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1. Introduction 
 

Today, many forms of damage indexes’ definitions are 

presented in structural and earthquake engineering 

literature. In the majority of proposed indexes, complicated 

concepts such as deformation, and simple concepts such as 

ductility ratio and inter-story drift, as the most important 

factor in damage index presentation, are being used. 

However, energy dissipation and ductility ratio have been in 

the spotlight in most of these studies. Generally, the damage 

indexes normalize the damage on a scale of 0 to 1, where 

zero represents intact or undamaged state while unity 

represents collapse state of the building. Concrete is one of 

the most common building materials and cracks can be 

formed in the reinforced concrete elements, even before 

being subjected to any type of external load. In a 

comprehensive review, Mihai (2013) examined the damage 

indexes which have been used to determine the nonlinear 

behavior of reinforced concrete structures. In most of the 

studies, one of the simplest and also widely used damage 

indexes is the Park and Ang damage index, and its 

definition is based on the linear combination of the 

maximum displacement and the dissipated energy. Since 
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then, some researchers such as Valles et al. (1996), Zhai et 

al. (2013), Kaveh et al. (2014) performed some 

modification on the Park and Ang index, in order to develop 

a new one. Recently, Guo et al. (2016) have extended this 

index to evaluate the three dimensional damage of an RC 

pier and Zhai et al. (2015) have been used Park-Ang index 

and the modified version of this index to report the caused 

structural damage by seismic scenarios.  

It can be claimed that Park-Ang damage index is among 

of the simplest and widely used indicators in structural and 

earthquake engineering literature for estimating the 

structural damage. However, this index doesn’t use directly 

earthquake features such as “Magnitude”, “Shear Velocity” 

and etc. This may be more important in estimating the 

structural damage under given repeated shocks. 

Furthermore, despite the damages caused by the recent 

consecutive earthquakes such as Nepal and Hindu-Kush 

(2015), most structures are designed according to the 

modern seismic codes which only consider a single seismic 

event on the structure for analysis and design process. 

However, the single seismic design philosophy does not 

consider the effect of strong successive shocks on the 

accumulated damages of structures that have been already 

damaged by preceding shocks. Moreover, if the considered 

structure is located in the active seismic regions, not only it 

will be exposed to single seismic events, but also the risks 

of strong aftershocks are noticeable and should be 

considered. Therefore, some researchers tried to examine 

the effect of multiple earthquakes on the response of usual 

SDOF and MDOF structures and unusual cases such as 
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steel tower suspension bridges (Xie et al. 2012), ancient 

multidrum columns (Papaloizou et al. 2016) and steel arch 

bridges (Tang et al. 2016) using as-recorded and artificial 

models (Garcia et al. 2014) for repeated acceleration 

sequences. Since, the use of artificial seismic sequences 

could lead to non-conservative prediction of response and 

behavior of structures, in this study, a new approach is 

developed using multilayer artificial neural networks 

(ANNs) to obtain the maximum damage caused by as-

recorded single and consecutive earthquakes. In order to 

design the ideal artificial neural networks, Park-Ang 

damage index is selected. It should be noted that previous 

researches such as Dworakowski et al. (2014) and Adnan 

and Tiong (2012) only designed the artificial neural 

networks to estimate the structural damage and the features 

of “Single” earthquakes have just been used to train the 

artificial neural networks in these studies. To bridge such a 

knowledge gap, the current paper takes into account the 

effects of consecutive seismic scenarios. For this reason, the 

empirical design charts and equations are generated in this 

paper using the ideal neural networks that are trained based 

on the features of “Single” and “Consecutive” earthquakes. 

In this regard, six concrete moment resisting frames with 3, 

5, 7, 10, 12 and 15 stories, is designed and analyzed for 

more than 850 times under two different databases 

with/without seismic sequences phenomena. In order to 

determine the target values for the design of artificial neural 

networks, Park-Ang damage index is selected due to its 

extensive practical use and Simplicity. Then, idealized 

networks were selected based on maximum correlation and 

minimum error between outputs of networks and target. 

After determining the reference values of input nodes, the 

idealized networks were employed to generate the charts 

and equations for engineering design use. So that, proposed 

equations which were derived predict the maximum damage 

index independently from the network. In order to examine 

the precision of the developed ANN-based model in 

predicting the maximum Park-Ang damage of regular 

reinforced concrete frames, the results obtained from 

proposed equations, were verified by the results obtained 

from Park-Ang damage indexes generated from nonlinear 

dynamic analysis. 

 

 

2. Selection of strong ground motions and structural 
modeling 
 

In this paper, the estimation of maximum damage for 

reinforced concrete frames subjected to recorded 

earthquakes with/without sequence is considered  
 
 

 

Fig. 1 Classification of the earthquake databases 

 
 

particularly. For this purpose, single and successive strong 

ground motions are selected based on PGA. In this way, 

PGA parameter is calculated for the whole successive 

earthquakes which occurred in less than 10 minutes and 10 

days. In each case, two databases of strong ground motions 

with two types of PGA are extracted. Each database 

involves the single and consecutive earthquakes with 

maximum PGA and approximately maximum PGA, that is 

in second or third level toward the maximum value. So, 

earthquakes are classified into 8 groups. Classification of 

earthquake databases is shown in Fig. 1. These records are 

available in “PEER” center. It should be noted that the 

recent consecutive earthquakes, such as Nepal (2015) is 

included in the database. The difference of databases is in 

their time gap (Tg) between consecutive earthquakes. In 

such way that, the time gap in the first database is identical 

to the real event (less than 10 minutes), while the seismic 

scenarios with sequence phenomena in the second database 

(occurred in less than 10 days) were made using artificial 

time gap, which is assumed 120 (s). This gap is enough to 

calm down the motion of any building due to the damping. 

It should be noted that in consecutive earthquakes, the 

acceleration during the time gap is considered to be zero. It 

should be noted that all of consecutive records-both of first 

shock and second shock in each sequence-occurred in 

similar directions and same stations. The ground motion 

features for both databases with maximum and 

approximately maximum PGA are listed in Tables 1-4. As 

shown in Fig. 1, in each database, consecutive records have 

two subsets: 1) first shock and second shock with maximum 

PGA and 2) at least one of them has maximum PGA and 

another is in second or third level toward the maximum 

value. Second subset has been named “approximately 

maximum PGA”. This is also true for single records. 

