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1. Introduction 
 

Sandwich structures have been extensively used in 

aerospace, aeronautic, automotive, naval, underwater, and 

building structures. Sandwich plates may be used for 

constructing light-weight structures with high strength or 

stiffness to weight ratios, noise, vibration, and harshness 

(NVH) isolation. Generally the conventional sandwich 

structures are fabricated form three homogeneous layers, 

two face sheets adhesively bonded to the core. However, 

due to the mismatch of stiffness properties between the face 

sheets and the core, sandwich structures are susceptible to 

face sheet/core debonding, which is a major problem in 

sandwich construction, especially under impact loading 

(Abrate 1998). To increase the resistance of sandwich 

structures to this type of failure, the concept of a 

functionally graded material (FGM) is being actively 

explored in sandwich structure design. FGMs are achieved 

by gradually changing the composition of the constituent 

materials along one (or more) direction(s), usually in the 
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thickness direction, to obtain smooth variation of material 

properties and optimum response to externally applied 

loading (Attia et al. 2018, Bakhadda et al. 2018, Zine et al. 

2018, Sekkal et al. 2017, Abdelaziz et al. 2017, Mouffoki et 

al. 2017, Bellifa et al. 2017a, Zidi et al. 2017, Benadouda et 

al. 2017, Barati and Shahverdi 2016, Benferhat et al. 2016, 

Ahouel et al. 2016, Bounouara et al. 2016, Bousahla et al. 

2016, Belkorissat et al. 2015, Zidi et al. 2014). The FGM 

sandwich construction exists in two types: the FGM face 

sheet-homogeneous core and the homogeneous face sheet-

FGM core. For the case of the homogeneous core, the soft-

core is commonly employed because of the light weight and 

high bending stiffness in the structural design. The 

homogeneous hardcore is also employed in other fields, 

such as control or thermal environments. The actuators and 

sensors which are common piezoelectric ceramics are 

always in the midlayers of the sandwich construction (Shen 

2005). Moreover, in the thermal environments, the metal-

rich face sheet can reduce the large tensile stress on the 

surface at the early stage of cooling (Noda 1999). 

Studies related to FGM sandwich structures are few in 

numbers. Etemadi et al. (2009) used three-dimensional 

finite element simulations for investigating low velocity 

impact response of sandwich panels with a FGM core.  A 

three-dimensional elasticity solution is presented by 
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Abstract.  In this work, a simple but accurate hyperbolic plate theory for the free vibration analysis of functionally graded 

material (FGM) sandwich plates is developed. The significant feature of this formulation is that, in addition to including the 

shear deformation effect, it deals with only 3 unknowns as the classical plate theory (CPT), instead of 5 as in the well-known 

first shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT). A shear correction factor is, therefore, 

not required. Two common types of FGM sandwich plates are considered, namely, the sandwich with the FGM face sheet and 

the homogeneous core and the sandwich with the homogeneous face sheet and the FGM core. The equation of motion for the 

FGM sandwich plates is obtained based on Hamilton‟s principle. The closed form solutions are obtained by using the Navier 

technique. The fundamental frequencies are found by solving the eigenvalue problems. Numerical results of the present theory 

are compared with the CPT, FSDT, order shear deformation theories (HSDTs), and 3D solutions. Verification studies show that 

the proposed theory is not only accurate and simple in solving the free vibration behaviour of FGM sandwich plates, but also 

comparable with the higher-order shear deformation theories which contain more number of unknowns. 
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Anderson (2003) for a sandwich composite with a FGM 

core subjected to transverse loading by a rigid spherical 

indentor. Shodja et al. (2007) developed an exact thermo-

elasticity solution for a 2D sandwich structures with FGM 

coating. Li et al. (2008) presented a three-dimensional 

solution for free vibration of multi-layer FGM system-

symmetric and unsymmetric FGM sandwich plates using 

the Ritz method. Yaghoobi and Yaghoobi (2013) presented 

analytical solutions for the buckling of symmetric sandwich 

plates with FGM face sheets resting on an elastic 

foundation based on the first-order shear deformation plate 

theory and subjected to mechanical, thermal and also 

thermo-mechanical loads. Yaghoobi and Fereidoon (2014) 

studied the mechanical and thermal buckling analysis of FG 

plates resting on elastic foundation using a simple refined 

nth-order shear deformation theory. Gulshan Taj et al. 

