of 

the model. Also, in Fig. 2(c), the data points are shown to 

distribute fairly between two horizontal bands on both sides 

of the vertical axes, which demonstrates homoscedasticity. 

Similar curves were also obtained for two other equations, 

i.e., Eqs. (10) and (11), which are respectively demonstrated 

in Fig. 3 and Fig. 4.  

In this paper, the potential dependency between demand 

model parameters, i.e., a and b, is also evaluated and 

regressed in Eq. (12).  

2

,

1.66 0.315

2
1.27 1.61

a b

T

Sin N CY

T CY CY




  
      

      

 (12) 

 

 

8. Collapse fragility function formulation 
 

Fragility function is referred to the conditional  
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Fig. 4 Graphical diagnoses of the Eq. (11) (a) Prediction 

model plot; (b) Quantile-Quantile plot to assess the 

normality; (c) Residual plot to assess homoscedasticity 

 

 

probability of occurring the collapse limit state given a 

ground motion with IM=x. The collapse fragility function is 

commonly formulated using conventional lognormal 

cumulative distribution function (CDF), a choice that has 

been supported by numerous research programs during the 

past decade in disparate fields (Lu 2008). It is described 

mathematically as follow 

   

 
2

|

1 1
exp .

22

P Collapse IM x F x

Ln x
dx

x





  

    
    

     


 (13)
 

where λ and ξ are the two model parameters. These 

parameters are calculated from the information on the mean 

μ and standard deviation σ of the sample population by 

following equations (Rahnama and Krawinkler 1993) 

  2

2

2

1

2

1

Ln

Ln

  






 

  
   

   

 (14)
 

Developing sample population requires performing time 

consuming IDA of the structural model under an 

appropriate set of ground motion records. To eliminate this 

difficulty, Bayesian regression equations, based on same 

procedure previously used in developing regression 

equations for parameters of the demand model, are 

extracted to estimate mean μ and standard deviation σ of 

collapse fragility function. Among a variety of  

Table 4 Posterior Statistics of the regression coefficients 

implemented in Eq. (15) & Eq. (16) 

 
μCollapse σCollapse 

Mean Standard deviation Mean Standard deviation 

α1 1.862 0.039 1.683 0.054 

α2 -0.213 0.033 0.125 0.028 

α3 -1.420 0.032 -1.072 0.050 

α4 0.102 0.013 -0.112 0.017 

α5 1.233 0.140 -0.833 0.051 

σ 0.074 0.006 0.112 0.009 

 

Table 5 Correlation matrix of the regression coefficients 

implemented in Eq. (15) & Eq. (16) 

 
Correlation matrix of the regression coefficients 

implemented in Eq. (15) α1 α2 α3 α4 α5 

α1 1.00     

α2 -0.72 1.00    

α3 0.09 -0.58 1.00   

α4 -0.29 0.15 0.16 1.00  

α5 -0.64 0.71 -0.68 -0.28 1.00 

 
Correlation matrix of the regression coefficients 

implemented in Eq. (16) α1 α2 α3 α4 α5 

α1 1.00     

α2 -0.32 1.00    

α3 -0.58 0.71 1.00   

α4 -0.37 -0.43 -0.31 1.00  

α5 -0.24 -0.46 -0.43 0.20 

 
1.00 

 

 

mathematical expressions examined in this study, the model 

forms providing best prediction for μCollapse and σCollapse are 

  1 2 32 2

4 5

1
CollapseLn T

N CY

N CY
CY T

SSD

   

   

  



   

 (15)
 

  1 2 32 2

4 5

1
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SSD
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T CY N

SSD
N CY

   

   

  
 

  


 (16)
 

The parameters used in these equations are those 

previously used in Eqs. (9) to (11). Posterior statistics of the 

regression coefficients and the correlations existing between 

them are also presented in Tables 4 and 5, respectively. In 

addition, graphical diagnoses of the regression Eqs. (15) 

and (16) are respectively performed in Fig. 5 and Fig. 6. 

  

 
9. Numerical example 
  

As an application of the proposed relations, seismic 

fragility analysis and PSDA are performed for 4, 5 and 7-

story SMRF designed with respect to American Institute of 

Steel Construction (AISC) and ASCE 7-10 specifications. 