Also, for compatibility aspects between the seismic 

analysis and seismic design (Vamvatsikos and Cornell  

 

 
 

 

Table 1 The features of ground motion records in the first database with maximum PGA 

Earthquake Date Time Time gap (min) Magnitude Station PGA 

Chalfant Valley 
07/21/86 14:42 

9 
6.19 CDMG 54428 Zack Brothers Ranch 0.4246 

07/21/86 14:51 5.65 CDMG 54428 Zack Brothers Ranch 0.1347 

Hollister 
04/09/61 07:23 

2 
5.60 USGS 1028 Hollister City Hall 0.1210 

04/09/61 07:25 5.50 USGS 1028 Hollister City Hall 0.0683 

New Zealand 
03/02/87 01:42 

9 
6.60 99999 Matahina Dam 0.2926 

03/02/87 01:51 5.80 99999 Matahina Dam 0.0525 
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Table 2 The features of records in the first database with approximately maximum PGA 

Earthquake Date Time Time gap (min) Magnitude Station PGA 

Chalfant Valley 
07/21/86 14:42 

9 
6.19 CDMG 54171 Bishop - LADWP South St 0.2058 

07/21/86 14:51 5.65 CDMG 54171 Bishop - LADWP South St 0.0864 

Chi- Chi Taiwan 
09/20/99 17:57 

6 
5.90 CWB 99999 TCU079 0.3308 

09/20/99 18:03 6.20 CWB 99999 TCU079 0.3022 

Imperial Valley 
10/15/79 23:16 

3 
6.53 USGS 952 El Centro Array #5 0.4481 

10/15/79 23:19 5.01 USGS 952 El Centro Array #5 0.2374 

Irpinia, Italy 
11/23/80 19:34 

1 
6.90 ENEL 99999 Sturno 0.2898 

11/23/80 19:35 6.20 ENEL 99999 Sturno 0.0760 

Northridge 1 

01/17/94 12:31 
1 

6.69 CDMG 24279 Newhall - Fire Sta 0.6980 

01/17/94 12:32 6.05 CDMG 24279 Newhall - Fire Sta 0.0407 

01/17/94 12:41 9 5.20 CDMG, 24279 Newhall - Fire Sta 0.1632 

Northridge 2 

01/17/94 12:31 
1 

6.69 CDMG 24278 Castaic - Old Ridge Route 0.4898 

01/17/94 12:32 6.05 CDMG 24278 Castaic - Old Ridge Route 0.0231 

01/17/94 12:41 9 5.20 CDMG 24278 Castaic - Old Ridge Route 0.0389 

Table 3 The features of ground motion records in the second database with maximum PGA 

Earthquake Date Magnitude PGA Station 

Chalfant Valley3 
07/20/1986 5.77 0.2382 CDMG 54428 Zack Brothers Ranch 

07/21/1986 6.19 0.4246 CDMG 54428 Zack Brothers Ranch 

Chalfant Valley4 
07/20/1986 5.77 0.2382 CDMG 54428 Zack Brothers Ranch 

07/21/1986 5.65 0.1347 CDMG 54428 Zack Brothers Ranch 

Coalinga 
07/22/1983 4.89 0.1539 CDMG 46617 Coalinga-14th & Elm (Old CHP) 

07/25/1983 5.21 0.5813 CDMG 46617 Coalinga-14th & Elm (Old CHP) 

Kalamata 
09/13/1986 6.20 0.2649 ITSAK 99999 Kalamata (bsmt) 

09/15/1986 5.40 0.1869 ITSAK 99999 Kalamata (bsmt) 

Kozani 
05/15/1995 5.10 0.1330 ITSAK 99999 Chromio Anapsiktirio 

05/17/1995 5.30 0.1144 ITSAK 99999 Chromio Anapsiktirio 

Mammoth1 
05/25/1980 6.06 0.4193 CDMG 54099 Convict Creek 

05/25/1980 5.70 0.4156 CDMG 54099 Convict Creek 

Mammoth2 
05/25/1980 6.06 0.4193 CDMG 54099 Convict Creek 

05/26/1980 5.70 0.1234 CDMG 54099 Convict Creek 

Mammoth3 
01/07/1983 5.34 0.1738 CDMG 54099 Convict Creek 

01/07/1983 5.31 0.1208 CDMG 54099 Convict Creek 

Mammoth4 
05/27/1980 4.73 0.2178 USC 37 USC McGee Creek Inn 

05/31/1980 4.80 0.3689 USC 37 USC McGee Creek Inn 

Mammoth5 
05/25/1980 5.91 0.3289 CDMG 54214 Long Valley Dam (Upr L Abut) 

05/27/1980 5.94 0.6293 CDMG 54214 Long Valley Dam (Upr L Abut) 

Mammoth6 
05/25/1980 5.70 0.4156 CDMG 54099 Convict Creek 

05/26/1980 5.70 0.1234 CDMG 54099 Convict Creek 

Managua 
12/23/1972 6.24 0.3941 3501 Managua, ESSO 

12/23/1972 5.20 0.2945 3501 Managua, ESSO 

Northwest1 
04/05/1997 5.90 0.2437 CSB 19001 Jiashi 

04/06/1997 5.93 0.1349 CSB 19001 Jiashi 

Northwest2 
04/05/1997 5.90 0.2437 CSB 19001 Jiashi 

04/11/1997 6.10 0.2961 CSB 19001 Jiashi 

Northwest3 
04/05/1997 5.90 0.2437 CSB 19001 Jiashi 

04/15/1997 5.80 0.2091 CSB 19001 Jiashi 

Northwest4 
04/06/1997 5.93 0.1349 CSB 19001 Jiashi 

04/11/1997 6.10 0.2961 CSB 19001 Jiashi 

Northwest5 
04/06/1997 5.93 0.1349 CSB 19001 Jiashi 

04/15/1997 5.80 0.2091 CSB 19001 Jiashi 

Northwest6 
04/11/1997 6.10 0.2961 CSB 19001 Jiashi 

04/15/1997 5.80 0.2091 CSB 19001 Jiashi 

Oroville 
08/02/1975 4.79 0.0344 CDMG 1546 Up & Down Cafe (OR1) 

08/02/1975 4.37 0.0630 CDMG 1546 Up & Down Cafe (OR1) 

Nepal 
25/04/2015 7.8 0.164 Kanti Path, Kathmandu, Nepal 

12/05/2015 7.3 0.087 Kanti Path, Kathmandu, Nepal 

131



 

Gholamreza Ghodrati Amiri and Elham Rajabi 

 

 
(a) 

 
(b) 

Fig. 2 The schematic of (a) the studied frames, (b) Tri-linear 

backbone curve suggested by Ibarra (Haselton et al. 2007) 

 

 

2002), the aforementioned seismic events have been 

appropriately scaled to have identical spectral acceleration 

with the design spectrum for the fundamental period of each 

structure. In this regard, linear scaling (Atkinson 2009) is 

used to scale all ground motion records by multiplying time 

histories by the appropriate factor (Hancock et al. 2008). 