(2014) studied the bending behaviour of FGM skew 

sandwich plates by employing a higher shear and normal 

deformation theory in conjunction with FEM. Ait Amar 

Meziane et al. (2014) proposed an efficient and simple 

refined theory for buckling and free vibration of 

exponentially graded sandwich plates under various 

boundary conditions. Attia et al. (2015) discussed the free 

vibration behavior of FG plates with temperature-dependent 

properties using various four variable refined plate theories. 

Ait Yahia et al. (2015) examined the wave propagation in 

FG plates with porosities using various higher-order shear 

deformation plate theories. Akavci (2016) studied the 

mechanical behavior of FG sandwich plates on elastic 

foundation. Abdelhak et al. (2016) investigated the thermal 

buckling response of FG sandwich plates with clamped 

boundary conditions. Bouderba et al. (2016) examined the 

thermal stability of FG sandwich plates using a simple shear 

deformation theory. Beldjelili et al. (2016) presented and 

studied the hygro-thermo-mechanical bending response of 

S-FGM plates resting on variable elastic foundations using 

a four-variable trigonometric plate theory. Barka et al. 

(2016) discussed the thermal post-buckling behavior of 

imperfect temperature-dependent sandwich FGM plates 

resting on Pasternak elastic foundation. In a number of 

recent articles - see (Hadji et al. 2011, Bourada et al. 2012, 

Bachir Bouiadjra et al. 2012, Tounsi et al. 2013, Kettaf et 

al. 2013) a new refined and robust plate theory for bending 

response and buckling of simply supported FGM sandwich 

plate with only four unknown functions has been 

developed.   

The increase in FGM applications requires accurate 

models to predict their responses. Since the shear 

deformation has significant effects on the responses of 

functionally graded (FG) plates, shear deformation theories 

are used to capture such shear deformation effects. Since 

the first-order shear deformation theory (FSDT) accounts 

for the transverse shear deformation effect by the way of 

linear variation of in-plane displacement through the 

thickness, it violates the equilibrium conditions at the top 

and bottom surfaces of the plate; hence, shear correction 

factors are required to correct the unrealistic variation of 

transverse shear stresses and shear strain through the 

thickness. The higher-order shear deformation theories 

(HSDTs) account for the shear deformation effects, and 

satisfy the zero transverse shear stresses on the top and 

bottom surfaces of the plate, thus, a shear correction factor 

is not required. Some of these HSDTs are computational 

costs because with each additional power of the thickness 

coordinate, an additional unknown is introduced to the 

theory (e.g., theories by Pradyumna and Bandyopadhyay 

2008) and Neves et al. (2012) with nine unknowns, Reddy 

(2011) with eleven unknowns, Talha and Singh (2010) with 

thirteen unknowns). Although some well-known HSDTs 

have five unknowns (e.g., third-order shear deformation 

theory (Reddy 2000), sinusoidal shear deformation theory 

(Etemadi et al. 2003, Anderson 2003, Shodja et al. 2007), 

hyperbolic shear deformation theory (Atmane et al. 2010, 

Benyoucef et al. 2010) or only four unknowns (Hadji et al. 

2011, Bourada et al. 2015, Benachour et al. 2011, 2012, 

Bachir Bouiadjra et al. 2012, Tounsi et al. 2013, Kettaf et 

al. 2013, Bouderba et al. 2013, Boukhari et al. 2016, 

Menasria et al. 2017, Chikh et al. 2017, Khetir et al. 2017, 

Fahsi et al. 2017, El-Haina et al. 2017), their equations of 

motion are much more complicated than those of FSDT. 

Thus, needs exist for the development of HSDTs which are 

simple to use. 

The aim of this work is to develop a new variationally 

consistent three unknown hyperbolic shear deformation 

theory for FGM sandwich plates. The present theory has 

only three unknowns and three governing equations as the 

classical plate theory (CPT), but it satisfies the stress-free 

boundary conditions on the top and bottom surfaces of the 

plate without requiring any shear correction factors. Thus, 

the number of unknowns and equations of motion of the 

proposed theory is reduced and hence makes it simple to 

use. Equations of motion are derived from Hamilton‟s 

principle. Two common types of FGM sandwich plates, 

namely, the sandwich with the FGM face sheet and the 

homogeneous core and the sandwich with the homogeneous 

face sheet and the FGM core, are considered. The Navier 

solution is used to obtain the closed form solutions for 

simply supported FGM sandwich plates. To illustrate the 

accuracy of the present theory, the obtained results are 

compared with three-dimensional elasticity solutions and 

the results of the first-order and the other higher-order 

theories. 