Contrary to the 4 and 7-story buildings, 5-story building is 

designed so that it cannot satisfy maximum allowable drift 

criterion of the ASCE 7-10. The building is rectangular in  
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Fig. 5 Graphical diagnoses of the Eq. (15) (a) Prediction 

model plot; (b) Quantile-Quantile plot to assess the 

normality; (c) Residual plot to assess homoscedasticity 

 

 

 

 

Fig. 6 Graphical diagnoses of the Eq. (16) (a) Prediction 

model plot; (b) Quantile-Quantile plot to assess the 

normality; (c) Residual plot to assess homoscedasticity 

 

 

plan with a length of 22 meters and a width of 16 meters for 

5 and 7-story buildings. Square plan with a length of 20  

 

 

Fig. 7 (a) four-story building Plane (b) five and seven-

storybuilding Plane 

 

Table 6 Beams and columns geometries 

STORY 

4 Story-Building 5 Story-Building 7 Story-Building 

Beam-

Section 

Column-

Section 

Beam-

Section 

Column-

Section 

Beam-

Section 

Column-

Section 

1 
IPE 

450 

TUBE 

400×400×12 

IPE 

450 

TUBE 

350×350×12 

IPE 

550 

TUBE 

400×400×15 

2 
IPE 

450 

TUBE 

400×400×12 

IPE 

450 

TUBE 

350×350×12 

IPE 

550 

TUBE 

400×400×15 

3 
IPE 

400 

TUBE 

350×350×12 

IPE 

450 

TUBE 

350×350×12 

IPE 

550 

TUBE 

400×400×15 

4 
IPE 

400 

TUBE 

350×350×12 

IPE 

330 

TUBE 

300×300×12 

IPE 

500 

TUBE 

400×400×12 

5 ---- --- 
IPE 

330 

TUBE 

300×300×12 

IPE 

500 

TUBE  

400×400×12 

6 ---- ---- --- --- 
IPE 

400 

TUBE 

350×350×12 

7 ---- ---- --- --- 
IPE 

400 

TUBE 

350×350×12 

 

 

meters is considered forthe 4-story building. The first story 

is 2.8 meters high and the height of the remaining stories is 

3.2 meters. Two perimeter steel moment frames in each 

direction along with composite steel deck floors are 

employed to carry lateral and gravity loads, respectively 

(Fig. 7). The model takes advantage of the building’s 

regularity so that a two dimensional analytical model can be 

used to predict structural behavior under seismic loading in 

each direction. The effect of gravity load system during 

nonlinear dynamic analysis is also considered by 

introducing leaning columns. Rigid zones are used to define 

the joint regions and the inelastic behavior is concentrated  
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Table 7 The example buildings characteristics 

Number of stories T SSD CY 

4 0.74 2.05 0.29 

5 0.88 2.06 0.26 

7 1.065 1.79 0.303 

 

 

 

 

Fig. 8 Collapse curves of (a) four-story building, (b) five-

storybuilding, (c) seven-story building 

 

 

at the end of beam and column elements. Table 6 shows 

beams and columns geometries.  In addition, the building 

characteristics used as input variables to the generic demand 

models are demonstrated in Table 7. It is worthwhile to 

mention that CY was directly obtained from pushover 

analysis. However, this quantity can be approximated by 

multiplying design base shear by the code-based over-

strength factor.Although this approximation poses to some-

extent inaccuracy to the problem, it dramatically simplifies 

a probabilistic decision-making analysis by completely 

eliminating the need of any structural analysis which would 

be useful in preliminary design. 

 
 
10. Collapse fragility curve 
 

IDA of the three example buildings in the longitudinal 

direction is performed using OpenSees software. Collapse 

fragility curves are then directly developed based on 

collapse data obtained from IDA for the selected building, 

and compare with those developed in a few minutes based 

on parameters computed by Eqs. (15) and (16) (Fig. 7). 

Table 8 presents collapse model parameters calculated 

based on IDA and proposed equations. In Fig. 8, the curve 

developed according to Eq. (15) and Eq. (16) are shown in 

red dash line, while the IDA-based curves are illustrated 

Table 8 Collapse curve parameters  

Number of 

story 

Estimated by IDA 
Mean value of  

Eqs. (13) and (14) 

Mean 
Standard 

Deviation 
Mean 

Standard 

Deviation 

4 2.76 1.34 2.65 1.04 

5 1.71 0.66 2.3 0.92 

7 2.75 1.17 2.27 0.96 

 

Table 9 Percentage errors at Median & Median+Std
 
values 

of the collapse 

Collapse 

Probability 
 

4-Story 

Building 

5-Story 

Building 

7-Story 

Building 

Median-Std 

Sa-Exact 1.57 1.10 1.68 

Sa-predicted 1.69 1.46 1.39 

Percentage-

error 
8% 33% -17% 

Median 

Sa-Exact 2.48 1.60 2.28 

Sa-predicted 2.46 2.13 1.89 

Percentage-

error 
-0.8% 33% -17% 

Median+Std 

Sa-Exact 3.92 2.3 3.8 

Sa-predicted 3.60 3.13 3.13 

Percentage-

error 
-8% 36% -17% 

 

 

using blue dashed-dotted-dotted lines. 