The mentioned technique is convenient for implementation. 

Also, the frequency content and original phasing of the 

records are preserved in this method (Atkinson 2009). A set 

of 2-D concrete intermediate moment resisting frames 

under vertically regular condition (stiffness and strength) 

with 3, 5, 7, 10, 12 and 15 stories is designed according to 

ASCE7-05 and analyzed in OpenSEES software. In 

addition, this software can use different elements for 

modeling of structural and non-structural sections. 

Moreover, equivalent lateral design forces were determined 

based on ASCE7-05 standard, i.e., the design spectrum was 

derived, and the corresponding design base shears were 

calculated, then both gravity and seismic loads were 

imposed on the frames according to the counteractive load 

combinations of this standard (the reader is referred to 

Section 12.4.2.3 of ASCE7-05 for further details).  

The schematic elevation of the considered concrete 

frames and tri-linear backbone curve for beam elements 

suggested by Ibarra (Haselton et al. 2007) is shown in Fig. 

2. The story height and the bay lengths are 500 and 320 cm, 

respectively. The geometric and material properties of the 

designed 3, 5, 7, 10, 12 and 15 story frames are presented in 

Tables 5-6. In this paper, the nonlinear beams with 

concentrated plastic hinges and columns with fiber section 

are employed to simulate the nonlinear flexural behavior of 

the moment frames. In this regard, the “beam with hinges 

element” is chosen for modeling of the beams and a 

predetermined length at both ends was allocated to the 

plastic hinges, and an elastic material was assigned to the 

mid span. Therefore, the coefficient of cracking was set to 

be 0.5 for the elastic segment of the beams. 

As the nonlinear behavior was assumed to be focused in 
the hinges, expansion of the non-linearity to the elastic 
region was less likely to happen. The nonlinear behavior of 
the plastic hinges was defined in accordance with Haselton 
et al. (2007) which proposes essential relationships for RC 
members, based on the calibration of numerous test results 
in the form of the tri-linear backbone curve suggested by 
Ibarra (Fig. 2(b)). In concrete models, important features 
such as (1) softening due to concrete crushing, 
reinforcement buckling, (2) yielding and (3) bond slip can 
be considered in the negative stiffness region of proposed 
backbone curve, namely the post cap behavior. 
Specifications of this model have been calibrated using the 
results of empirical tests on a large number of beam- 
columns involved 306 rectangular and 177 circular 
columns, which extracted from PEER Structural 
Performance center. 

Finally, parameters of this model were calibrated 

according to the result of 255 experimental tests on RC 

columns. Four modes of deterioration is illustrated in this 

model: (1) Accelerated reloading stiffness deterioration, (2) 

Unloading stiffness deterioration, (3) strength deterioration 

of nonlinear strain hardening branch and (4) Post-cap 

strength deterioration of strain softening. More details such 

as computational equations related to the required 

parameters are available in Haselton et al. (2007). Thus, 

reinforced concrete frames behave according to the 

backbone curve under seismic scenarios and pass the linear 

region and make hysteresis loops. On the other hands, 

strength deterioration has been considered by tri-linear 

backbone curve suggested by Ibarra and the hysteresis 

energy absorbed during the earthquake – as one of most 

important parameters of Park-Ang (1985) damage index – 

can be calculated by the area under these hysteresis loops. 

The tri-linear Ibarra model, as mentioned above, was 

employed in the OpenSEES platform using the Clough 

material proposed by Altoontash (Haselton et al. 2007). 

Columns were modeled by means of the fiber method with 

the capability of developing distributed plasticity along the 

entire length of the element. This choice was made mostly 

due to the fact that the flexural behavior in the columns is 

highly dependent on the interaction of their axial and 

bending forces. Reinforced concrete frames are verified by 

the analytical and experimental result obtained from a 

parametric study and a test of structure on shaking table. In 

the first phase, the results of Huang et al. (2014) are used 

and for the next phase, the studied reinforced concrete 

frames are verified according to results of Nagae et al., 

(2015), which in their study, a full scale reinforced concrete 

building – 4 story – was tested on the E-Defense shake table 

that is provided by E-Defense – National Research Institute 

for Earth Science and Disaster Prevention (NIED) – 

company in Japan Nagae et al. (2015). 
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3. Damage Index 
 
Park and Ang’s damage index (1985) is a well-known 

damage indexes which has been widely used in practice. 
It is based on scaled values of ductility and dissipated 

energy of the local element during the seismic ground 

 

 

shaking. The damage index (DI) is defined as a combination 

of maximum deformation and hysteresis energy 
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Table 4 The features of records in the second database with approximately maximum PGA 

Earthquake Date Magnitude PGA Station 

Chalfant Valley5 
07/21/1986 6.19 0.4246 CDMG 54428 Zack Brothers Ranch 

07/31/1986 5.44 0.0616 CDMG 54428 Zack Brothers Ranch 

Chalfant Valley6 
07/21/1986 5.65 0.1347 CDMG 54428 Zack Brothers Ranch 

07/31/1986 5.44 0.0616 CDMG 54428 Zack Brothers Ranch 

Chalfant Valley7 
07/21/1986 6.19 0.2058 CDMG 54171 Bishop - LADWP South St 

07/31/1986 5.44 0.1515 CDMG 54171 Bishop - LADWP South St 

Chalfant Valley8 
07/21/1986 5.65 0.0864 CDMG 54171 Bishop - LADWP South St 

07/31/1986 5.44 0.1515 CDMG 54171 Bishop - LADWP South St 

Chalfant Valley9 
07/20/1986 5.77 0.1105 CDMG 54171 Bishop - LADWP South St 

07/21/1986 6.19 0.2058 CDMG 54171 Bishop - LADWP South St 

Chalfant Valley10 
07/20/1986 5.77 0.1105 CDMG 54171 Bishop - LADWP South St 

07/21/1986 5.65 0.0864 CDMG 54171 Bishop - LADWP South St 

Coalinga1 
07/22/1983 5.77 0.4543 CDMG 46617 Coalinga-14th & Elm (Old CHP) 