 

 
2. Theoretical formulation 
 

2.1 Geometrical configuration 
 

Consider the case of a uniform thickness, rectangular 

FGM sandwich plate composed of three microscopically 

heterogeneous layers referring to a rectangular coordinates 

(x, y, z) as shown in Fig. 1. The top and bottom faces of the 

plate are at z=±h/2, and the edges of the plate are parallel to 

axes x and y. 

The sandwich plate is composed of three elastic layers, 

namely, „„Layer 1‟‟, „„Layer 2‟‟, and „„Layer 3‟‟ from bottom 

to top of the plate. The vertical ordinates of the bottom, the 

two interfaces, and the top are denoted by h1=−h/2, h2, h3, 

h4=h/2, respectively. For the brevity, the ratio of the 

thickness of each layer from bottom to top is denoted by the  
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Fig. 1 Geometry of rectangular FGM sandwich plate with 

uniform thickness in the rectangular Cartesian coordinates 

 

 

combination of three numbers, i.e., „„1-0-1‟‟, „„2-1-2‟‟ and 

so on. As shown in Fig. 2, two types A and B are considered 

in the present study: 

• Type A: FGM face sheet and homogeneous core 

• Type B: Homogeneous face sheet and FGM core 

 

2.2 Material properties 
 

The properties of FGM vary continuously due to 

gradually changing the volume fraction of the constituent 

materials (ceramic and metal), usually in the thickness 

direction only. Power-law function is commonly used to 

describe these variations of materials properties. The 

sandwich structures made of two types of power-law FGMs 

mentioned before are discussed as follows. 

 

2.2.1 Type A: power-law FGM face sheet and 
homogeneous core 

The volume fraction of the FGMs is assumed to obey a 

power-law function along the thickness direction 

k
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where V
(n)

, (n=1,2,3) denotes the volume fraction function 

of layer n; k is the volume fraction index        

(0≤k≤+∞), which dictates the material variation profile 

through the thickness. 

 

2.2.2 Type B: homogeneous face sheet and power-
law FGM core 

The volume fraction of the FGMs is assumed to obey a 

power-law function along the thickness direction 

0)1( V ,    ],[
21

hhz  (2a) 

,
23

2)2(

k

hh

hz
V 














 ],[

32
hhz  (2b) 

1)3( V ,    ],[
43

hhz  (2c) 

in which V
(n)

, and k are as same as defined in Eq. (1). 

 

 

Fig. 2 The material variation along the thickness of the 

FGM sandwich plate: (a) FGM face sheet and homogeneous 

core (b) homogeneous face sheet and FGM core 

 

 

The effective material properties, like Young‟s modulus 

E, Poisson‟s ratio v, and mass density ρ, then can be 

expressed by the rule of mixture (Marur 1999, Bellifa et al. 

2016) as 

  )(

212

)( )( nn VPPPzP    (3) 

where P
(n)

 is the effective material property of FGM of 

layer n. For type A, P1 and P2 are the properties of the top 

and bottom faces of layer 1, respectively, and vice versa for 

layer 3 depending on the volume fraction V
(n)

,        

(n=1,2,3); For type B, P1 and P2 are the properties of layer 3 

and layer 1, respectively.  

These two types of FGM sandwich plates will be 

discussed later in the following sections.  

 

2.3 Three-unknown hyperbolic shear deformations 
theory 

 

The aim of this paper is to develop a simple three-

unknown hyperbolic shear deformation theory in which in-

plane displacement is expanded as a hyperbolic variation 

through the thickness. The advantages of the present theory 

is that the number of variables involved in this theory is 

same as that in the classical plate theory (CPT), and the 

stress-free boundary conditions on the top and bottom 

surfaces of the plate can be guaranteed without use of shear 

correction factors .  

 

2.3.1 Kinematics 
The in-plane displacements u and v, and the transverse 

displacement w of a material point located at (x,y,z) in the 

plate are assumed according to the following refined shear 

deformation plate theory 

),,(),,,(

)(),,(),,,(

)(),,(),,,(

0

3

0

3

0

0

3

0

3

0

0

tyxwtzyxw

y

w
zf

y

w
ztyxvtzyxv

x

w
zf

x

w
ztyxutzyxu























 (4) 

(3) 

105



 

Zakaria Belabed, Abdelmoumen Anis Bousahla, Mohammed Sid Ahmed Houari, Abdelouahed Tounsi and S.R. Mahmoud 