According to the presented graphs, the regression 

equation-based curves are able to capture both the variation 

trend and the numerical value of IDA-based curves. To 

numerically examine theaccuracy of the regression 

equation-based curves, percentage error (the difference 

between Approximate and Exact values, as a percentage of 

the Exact value) at the median and median ±Std values of 

the collapse are computed and presented in Table 9. 

According to the comparison results, it is concluded that the 

proposed regression equations provide areasonable 

approximation of the exact solution for 4 and 7-story 

buildings, i.e., buildings satisfying seismic design 

criteria.This level of accuracy of the proposed regression 

equations would be more appealing, if computational efforts 

required to developed IDA-based curve are considered. 

However, for 5-story building, collapse curve developed 

based on the proposed regression equations only providea 

rough estimate of the exact solution. In short, Eqs. (15) and 

(16) can be reasonably applied to rapidly estimate collapse 

capacity of the buildings satisfying seismic design criteria. 

However, they are not enough accurate to be implemented 

for buildings can’t pass seismic design code criteria.  

 

 
11. Seismic fragility analysis 
 

In the following, Seismic fragility analyses are carried 

out for three example buildings using models developed 

both based on proposed equations and direct IDA. To this 

end, based on non-collapse observations obtained from 

IDA, overall maximum drift demand model in the form of 

Eq. (7) is first developed for three example buildings, and  
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Table 10 Demand model parameters computed using IDA 

Number of Story a B σ 

4 -3.518 0.858 0.408 

5 -3.255 0.954 0.355 

7 -3.498 0.885 0.427 

 

Table 11 Demand model parameters predicted by generic 

models (Eq. (9)-Eq. (11)) 

Number of Story a B σ 

4 -3.735 1.075 0.463 

5 -3.612 1.053 0.444 

7 -3.539 1.007 0.420 

 

 

 

 

Fig. 9 Fragility curves (a) four-story building, (b) five-

storybuilding, (c) seven-story building 

 

 

then convolved with IDA-based collapse function in the 

context of Eq. (2) to obtain fragility curve. Fragility curves 

are, also, extracted using demand model and collapse 

function developed based on the proposed regression 

equations. The demand model parameters computed based 

on IDA and proposed relations, i.e., Eqs. (9), (10) and (11), 

are respectively presented in Tables 10 and 11. Fragility 

analysis is performed for thresholds d
 
equal to 1%, 3%, 5%, 

7%, and results are presented in the form of fragility curves 

(Fig. 9). These values are quite an arbitrary choice, but 

according to FEMA 350 limitation on collapse and 

immediate occupancy limit-states, it can be expected that 

selected thresholds reflect light to severe damage states and 

named SD1, SD2, SD3 
and SD4 respectively. 

 

 

 

Fig. 10 Demand curve of (a) four-story building, (b) five-

story building, (c) Seven- story building 

 

 

As shown graphically, the curves developed by 

employing proposed regression equations appropriately 

follow the curves which are based on building specific 

demand model and collapse function. To numerically 

examine theaccuracy of the regression equation-based 

curves, percentage errors at median and median ±Std are 

computed and presented in Table 12. According to the 

values presented in this table and considering the 

regression-based fragility curves are developed with much 

less computational efforts, it is concluded،for 4 and 7-story 

buildings،the proposed regression equations provide a 

reasonable approximation of the exact solution for damage 

state with moderate to high consequences i.e., SD2, SD3 and 

SD4. Although the accuracy level is reduced to some extent 

for 5-story building, regression-based fragility curves 

provide an acceptable approximation of the exact solutions 

for threshold values equal or greater than 5%. In addition, 

for d=1%, in all example buildings, the accuracy of the 

regression-based demand model falls significantly. 

However, this inaccuracy is not important for decision 

making due to less consequence this damage-state poses to 

the problem. In general, approximation provided by the 

developed regression-based demand model and collapse 

fragility function would be reliable for damage states 

particularly important for seismic mitigation decisions. 