07/22/1983 4.89 0.1539 CDMG 46617 Coalinga-14th & Elm (Old CHP) 

Coalinga2 
07/22/1983 5.77 0.4543 CDMG 46617 Coalinga-14th & Elm (Old CHP) 

07/25/1983 5.21 0.5813 CDMG 46617 Coalinga-14th & Elm (Old CHP) 

Coalinga3 
07/22/1983 4.89 0.0395 CDMG 47T03 Sulphur Baths (temp) 

07/25/1983 5.21 0.2053 CDMG 47T03 Sulphur Baths (temp) 

Kalamata 
09/13/1986 6.20 0.2649 ITSAK 99999 Kalamata (bsmt) 

09/15/1986 5.40 0.1767 ITSAK 99999 Kalamata (bsmt) 

Kozani1 
05/15/1995 5.10 0.0407 ITSAK 99999 Grevena 

05/17/1995 5.30 0.0242 ITSAK 99999 Grevena 

Kozani2 
05/15/1995 5.10 0.0407 ITSAK 99999 Grevena 

05/19/1995 5.10 0.0316 ITSAK 99999 Grevena 

Kozani3 
05/17/1995 5.30 0.0242 ITSAK 99999 Grevena 

05/19/1995 5.10 0.0316 ITSAK 99999 Grevena 

Livermore 
01/24/1980 5.80 0.1066 CDMG 57187 San Ramon - Eastman Kodak 

01/27/1980 5.42 0.1917 CDMG 57187 San Ramon - Eastman Kodak 

Mammoth1 
05/25/1980 6.06 0.4193 CDMG 54099 Convict Creek 

05/25/1980 5.69 0.1669 CDMG 54099 Convict Creek 

Mammoth2 
05/25/1980 6.06 0.4193 CDMG 54099 Convict Creek 

05/25/1980 5.91 0.2172 CDMG 54099 Convict Creek 

Mammoth3 
05/25/1980 5.91 0.3289 CDMG 54214 Long Valley Dam (Upr L Abut) 

05/25/1980 5.70 0.2403 CDMG 54214 Long Valley Dam (Upr L Abut) 

Mammoth4 
05/25/1980 5.91 0.3289 CDMG 54214 Long Valley Dam (Upr L Abut) 

05/26/1980 5.70 0.0926 CDMG 54214 Long Valley Dam (Upr L Abut) 

Mammoth5 
05/25/1980 6.06 0.2818 CDMG 54301 Mammoth Lakes H. S. 

05/25/1980 5.69 0.4143 CDMG 54301 Mammoth Lakes H. S. 

Mammoth6 
05/25/1980 5.69 0.1369 CDMG 54214 Long Valley Dam (Upr L Abut) 

05/25/1980 5.91 0.3289 CDMG 54214 Long Valley Dam (Upr L Abut) 

Mammoth7 
05/25/1980 6.06 0.3403 CDMG 54214 Long Valley Dam (Upr L Abut) 

05/25/1980 5.91 0.3289 CDMG 54214 Long Valley Dam (Upr L Abut) 

Mammoth8 
05/25/1980 6.06 0.3403 CDMG 54214 Long Valley Dam (Upr L Abut) 

05/27/1980 5.94 0.6293 CDMG 54214 Long Valley Dam (Upr L Abut) 

Mammoth9 
05/26/1980 5.70 0.0926 CDMG 54214 Long Valley Dam (Upr L Abut) 

05/27/1980 5.94 0.6293 CDMG 54214 Long Valley Dam (Upr L Abut) 

Mammoth10 
05/25/1980 5.70 0.2403 CDMG 54214 Long Valley Dam (Upr L Abut) 

05/27/1980 5.94 0.6293 CDMG 54214 Long Valley Dam (Upr L Abut) 
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Table 5 Geometric properties of the designed 3, 5, 7, 10, 12 

and 15 story frames 

Number 

Of story 
Level 

Column 

Width 

(cm) 

Column 

Height 

(cm) 

Beam 

Width 

(Cm) 

Beam 

Height 

(cm) 

3 1, 2, 3 40 40 40 35 

5 
1, 2 50 50 50 40 

3, 4, 5 40 40 50 40 

7 
1, 2, 3, 4 55 55 55 45 

5, 6, 7 45 45 45 35 

10 

1, 2, 3, 4 55 55 55 40 

5, 6, 7 45 45 45 40 

8, 9, 10 40 40 40 35 

12 

1, 2, 3, 4 60 60 60 50 

5, 6, 7, 8 55 55 55 40 

9, 10, 11, 12 40 40 40 35 

15 

1, 2, 3, 4 65 65 65 50 

5, 6, 7, 8 55 55 55 50 

9, 10, 11, 12 45 45 45 40 

13, 14, 15 35 35 35 35 

 

Table 6 Material properties of the designed 3, 5, 7, 10, 12 

and 15 story frames (kg/cm2) 

Specified Concrete 

Compression Strength 
Modulus of Elasticity Yield Stress 

250 2.388 e+5 4000 

 

 

Where δm is the maximum deformation of the element, 

δu represents the ultimate deformation, β is a model 

constant parameter, usually considered 0.05-0.20, to control 

strength deterioration, ʃdE, the hysteresis energy absorbed 

by the element during the earthquake and Py is the yield 

strength of the element. In order to calculate the Damage 

index –based on Eq. (1) -β is taken as 0.15 according to 

Park et al. (1987) for nominal strength deterioration. In 

order to calculate this damage index, the control node is 

selected at the center of mass at the roof of each RC frame. 