 

where u0, v0, and w0 are three unknown displacement 

functions of midplane of the plate. In this work, f(z) is a 

new shape function proposed for representing the 

distribution of the transverse shear strains and shear stresses 

through the thickness of the plate and is given as 
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The nonzero strains associated with the displacement 

field in Eq. (4) are 
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2.3.2 Constitutive relations 
The linear constitutive relations of a FGM sandwich 

plate can be written as 
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where (ζx, ζy, ηyz, ηxz, ηxy) and (εx, εy, γyz, γxz, γxy) are the stress 

and strain components, respectively. The stiffness 

coefficients, Cij, can be expressed as 
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2.3.3 Equations of motion 
Hamilton‟s principle is employed herein to obtain 

equations of motion. The principle can be expressed in an 

analytical form as follows (Meksi et al. 2018, Besseghier et 

al. 2017, Klouche et al. 2017, Hachemi et al. 2017, Bellifa 

et al. 2017b, Houari et al. 2016, Mahi et al. 2015, Taibi et 

al. 2015, Zemri et al. 2015, Al-Basyouni et al. 2015) 
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where δU is the variation of strain energy; and δK is the 

variation of kinetic energy.  

The variation of strain energy of the plate is calculated 

by 
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where A is the top surface and the stress resultants N, M, S 

and Q are defined by 
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where hn+1 and hn are the top and bottom z-coordinates of 

the nth layer.  

The variation of kinetic energy of the plate can be 

written in the form 
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(14) 

where dot-superscript convention indicates the 

differentiation with respect to the time variable t; ρ(z) is the 

mass density; and (I0, I1, J1, I2, J2, K2) are mass inertias 

defined as  
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Substituting the expressions for δU, and δK from Eqs. 

(12), and (14) into Eq. (11) and integrating by parts, and 

collecting the coefficients of δu0, δv0 and δw0, the following 

equations of motion of the plate are obtained 
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By substituting Eq. (6) into Eq. (9) and the subsequent 

results into Eq. (13), the stress resultants are obtained as 
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and stiffness components are given as: 
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By substituting Eq. (17) into Eq. (16), the equations of 

motion can be expressed in terms of displacements (u0, v0 

and w0) as 
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3. Analytical solutions 
 

The above equations of motion are analytically solved 

for free vibration problem of a simply supported rectangular 

plate. Based on Navier solution procedure, the 

displacements are assumed as follows 
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where 1i , λ=mπ/a, μ=nπ/b, (Umn, Vmn, Wmn) are the 

unknown maximum displacement coefficients, and ω is the 

angular frequency. 

Substituting Eq. (21) into Eq. (20), the analytical 

solutions can be obtained from 
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4. Numerical results and discussion 
 

In this section, the natural frequencies of sandwich 

FGM plates are investigated via the present new 3-unknown 

hyperbolic shear deformation theory. The material 

properties used in the present study are: 

• Ceramic (P1: Alumina, Al2O3): Ec=380 GPa; v=0.3; 

ρc=3800 kg/m
3

 
. 

• Metal (P2: Aluminium, Al): Em=70 GPa; v=0.3; 

ρc=2707
 
kg/m

3
. 

The natural frequency parameter is nondimensionalized 

by the following relation 

0

0

2

Eh

b 


 
  (24) 

where ρ0=1 kg/m
3
, E0=1 GPa. 

To verify the validity of the present new 3-unknown 

hyperbolic shear deformation theory, the obtained results 

are compared with other theories existing in the literature 

such as classical plate theory (CPT), first-order shear 

deformation theory (FSDT), third-order shear deformation 

theory (TSDT), sinusoidal shear deformation theory 

(SSDT), the four variable refined plate theory (RPT) and 

the three-dimensional linear theory of elasticity.  

The non-dimensional natural fundamental frequencies 

 of the power-law FGM sandwich plates of Type A, are 

compared in Table 1 with the results of Hadji et al. (2011) 

based on CPT, FSDT, TSDT, SSDPT, RPT and three-

dimensional linear theory of elasticity (Li et al. 2008). Table 

1 shows a good agreement by comparisons of FGM plates 

of five different volume fraction indices k=0, 0.5, 1, 5, 10 

with other theories. In general, the vibration frequencies 

computed using the CPT, are much higher than those 

computed from the other shear deformation theories. This 

implies the well-known fact that the results estimated by the 

CPT are grossly in error for a thick plate. 

Another comparative study between different plate 

theories is carried out on the basis of the homogeneous 

hardcore and homogeneous soft-core types of FG sandwich 

plates (Type A). The results are presented in Tables 2 and 3. 