Having provided fragility curves, seismic demand 

curves can be readily developed for a designated site using 

Eq. (1). To numerically demonstrate this applicability, the 

above fragility curves are combined with seismic hazard 

curves of a site located at 52.665° east and 36.525° north 

and regressed by 
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Table 12 Percentage errors at Median & Median+Std
 
values 

4
-S

to
ry

 B
u

il
d

in
g
 

Probability of 

Exceedance 
 d=1% d=3% d=5% d=7% 

Median-Std 

Sa-Exact 0.175 0.63 1.05 1.27 

Sa-predicted 0.29 0.80 1.12 1.24 

Percentage-

error 
66% 27% 7.0% -2.0% 

Media 

Sa-Exact 0.29 1.00 1.52 1.78 

Sa-predicted 0.445 1.17 1.54 1.70 

Percentage-

error 
53% 17% 1.0% -4.0% 

Median+Std 

Sa-Exact 0.46 1.50 2.13 2.45 

Sa-predicted 0.69 1.64 2.07 2.28 

Percentage-

error 
50% 9.0% 3.0% -7.0% 

5
-S

to
ry

 B
u

il
d

in
g
 

Median-Std 

Sa-Exact 0.17 0.53 0.85 1.01 

Sa-predicted 0.25 0.71 1.05 1.19 

Percentage-

error 
47% 34% 24% 18% 

Media 

Sa-Exact 0.25 0.73 1.16 1.36 

Sa-predicted 0.38 1.06 1.45 1.61 

Percentage-

error 
52% 45% 25% 18% 

Median+Std 

Sa-Exact 0.35 1.07 1.54 1.8 

Sa-predicted 0.59 1.50 1.93 2.14 

Percentage-

error 
69% 40% 25% 19% 

7
-S

to
ry

 B
u

il
d

in
g
 

Median-Std 

Sa-Exact 0.16 0.62 1.05 1.3 

Sa-predicted 0.24 0.69 1.01 1.15 

Percentage-

error 
50% 11% -4.0% -12% 

Media 

Sa-Exact 0.30 0.99 1.53 1.8 

Sa-predicted 0.36 1.01 1.39 1.57 

Percentage-

error 
20% 2% -9.0% -13% 

Median+Std 

Sa-Exact 0.48 1.50 2.12 2.72 

Sa-predicted 0.54 1.42 1.87 2.44 

Percentage-

error 
13% -5% -12% -10% 

 

 

   
1.74

0.74 0.0011 .T Sa Sa


   (17)
 

   
1.702

0.88 0.0009T Sa Sa


   (18)
 

   
1.715

1.065 0.0006T Sa Sa


   (19)
 

Where λ(Sa) indicates the mean annual frequency and, 

indirectly represent the annual probability of exceedance of 

the Sa. Fig. 10 graphically illustrates differences between 

demand curves developed based on regression equations 

and those obtained from IDA. The results demonstrate the 

curves developed with much less computational efforts 

appropriately follow IDA-based curves, especially at the tail 

of the distribution where the probability is low but the 

consequence is high. It is worth noting, this part of the 

curve is particularly important for seismic mitigation 

decisions. 

 

 
12. Conclusions 
 

Seismic demand analysis is a probabilistic decision-

making analysis which is widely implemented in research to 

evaluate the vulnerability of a building under earthquake 

loading. However, performing a probabilistic seismic 

demand analysis requires ingredients commonly developed 

using nonlinear response history analyses and/or 

experimental test results. Although, this methodology can 

be suitable for research purposes, it couldn’t be appealing 

for practical purposes because of its computational costs. 

Thus, the focus of the present study is on the developing 

ready-made drift demand model and collapse fragility 

function, two essential ingredients of a probabilistic 

decision-making analysis, to eliminate the need of time-

consuming data gathering procedure, when a probabilistic 

decision-making analysis is performed for a regular low to 

mid-rise steel moment resisting frames. The applicability of 

the proposed regression equations are investigated by doing 

seismic fragility analysis and probabilistic seismic demand 

analysis for three example buildings and results are 

compared with those obtained directly from IDA. The 

results indicate, although the proposed regression-based 

demand model and collapse fragility function could not be 

able to provide exact results, they are enough accurate to be 

used for rapid seismic vulnerability assessment, especially 

for buildings satisfying seismic design code criteria or the 

probability of high consequences events is sought. Note, 

this level of accuracy is achieved with low computational 

cost in comparison with the conventional method which is 

based on time-consuming building specific nonlinear 

response history analyses. In fact, the authors believe 

theavailability of such explicit regression-based models 

along with traditional design regulations helps extend a 

technical basis which is  not only minimizing casualties by 

preventing structural collapse, but also makes it possible to 

approximate lyevaluate seismic vulnerability of a building 

that would be useful for decision making. 
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