The target displacement at each floor level has been 

calculated in accordance with Eqs. (3)-(15) of FEMA 356 

(the reader would be referred to Section 3.3.3.3.2 of FEMA  

Table 4 Continued 

Earthquake Date Magnitude PGA Station 

Mammoth11 
05/25/1980 6.06 0.3403 CDMG 54214 Long Valley Dam (Upr L Abut) 

05/27/1980 5.94 0.6293 CDMG 54214 Long Valley Dam (Upr L Abut) 

Mammoth12 
05/25/1980 5.91 0.2172 CDMG 54099 Convict Creek 

05/25/1980 5.70 0.4156 CDMG 54099 Convict Creek 

Mammoth13 
05/25/1980 5.69 0.1669 CDMG 54099 Convict Creek 

05/25/1980 5.70 0.4156 CDMG 54099 Convict Creek 

Mammoth14 
05/25/1980 5.91 0.2172 CDMG 54099 Convict Creek 

05/26/1980 5.70 0.1234 CDMG 54099 Convict Creek 

Mammoth15 
05/25/1980 5.69 0.1669 CDMG 54099 Convict Creek 

05/26/1980 5.70 0.1234 CDMG 54099 Convict Creek 

Mammoth16 
05/25/1980 6.06 0.3403 CDMG 54214 Long Valley Dam (Upr L Abut) 

05/25/1980 5.70 0.2403 CDMG 54214 Long Valley Dam (Upr L Abut) 

Mammoth17 
05/25/1980 6.06 0.3403 CDMG 54214 Long Valley Dam (Upr L Abut) 

05/26/1980 5.70 0.0926 CDMG 54214 Long Valley Dam (Upr L Abut) 

Mammoth18 
05/25/1980 5.70 0.2403 CDMG 54214 Long Valley Dam (Upr L Abut) 

05/26/1980 5.70 0.0926 CDMG 54214 Long Valley Dam (Upr L Abut) 

Mammoth19 
05/25/1980 5.69 0.1669 CDMG 54099 Convict Creek 

05/25/1980 5.91 0.2172 CDMG 54099 Convict Creek 

Northwest7 
04/05/1997 5.90 0.0392 CSB 19002 Xiker 

04/06/1997 5.93 0.0748 CSB 19002 Xiker 

Northwest8 
04/05/1997 5.90 0.0392 CSB 19002 Xiker 

04/11/1997 6.10 
 

CSB 19002 Xiker 

Northwest9 
04/05/1997 5.90 0.0392 CSB 19002 Xiker 

4/15/1997 5.80 0.0997 CSB 19002 Xiker 

Northwest10 
04/06/1997 5.93 0.0748 CSB 19002 Xiker 

04/11/1997 6.10 
 

CSB 19002 Xiker 

Northwest11 
04/06/1997 5.93 0.0748 CSB 19002 Xiker 

04/15/1997 5.80 0.0997 CSB 19002 Xiker 

Northwest12 
04/11/1997 6.10 

 
CSB 19002 Xiker 

04/15/1997 5.80 0.0997 CSB 19002 Xiker 

Northridge 
01/17/1994 5.93 0.122 CDMG 24278 Castaic - Old Ridge Route 

01/17/1994 5.13 0.081 CDMG 24278 Castaic - Old Ridge Route 

Oroville 
08/02/1975 4.79 0.0274 CIT 1545 Oroville Airport 

08/02/1975 4.37 0.0229 CIT 1545 Oroville Airport 

Nepal 
25/04/2015 7.8 0.164 Kanti Path, Kathmandu, Nepal 

12/05/2015 6.7 0.065 Kanti Path, Kathmandu, Nepal 
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Fig. 3 Schematic of computational neuron components 

(Hagan 2014) and studied artificial neural networks 

 

 

356 for further details). 

A uniform distribution consisting of lateral forces at 

each level proportional to the total mass at each level is 

selected and nonlinear static analysis (Push over analysis) 

has been done. The ultimate displacement and yield 

strength can be determined based on force-displacement 

relation between base shear and displacement of control 

node. Moreover, maximum displacement and hysteresis 

energy absorbed during the earthquake determine based on 

the nonlinear dynamic analysis result of RC frames under 

single and consecutive earthquakes. 

 
 
4. Artificial neural networks 

 

From the mathematical point of view, the neural 

network is a “vector mapper” that maps an input vector to 

an output vector. With known combinations of input and 

target data, the neural network can be “trained” to extract 

the underlying characteristics and relationships from the 

data (Leung et al. 2006). Perhaps, it can be said that 

artificial neural networks have been used for more than 60 

years ago when McCulloch and Pitts founded the neural 

networks by proposing a mathematical model in 1943 

(McCulloch et al. 1943). Artificial neural networks are 

highly nonlinear and can capture the complex interactions 

among input/output variables in a system without any prior 

knowledge about the nature of these interactions. These 

networks do not involve complicated derivations; however, 

they are able to analyze problems involving a large number 

of variables (Leung et al. 2006). It seems that artificial 

neural networks are considered as a powerful regression 

tool and their main advantages are high abilities and 

simplicity in use. In civil engineering, neural networks have 

been applied to various aspects, such as structural analysis 

and design (Hajela and Berke 1991), structural damage 

assessment (El-Kordy et al. 1993), structural control (Chen 

et al. 1995) and etc. Neural networks are made up of simple 

elements called neurons that operate in parallel. A 

schematic drawing of a simplified computational neuron 

and studied neural networks is shown in Fig. 3.  

Each neuron can receive an input vector (xi) and 

perform a series of mathematical operations, including the 

calculation of a weighted sum Wi xi+b (where b is the bias)  

 

Fig. 4 Schematic of back propagation algorithm in neural 

network of single earthquakes 

 

 

and can produce a unique output value (y) through a transfer 

function (Hagan 2014). As mentioned earlier, the damage of 

reinforced concrete structure under single and consecutive 

earthquakes is estimated by multilayer neural networks 

(Fig. 3) with back-propagation learning algorithm. This 

algorithm is the generalization of the Widrow-Hoff learning 

rule to multiple layer networks and nonlinear differentiable 

transfer functions and employed for modifying the weights 

and biases of the network. Since networks have biases, the 

sigmoid layers and a linear output layer are capable of 

approximating any function with a finite number of 

discontinuities, input vectors and the corresponding  target 

vectors are used to train a  network until it can find the 

relationship between inputs and target, classify the inputs 

and approximate a function for them (Hagan 2014). 