The results illustrated in Table 2 are obtained for the case of 

homogeneous hardcore in which the Young‟s modulus and 

mass density of layer 1 are Ec=380
 
GPa and ρc=3800

 
kg/m

3
 

(P1, alumina) at the top face and Em=70 GPa and ρm=2707
 

kg/m
3
 (P2, aluminum) at the bottom face. However, in Table  

(24) 
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3 we present results for the case of homogeneous soft-core 

in which the Young‟s modulus and mass density of layer 1 

are Em=70 GPa and ρm=2707 kg/m
3
 (P1, aluminum) at the 

top face and Ec=380 GPa and ρc=3800 kg/m
3
 (P2, alumina) 

at the bottom face. Three thickness-side ratios h/b (0.01, 

0.1, and 0.2) and five volume fraction indices k (0, 0.5, 1, 5, 

and 10) are considered. It can be observed from the results 

presented in Tables 2 and 3, that the dimensionless 

frequencies computed by the present new plate theory with 

three unknowns are in good agreement with those obtained 

by the three-dimensional linear theory of elasticity used by 

Li et al. (2008) and the four variable refined plate theory 

developed by Hadji et al. (2011).  

In the next example, the results of 1-8-1 power-law 

FGM plate of Type B are tabulated in Table 4 where P1 is 

 

 

referred to the properties of aluminum and P2 the properties 

of alumina. In this example, the FGM core is metal-rich at 

the top face and ceramic-rich at the bottom face. The results 

are predicted for different values of the thickness-side ratios 

h/b (0.01, 0.1, and 0.2) and volume fraction indices k (0.5, 

1, 2, 5, and 10). From Table 4, it can be shown that the 

results given by Li et al. (2008) and Hadji et al. (2011) for 

sandwich plates with FGM core are in good agreement with 

the present new 3-unknown hyperbolic shear deformation 

theory.  

Fig. 3 displays the variation of fundamental frequency 

parameters with respect to the thickness ratio of simply 

supported power-law FGM sandwich plates with the 

homogeneous hardcore. Fig. 4 illustrates the curves of the 

power-law FGM sandwich plates with the homogeneous  

Table 1 Comparisons of natural fundamental frequency parameters   of simply supported square power-law 

FGM plates of Type A with other theories (h/b=0.1) 