Standard back propagation is a gradient descent algorithm 

(Fig. 4), which the randomly network weights moved along 

the negative of the gradient of the performance function. 

After the calculation of output at each step (obtained (Wi xi 

+b) that has passed from the transfer function: f(Wi xi+b)), 

the weights are corrected according to the difference 

between the targets and outputs until the error (i.e., the 

difference between the predicted value of the network and 

the actual value of the Park-Ang damage index) has been 

minimized. In back propagation algorithm, excitation 

function of each neuron is equal to the weighted sum of its 

input. In the next step, the minimization is performed with 

Levenberg-Marquardt algorithm which used for least 

squares problems. This algorithm is a modified steepest 

descent approach and a combination of Newton-Gauss 

methods that adjusts the slope of descent with a scalar 

parameter to achieve more rapid convergence. Also, input 

vectors and target vectors were divided into three sets 

including training, validation and testing (Hagan 2014). 

Here, the values of 60%, 35%, and 5% were randomly 

selected for training, testing and validation respectively in 

order to obtain the most efficient distribution sets of data 

and prevent the over fitting issue. So, 60% of whole data 

was specified as the training data in which the network 

would be adjusted according to its error. Similarly, 5% of 

the database was considered as the validating data which 

was used to measure network generalization and to halt 

training when generalization stops improving. 
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Finally the remaining 35% of whole data was specified 

as the testing data which has no effects on training and 

provides an independent measure of network performance 

during and after the training process. The selected criterion 

to stop the training process of the networks was Mean 

Square Error (MSE) which is the average squared 

difference between outputs and targets. Lower values mean 

better performance of the network (zero value means no 

error). Furthermore, the regression values (R-values) 

measure the correlation between outputs and targets in the 

networks. R-value of 1 means a close relationship, while the 

value of 0 indicates a random relationship. These two 

criteria (MSE and R-values) were considered as the basis 

for selecting the idealized network. 

 

4.1 Neural network modeling 
 
In order to achieve a suitable model of neural network, 

providing homogeneous and sufficient information for 

training, verifying and testing of neural networks is 

essential. So, as mentioned earlier in the first step, to 

estimate the structural damage under earthquakes 

with/without seismic sequence phenomena, eight 

comprehensive sets of data were collected.  

The selected databases contain period of structures (T) 

and some of the earthquake features including PGA, 

magnitude (M), shear wave velocity at the station (Vs), 

 

 

 

epicentral distance (Epc) and time gap between consecutive 

earthquakes (Tg) as artificial neural network inputs and 

Damage index (DI) based on Park-Ang damage index, as a 

target. It should be noted that the time gap between the first 

and second shocks is just for consecutive earthquakes with 

real delay in the first database. However, the ratio of 

parameters in the second shake to first one – except the 

shear wave velocity at the station. Because, both stations 

are same – are used to reduce the number of neural network 

inputs for consecutive earthquakes. Also, the structural 

damage as the results of nonlinear dynamic analysis in 

OpenSees software is neural network targets. As mentioned 

previously, structural damage under single and multiple 

earthquakes is calculated according to Eq. (1) by Park-Ang 

damage index. For this, at the beginning, the first shock is 

applied to the frames and damage index is calculated. Then, 

the time gap-with zero acceleration-is set between shocks 

and with applying the consecutive earthquakes, damage 

index is calculated for the consecutive case. The Statistical 

properties of inputs and targets are listed in Tables 7-10 for 

each case. In the network architectures “D” means 

Database, 1 and 2 are database number, -in database 1 and 

2, the time gap between consecutive earthquakes is real and 

120 (s) -“A” and “E” mean “Maximum PGA” and 

“approximately Maximum PGA” respectively, “I” and “E” 

mean “Single” and “Consecutive” earthquake respectively. 

As shown in Fig. 1 D2AE means consecutive earthquakes  

Table 7 Statistical properties of data in 1st database 1-Maximum PGA 

Database Input nodes Minimum Maximum Mean Standard deviation Coefficient of variation 

D1AI 

PGA 0.121 0.4246 0.28 0.1279 0.46 

M 5.6 6.6 6.13 0.4223 0.07 

Vs (m/s) 198.8 424.8 298.3 96.94 0.325 

Epc (Km) 14.33 24.23 19.72 4.21 0.214 

T (s) 0.863 3.175 1.82 0.84 0.463 

DI 0.04 2.78 0.78 0.75 0.96 

D1AE 

PGAa/PGAm 0.179 0.564 0.354 0.164 0.464 

Ma/Mm 0.879 1 0.93 0.053 0.056 

Vs (m/s) 198.8 424.8 298.3 96.94 0.325 

Epca/Epcm 0.918 1.108 1.03 0.084 0.081 

Tg (min) 2 9 6.67 3.4 0.51 

T (s) 0.863 3.175 1.82 0.84 0.463 

DI 0.121 4.43 1.88 1.31 0.7 

Table 8 Statistical properties of data in 1st database-Approximately Maximum PGA 

Database Input nodes Minimum Maximum Mean Standard deviation Coefficient of variation 

D1EI 

PGA 0.2058 0.698 0.41 0.162 0.395 

M 5.9 6.9 6.48 0.343 0.053 

Vs (m/s) 205.6 1000 426.73 271.82 0.637 

Epc (Km) 16.24 40.68 25.94 8.26 0.32 

T (s) 0.863 3.175 1.82 0.84 0.463 

DI 0.002 4.55 1.8 1.33 0.74 

D1EE 

PGAa/PGAm 0.047 0.914 0.372 0.304 0.82 

Ma/Mm 0.767 1.051 0.906 0.083 0.092 

Vs (m/s) 205.6 1000 426.73 271.82 0.637 

Epca/Epcm 0.343 1.278 0.727 0.33 0.452 

Tg (min) 1 9 3.5 3.08 0.88 

T (s) 0.86 3.18 1.82 0.84 0.46 

DI 0.005 8.9 2.33 1.75 0.75 

136



 

Maximum damage prediction for regular reinforced concrete frames under consecutive earthquakes 

 

 

 

Table 11 Scaling equations of input and target nodes 

Scaling equation Parameter 

i      minmaxmin /1.09.01.0 iiiiiScaled   

 

 

with the maximum PGA in the second database. Since two 

hidden layers with sigmoid transfer functions are used in all 

of the artificial neural network modellings, to ensure more 

suitable performance of this function, normalization/ 

scaling of the whole data is made before training the 

selected data. This has been done since the sigmoid transfer 

function is used in the network, which recognizes values 

between 0 and 1. In order to scale the data from 0.1 to 0.9 

(According to Table 11), minimum and maximum values 

were taken using a linear relationship between those values 

(Leung et al. 2006). After entering the normalized inputs 

and targets data to neural networks, they are trained until 

the error is minimized and then, the outputs are obtained. 

As previously mentioned, in this paper two hidden layers 

are used in all of the networks. In order to achieve the ideal 

neural network for the both databases, 400 networks are 

designed with a different number of hidden neurons in each 

layer from 1 to 20. Then idealized neural networks are 

selected with the least value of MSE and maximum value of 

R among all networks. For example, the regression values 

of two networks – regarding the first database in single and 

consecutive cases with maximum PGA – with different 

 

 

Table 12 Optimal neuron’s number in idealized neural 

networks 

Databse Neural Network 1st hidden layer 2nd hidden layer 

1st Database 

D1AI 4 17 

D1AE 16 11 

D1EI 17 12 

D1EE 20 5 

2nd Database 

D2AI 6 17 

D2AE 6 19 

D2EI 10 16 

D2EE 10 19 

 

 

number of hidden nodes in each layer are presented in Fig. 

5. In this figure, maximum Regression values are shown by 

Solid circle. In this way, the number of hidden nodes in 

each layer of idealized networks (Table 12) is determined 

according to maximum R value. It should be noted that in 

the neural network fitting process, the choice of neuron 

numbers is an important matter. With too few neurons, the 

network will not be able to fit the data well. However, with 

too many neurons, “over fitting” may occur (Leung et al. 

2006). For example, the mean squared error of networks for 

consecutive earthquakes in the first database is shown in 

Fig. 6. The curves have three lines, because the input and 

target vectors are randomly divided into three sets. In all  

Table 9 Statistical properties of data in 2nd database-Maximum PGA 

Database Input nodes Minimum Maximum Mean Standard deviation Coefficient of variation 

D2AI 

PGA 0.0344 0.4193 0.241 0.111 0.46 

M 4.73 7.8 5.76 0.745 0.13 

Vs (m/s) 271.4 600 342.47 81.04 0.237 

Epc (Km) 1.33 59.9 13.47 13.47 13.77 

T (s) 0.863 3.175 1.82 0.84 0.463 

DI 0.0001 3.72 0.51 0.8 1.85 

D2AE 

PGAa/PGAm 0.294 3.777 1.188 0.821 0.691 

Ma/Mm 0.833 1.073 0.979 0.06 0.062 

Vs (m/s) 271.4 600 328.53 75.3 0.23 

Epca/Epcm 0.714 6.545 1.605 1.28 0.798 

T (s) 0.863 3.175 1.82 0.84 0.463 

DI 0 6.94 1.24 1.67 1.35 

Table 10 Statistical properties of data in 2nd database-approximately Maximum PGA 

Database Input nodes Minimum Maximum Mean Standard deviation Coefficient of variation 

D2EI 

PGA 0.024 0.454 0.178 0.128 0.72 

M 4.79 7.8 5.84 0.538 0.092 

Vs (m/s) 271.4 617.4 347 89.57 0.258 

Epc (Km) 1.43 81.09 23.27 18.43 0.79 

T (s) 0.863 3.175 1.82 0.84 0.463 

DI 0 3.46 0.37 0.69 1.82 

D2EE 

PGAa/PGAm 0.145 6.796 1.381 1.26 0.91 

Ma/Mm 0.847 1.073 0.968 0.057 0.059 

Vs (m/s) 271.4 617.4 338.66 73.55 0.217 

Epca/Epcm 0.32 6.014 1.169 0.99 0.85 

T (s) 0.863 3.175 1.8201667 0.84 0.463 

DI 0 8.45 1.04 1.52 1.465 
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(a) 

 
(b) 

Fig. 5 Regression values between target and output of 

neural networks, 1st database, (a) Single earthquakes with 

maximum PGA, (b) Consecutive earthquakes with 

maximum PGA 

 

 
(a) 

 
(b) 

Fig. 6 Performance of neural networks for consecutive 

earthquakes in 1st database, (a) Maximum PGA,          

(b) Approximately maximum PGA 
 

 
(a) 

 
(b) 

Fig. 7 Simulated regression values by neural networks in 

training, validation and test stage – 2nd database, (a) Single 

earthquakes with maximum PGA, (b) Consecutive 

earthquakes with maximum PGA 

 

 

cases, the curves have been started at a large value and 

decreased to a smaller one. In other words, these figures 

show that the networks have well learned. Training on the 

vectors continues as long as the network’s errors on the 

validation vectors are reduced.  

Then, the networks memorize the training set (at the 

expense of generalizing more poorly), and the training is 

stopped automatically. The values of mean square error and 

corresponding epoch have been shown in Fig. 6 for 2 cases. 

Simulated regression values by neural networks in the 

training process, the validation and test stages (for second 

database, Maximum PGA) are shown in Fig. 7. As can be 

seen in this figure, the correlation between targets and 

outputs of neural networks is close to one. 