k Theories 
  

1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 

0 

CPT (a) 1.87359 1.87359 1.87359 1.87359 1.87359 1.87359 

FSDT (a) 1.82442 1.82442 1.82442 1.82442 1.82442 1.82442 

TSDT (a) 1.82445 1.82445 1.82445 1.82445 1.82445 1.82445 

SSDT (a) 1.82452 1.82452 1.82452 1.82452 1.82452 1.82452 

RPT (a) 1.82445 1.82445 1.82445 1.82445 1.82445 1.82445 

Elasticity (b) ----- ----- ----- ----- ----- ----- 

Present 1.83181 1.83181 1.83181 1.83181 1.83181 1.83181 

0.5 

CPT (a) 1.47157 1.51242 1.54264 1.54903 1.58374 1.60722 

FSDT (a) 1.44168 1.48159 1.51035 1.51695 1.55001 1.57274 

TSDT (a) 1.44424 1.48408 1.51253 1.51922 1.55199 1.57451 

SSDT (a) 1.44436 1.48418 1.51258 1.51927 1.55202 1.57450 

RPT (a) 1.44424 1.48408 1.50635 1.51921 1.54710 1.57451 

Elasticity (b) 1.44614 1.48608 1.50841 1.52131 1.54926 1.57668 

Present 1.44487 1.48472 1.50729 1.52003 1.54828 1.57587 

1 

CPT (a) 1.26238 1.32023 1.37150 1.37521 1.43247 1.46497 

FSDT (a) 1.24031 1.29729 1.34637 1.35072 1.40555 1.43722 

TSDT (a) 1.24320 1.30011 1.34888 1.35333 1.40789 1.43934 

SSDT (a) 1.24335 1.30023 1.34894 1.35339 1.40792 1.43931 

RPT (a) 1.24320 1.30011 1.33329 1.35332 1.39557 1.43933 

Elasticity (b) 1.24470 1.30181 1.33511 1.35523 1.39763 1.44137 

Present 1.24376 1.30063 1.33379 1.35371 1.39597 1.43969 

5 

CPT (a) 0.95844 0.99190 1.08797 1.05565 1.16195 1.18867 

FSDT (a) 0.94256 0.97870 1.07156 1.04183 1.14467 1.17159 

TSDT (a) 0.94598 0.98184 1.07432 1.04466 1.14731 1.17397 

SSDT (a) 0.94630 0.98207 1.07445 1.04481 1.14741 1.17399 

RPT (a) 0.94598 0.98184 1.03043 1.04466 1.10881 1.17397 

Elasticity (b) 0.94476 0.98103 1.02942 1.04532 1.10983 1.17567 

Present 0.94709 0.98594 1.03353 1.04905 1.11191 1.17655 

10 

CPT (a) 0.94321 0.95244 1.05185 1.00524 1.11883 1.13614 

FSDT (a) 0.92508 0.93962 1.03580 0.99256 1.10261 1.12067 

TSDT (a) 0.92839 0.94297 1.03862 0.99551 1.10533 1.12314 

SSDT (a) 0.92875 0.94332 1.04558 0.99519 1.04154 1.13460 

RPT (a) 0.92839 0.94297 0.99195 0.99550 1.06090 1.12314 

Elasticity (b) 0.92727 0.94078 0.98929 0.99523 1.06104 1.12466 

Present 0.92886 0.94689 0.99500 1.00069 1.06468 1.12667 

(a)
 Hadji et al. (2011) ; 

(b)
 Li et al. (2008) 
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soft-core. In general, the results are the maximum for the 

ceramic plates and the minimum for the metal plates. It is 

seen that the results increase smoothly as the amount of 

 

 

ceramic in the sandwich plate increases. It is also shown 

that the effect of k on the 2-1-2 sandwich plate is greater 

than that of the 1-8-1 sandwich plate.  

Table 2 Comparison of fundamental frequency parameter   of simply supported square power-law FGM 