 
 
5. Development of the empirical approach to 
determine the maximum damage of reinforced 
concrete structures under single and consecutive 
earthquakes 
 

As it was indicated in the previous section, the 

simulated results from the neural networks for both 

databases in single and consecutive cases with maximum 

PGA and approximately maximum PGA are in reasonably 

good agreement with the target data. But it is not 

convenient to use the networks in engineering design. Since  
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Table 13 Range of input parameters and their corresponding 

reference values used in derivation of empirical design 

approach-single earthquake 

Database 
Input parameters 

PGA M Vs (m/s) Epc (Km) T (s) 

D1AI 0.29 6 270 20 1.7 

D1EI 0.39 6.525 318 24 1.7 

D2AI 0.24 5.9 340 11 1.7 

D2EI 0.145 5.785 338 16 1.7 

 

Table 14 Range of input parameters and their corresponding 

reference values used in derivation of empirical design 

approach-Consecutive earthquake 

Database 
Input parameters 

PGAa/PGAm Ma/Mm Vs (m/s) Epca/Epcm T (s) 

D1AE 0.29 6 270 20 8.6 

D1EE 0.39 6.525 318 24 3 

D2AE 0.24 5.9 340 11  

D2EE 0.145 5.785 338 16  

 

 

Fig. 8 Variations of “DI” at reference parametric values, 

Single earthquakes with maximum PGA in 1st database 

 

 

the network contains many weights and biases with transfer 

functions, the final equations will become very 

complicated. In order to solve with this problem, the neural 

networks should be employed to generate empirical design 

charts and equations for use in the design process. To come 

up with an empirical design approach, the range and 

reference values for each group of input parameters such as 

period of RC frames “T”– for both databases in single and 

consecutive cases with maximum PGA and approximately 

maximum PGA – are defined in Tables 13-14. 

The reference values of each parameter are chosen to be 

close to the median values. The pattern formula used for 

predicting the maximum damage of reinforced concrete 

structures under single and consecutive earthquakes in the 

first and second databases is the same. For this reason, the 

steps are described in details just for single earthquakes in 

the first database with maximum PGA case as follows: In 

the first step, “DI” parameter is plotted against period of RC 

frames “T” in Fig. 8 and Eq. (2) with assuming the other 

input parameters are kept constant at their respective 

reference values. To account the effect of these parameters 

on DI, a correction function has to be derived. This function 

can be written in Eq. (3).  

According to Eq. (3), the variation of “DI” with each 

parameter is assumed to be independent of the other 

parameters. To illustrate that this assumption is acceptable, 

the correction factor C(PGA) will be derived as an example. 

To derive C(PGA), master curves are first obtained with 

different “M” values, but with “PGA” fixed at the normal 

reference value. For each combination of “PGA” and “M”, 

“DI” is obtained from the neural network. By dividing the 

network simulated values by the results derived from the 

master curves, the correction factor C(PGA) can be 

obtained.  

The same process was performed to plot C(PGA) 

against variations of other input parameters including “Vs” 

and “Epc”. By considering all curves for C(PGA) that are 

shown in Fig. 9, a curve that fits the others with the 

minimum least square error was found according to Eq. (4). 

The same procedure has been applied to obtain the 

correction factors for the other input parameters, C(M), 

C(Vs) and C(Epc). These factors are shown in Eqs. (5)-(7). 

Consequently, the normalized maximum damage of 

reinforced concrete structure under single earthquake with 

the maximum PGA in first database is obtained from Eq. 

(8).  
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Finally, damage index is calculated according to DI 

equation in Table 11 and Minimum and maximum values in 

Table 7. In other cases, determination of maximum damage 

approach in reinforced concrete structures is similar to 

above manner. For example, proposed equations for  
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Fig. 9 C(PGA) with various values of “M”, “Vs” and “Epc” 

– Single earthquakes with maximum PGA in 1st database 

 

 

consecutive earthquakes are listed in Tables 15-18. But all 

results of single and successive cases are reported in Fig. 

10. 

 

6. Comparison between simulated and real values of 
maximum damage 
 

The proposed artificial neural network models are 

compared with the real values that introduced in the 

previous section. Fig. 10 shows the results in normal case 

base on record types and database. In this figure, horizontal 

 

 

 

Fig. 10 Comparison of predicted values of maximum 

damage index versus real value according to Park-Ang 

damage index 

 

 

and vertical axes are “the real value of maximum damage 

index based on Park-Ang damage index “ and “the 

predicted value by neural network” respectively. The 

average error for the artificial neural network models–in 

both of single and consecutive earthquakes-for predicting 

the real results is equal to 9.3%. 

To be more specific, more than 90% of the simulated 

results are within ±15% of the real values for artificial 

neural network models according to Table 19. This is an 

indication that the networks have learned to generalize the 

Table 18 Proposed approach - consecutive earthquakes with approximately maximum PGA in 2nd database
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Table 19 Error distribution of predicted values relative to real values 

Range of error ±5% ±10% ±15% ±17% ±18% ±19% 

Number of data in this error range 13 26 42 45 46 48 

Percentage to total data 27.10% 54.20% 87.50% 93.75% 95.83% 100% 
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unseen information well and reflects good precision in 

simulating. Moreover, concentrating on the Fig. 10, it can 

be seen that the values simulated by the artificial neural 

network model sets spread around the 45 degree line which 

implies neither over-estimation nor under-estimation. 

 

 
7. Conclusions 
 

In this investigation, large collections of experimental 

data from earthquake features and the resulting structural 

damage were gathered. Through the development of eight 

artificial neural networks (two databases with maximum 

and approximately maximum PGA in single and 

consecutive cases), the structural damage of reinforced 

concrete frames was related to some parameters such as, 

period of structures (T), Park-Ang damage index – as the 

results of nonlinear dynamic analysis in Opensees software 

(DI) – and some of earthquake features including PGA, 

magnitude (M), shear wave velocity at the station (Vs), 

epicentral distance (Epc) and time gap between consecutive 

earthquakes (Tg). 

For each of the eight cases, after training the 400 neural 

networks with a different number of neurons in hidden 

layers, by considering the performance of the networks 

(MSE and R), one of the networks was selected for 

simulation which showed effective performance through 

training, testing, and validation. Also simulated values by 

the artificial neural network model sets spread around the 

45 degree line which implied neither overestimation nor 

underestimation. Afterward, using the trained and validated 

networks, empirical design charts and correction equations 

are derived for calculation of maximum damage in regular 

reinforced concrete frames under single and consecutive 

earthquakes in the absence of the idealized network. On the 

other hand, equations which were derived predict the 

maximum damage index independently from the network.  

The precision of the proposed equations was examined 

with real damage indexes (Park-Ang damage index) that 

showed good agreement. 

So that the average error of the artificial neural network 

models for predicting the maximum damage results 

according to Park and Ang damage index (1985) under 

single and consecutive earthquakes, were lower than 10%, 

and more than 90% of the simulated results were within  

±15% of the real values for artificial neural network 

models. The obtained results indicate that the networks 

were learned to generalize the information well. 
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