sandwich plates with homogeneous hardcore 

h/b k Theories 
  

1-0-1 2-1-2 1-1-1 2-2-1 1-2-1 1-8-1 

0.01 

0 

Present 1.88835 1.88835 1.88835 1.88835 1.88835 1.88835 

RPT (a) 1.88825 1.88825 1.88825 1.88825 1.88825 1.88825 

Elasticity (b) 1.88829 1.88829 1.88829 1.88829 1.88829 1.88829 

0.5 

Present 1.48278 1.52383 1.56068 1.59054 1.61932 1.76368 

RPT (a) 1.48241 1.52353 1.56042 1.59030 1.61912 1.76354 

Elasticity (b) 1.48244 1.52355 1.56046 1.59031 1.61915 1.76357 

1 

Present 1.27205 1.33011 1.38542 1.43022 1.47581 1.69919 

RPT (a) 1.27156 1.32972 1.38508 1.42990 1.47554 1.69904 

Elasticity (b) 1.27158 1.32974 1.38511 1.42992 1.47558 1.69906 

5 

Present 0.96634 0.99961 1.06358 1.13065 1.19736 1.57005 

RPT (a) 0.96564 0.99903 1.06309 1.13019 1.19697 1.56985 

Elasticity (b) 0.96563 0.99903 1.06309 1.13020 1.19699 1.56988 

10 

Present 0.95121 0.95998 1.01289 1.08115 1.14448 1.54182 

RPT (a) 0.95044 0.95937 1.01236 1.08065 1.14406 1.54162 

Elasticity (b) 0.95042 0.95934 1.01237 1.08065 1.14408 1.54164 

0.1 

0 

Present 1.83181 1.83181 1.83181 1.83181 1.83181 1.83181 

RPT (a) 1.82445 1.82445 1.82445 1.82445 1.82445 1.82445 

Elasticity (b) 1.82682 1.82682 1.82682 1.82682 1.82682 1.82682 

0.5 

Present 1.44487 1.48472 1.52003 1.54828 1.57587 1.71296 

RPT (a) 1.44423 1.48408 1.51921 1.54710 1.57450 1.70901 

Elasticity (b) 1.44614 1.48608 1.52131 1.54926 1.57668 1.71130 

1 

Present 1.24376 1.30063 1.35371 1.39597 1.43969 1.65156 

RPT (a) 1.24319 1.30010 1.35332 1.39556 1.43932 1.64892 

Elasticity (b) 1.24470 1.30181 1.35523 1.39763 1.44137 1.65113 

5 

Present 0.94709 0.98594 1.04905 1.11191 1.17655 1.52885 

RPT (a) 0.94598 0.98184 1.04465 1.10881 1.17396 1.52792 

Elasticity (b) 0.94476 0.98103 1.04532 1.10983 1.17567 1.52993 

10 

Present 0.92886 0.94689 1.00069 1.06468 1.12667 1.50209 

RPT (a) 0.92838 0.94296 0.99550 1.06090 1.12313 1.50138 

Elasticity (b) 0.92727 0.94078 0.99523 1.06104 1.12466 1.50333 

0.2 

0 

Present 1.68191 1.68191 1.68191 1.68191 1.68191 1.68191 

RPT (a) 1.67010 1.67010 1.67010 1.67010 1.67010 1.67010 

Elasticity (b) 1.67711 1.67711 1.67711 1.67711 1.67711 1.67711 

0.5 

Present 1.34772 1.38437 1.41540 1.43907 1.46329 1.57966 

RPT (a) 1.34743 1.38410 1.41508 1.43843 1.46251 1.57476 

Elasticity (b) 1.35358 1.39053 1.42178 1.44535 1.46940 1.58186 

1 

Present 1.17380 1.22776 1.27468 1.30973 1.34819 1.52710 

RPT (a) 1.16976 1.22340 1.27134 1.30753 1.34671 1.52445 

Elasticity (b) 1.17485 1.22915 1.27770 1.31434 1.35341 1.53142 

5 

Present 0.90078 0.95712 1.01857 1.06975 1.12886 1.42292 

RPT (a) 0.89462 0.93594 0.99545 1.05228 1.11318 1.42197 

Elasticity (b) 0.89086 0.93362 0.99798 1.05607 1.11900 1.42845 

10 

Present 0.87272 0.91923 0.976484 1.02877 1.08745 1.40039 

RPT (a) 0.87178 0.89918 0.950331 1.00848 1.06754 1.39932 

Elasticity (b) 0.86833 0.89228 0.94984 1.00949 1.07290 1.40568 

(a)
 Hadji et al. (2011); 

(b)
 Li et al. (2008) 
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5. Conclusions 
 

A new simple and accurate 3-unknowns hyperbolic 

shear deformation theory is proposed for the free vibration 

 

 

analysis of FG sandwich plates. As the classical plate 

theory, the present one contains only three unknown 

displacements. In contrast, the shear deformation effect is 

included. The accuracy of the present theory is ascertained 

Table 3 Comparison of fundamental frequency parameter   for simply supported square power-law FGM 

sandwich plates with homogeneous soft-core 

h/b k Theories 
  

1-0-1 2-1-2 1-1-1 2-2-1 1-2-1 1-8-1 

0.01 

0 

Present 0.96114 0.96114 0.96114 0.96114 0.96114 0.96114 

RPT 
(a)

 0.96020 0.96020 0.96020 0.96020 0.96020 0.96020 

Elasticity 
(b) 

0.96022 0.96022 0.96022 0.96022 0.96022 0.96022 

0.5 

Present 1.66413 1.62442 1.58328 1.52427 1.50814 1.26686 

RPT 
(a)

 1.66283 1.62294 1.58173 1.52279 1.50657 1.26555 

Elasticity 
(b) 

1.66281 1.62291 1.58171 1.52277 1.50658 1.26557 

1 

 

Present 1.82146 1.79317 1.75552 1.68347 1.67669 1.38478 

RPT 
(a)

 1.82034 1.79174 1.75391 1.68194 1.67494 1.38330 

Elasticity 
(b) 

1.82031 1.79163 1.75379 1.68184 1.67490 1.38331 

5 

Present 1.92134 1.94423 1.93787 1.86367 1.88733 1.57210 

RPT 
(a)

 1.92089 1.94332 1.93658 1.86239 1.88558 1.57034 

Elasticity 
(b) 

1.92090 1.94313 1.93623 1.86207 1.88530 1.57035 

10 

Present 1.91089 1.94776 1.95195 1.88192 1.91365 1.60638 

RPT 
(a)

 1.91061 1.94701 1.95080 1.88076 1.91198 1.60456 

Elasticity 
(b) 

1.91064 1.94687 1.95044 1.88042 1.91162 1.60457 

0.1 

0 

Present 0.93237 0.93237 0.93237 0.93237 0.93237 0.93237 

RPT 
(a)

 0.92776 0.92776 0.92776 0.92776 0.92776 0.92776 

Elasticity 
(b) 

0.92897 0.92897 0.92897 0.92897 0.92897 0.92897 

0.5 

Present 1.60763 1.56849 1.52860 1.47205 1.45634 1.22540 

RPT 
(a)

 1.57497 1.52895 1.48666 1.43615 1.41626 1.20477 

Elasticity 
(b) 

1.57352 1.52588 1.48459 1.43419 1.41662 1.20553 

1 

 

Present 1.75948 1.73065 1.69379 1.62479 1.61777 1.33841 

RPT 
(a)

 1.72568 1.68379 1.63966 1.57874 1.56102 1.30766 

Elasticity 
(b) 

1.72227 1.67437 1.63053 1.57037 1.55788 1.30825 

5 

Present 1.85944 1.87755 1.86950 1.79864 1.81960 1.51774 

RPT 
(a)

 1.84199 1.84161 1.81730 1.75320 1.74864 1.46600 

Elasticity 
(b) 

1.84198 1.82611 1.78956 1.72726 1.72670 1.46647 

10 

Present 1.85109 1.88194 1.88356 1.81670 1.84496 1.55051 

RPT 
(a)

 1.83857 1.85196 1.83665 1.77527 1.77584 1.49439 

Elasticity 
(b) 

1.84020 1.83987 1.80813 1.74779 1.74811 1.49481 

0.2 

0 

Present 0.85607 0.85607 0.85607 0.85607 0.85607 0.85607 

RPT 
(a)

 0.84927 0.84927 0.84927 0.84927 0.84927 0.84927 

Elasticity 
(b) 

0.85286 0.85286 0.85286 0.85286 0.85286 0.85286 

0.5 

Present 1.45432 1.41628 1.37957 1.33011 1.31507 1.11299 

RPT 
(a)

 1.38225 1.32772 1.28521 1.24999 1.22481 1.06852 

Elasticity 
(b) 

1.37894 1.32061 1.28053 1.24533 1.22580 1.07016 

1 

Present 1.59156 1.56050 1.52541 1.46522 1.45681 1.21218 

RPT 
(a)

 1.51715 1.45515 1.40311 1.36164 1.32828 1.14353 

Elasticity 
(b) 

1.50896 1.43325 1.38242 1.34203 1.32129 1.14451 

5 

Present 1.69345 1.69706 1.68355 1.62220 1.63463 1.36919 

RPT 
(a)

 1.65829 1.61777 1.56607 1.52042 1.47440 1.25156 

Elasticity 
(b) 

1.65868 1.58011 1.50284 1.46009 1.42665 1.25210 

10 

Present 1.69144 1.70420 1.69785 1.63996 1.65751 1.39777 

RPT 
(a)

 1.66789 1.63913 1.59271 1.54763 1.50143 1.27017 

Elasticity 
(b) 

1.67278 1.60909 1.52671 1.48306 1.44101 1.27065 
(a)

 Hadji et al. (2011); 
(b)

 Li et al. (2008) 
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Table 4 Comparison of fundamental frequency parameter 

  for simply supported square power-law FGM sandwich 

plates with FGM core 

h/b Theories 
k 

0.5 1 2 5 10 

0.01 

Present 1.34002 1.38723 1.44529 1.53167 1.59124 

RPT (a) 1.33927 1.38665 1.44487 1.53139 1.59103 

Elasticity (b) 1.33931 1.38669 1.44491 1.53143 1.59105 

0.1 

Present 1.29972 1.34828 1.40695 1.49172 1.54896 

RPT (a) 1.29459 1.34533 1.40514 1.49044 1.54754 

Elasticity (b) 1.29751 1.34847 1.40828 1.49309 1.54980 

0.2 

Present 1.19476 1.24791 1.30880 1.38931 1.43995 

RPT (a) 1.18682 1.24352 1.30576 1.38736 1.43837 

Elasticity (b) 1.19580 1.25338 1.31569 1.39567 1.44540 

(a)
 Hadji et al. (2011); 

(b)
 Li et al. (2008) 

 

 

 
Fig. 3 Fundamental frequencies   for power-law FGM 

sandwich plates with homogeneous hardcore: (a) 2-1-2 

FGM sandwich plate, (b) 1-8-1 FGM sandwich plate 

 
 
by comparing it with elasticity solutions and other shear 

deformation theories having higher number of unknowns 

and where a good agreement was observed in all cases. 

Finally, this work will deserve special attention and offer 

potential for future research. An improvement of present 

formulation will be considered in the future work to 

consider the thickness stretching effect by using quasi-3D 

 

 
Fig. 4 Fundamental frequencies   for power-law FGM 

sandwich plates with homogeneous soft-core: (a) 2-1-2 

FGM sandwich plate, (b) 1-8-1 FGM sandwich plate 

 

 

shear deformation models (Bessaim et al. 2013, Bousahla et 

al. 2014, Belabed et al. 2014, Fekrar et al. 2014, Hebali et 

al. 2014, Larbi Chaht et al. 2015, Hamidi et al. 2015, 

Bourada et al. 2015, Bennoun et al. 2016, Draiche et al. 

2016, Sekkal et al. 2017b, Bouafia et al. 2017, Abualnour et 

al. 2018, Benchohra et al. 2018, Bouhadra et al. 2018). 
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