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1. Introduction 
 

The soil-structure interaction (SSI) affects the seismic 

response of many civil infrastructures, such as underground 

structures, high dams, nuclear power plants, large-span 

bridges and so on. The framework of direct method (Wolf 

1985, 1988) has been proposed for the seismic SSI analysis 

based on the finite element modeling. The earthquake input 

is required at the truncation boundary called artificial 

boundary of the finite element model. It consists of the site 

response analysis to obtain the free field and the artificial 

boundary condition to absorb the scattered field. Some 

professional programs (Lysmer et al. 1975, 2000, Lysmer et 

al. 2000, Hudson et al. 2003) and the implementation into a 

commercial finite element software such as ABAQUS
®

 

(Nielsen 2006) have been developed for the direct method. 

Many works (An et al. 1997a, Parra-Montesinos et al. 2006, 

Chen et al. 2010, Saouma et al. 2011, Ghandil and 

Behnamfar 2015, Zhuang et al. 2015) have been done to 

apply the direct method to perform the seismic SSI analysis.  

The above works consider the earthquakes as the plane 

body waves of vertical incidence. This assumption is 

usually applicable to the relatively deep focus earthquake or 

to the engineering site near the epicenter. However, for a 

shallow focus earthquake and when the engineering site 

moderately far from the epicenter, the oblique incidence of 

the earthquake as the plane body wave should be 

considered.  

The site response analysis from the obliquely incident 

earthquake solves in nature the two-dimensional problem in 

unbounded domain. The frequency-domain analytical 
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methods such as the transfer matrix method (Thomson 

1950, Haskell 1951) and the stiffness matrix method 

(Kausel and Roesset 1981, Wolf and Obernhuber 1982a, b, 

1983, Takano et al. 1988) have been developed. The direct 

and inverse Fourier transforms are used for the time-domain 

analysis. It can be seen such as in this paper that the 

frequency-domain method with Fourier transform may 

result in the inaccurate response. A time-domain numerical 

method (Liu and Wang 2006, 2007) has been proposed to 

avoid this problem. In this numerical method the viscous 

boundary (Lysmer 1969) is used to model the wave 

absorption of the truncated underlying half space. The finite 

element method with the central difference time integration 

algorithm is applied directly to the two-dimensional 

problem of spatial-infinity along the layer direction. Snell’s 

law is then used to transform the two-dimensional discrete 

problem into the one-dimensional one. In this method the 

viscous boundary is an approximate treatment to the P-SV 

wave case, leading to the responses of low accuracy. P 
represents the primary or pressure wave. SV represents the 

secondary or shear wave. On the other hand, this method 

has a stability limitation on the time integration step size. 

The above time-domain numerical method is modified in 

two aspects (Zhao et al. 2015). An accurate boundary 

condition is developed to replace the viscous boundary. 

Snell’s law is used in the spatially continuous case to 

transform the two-dimensional problem to one dimension. 

The finite element method is then used to discretize the 

resulting one-dimensional problem. 

The artificial boundary condition is a numerical method 

in many fields of science and engineering. A large number 

of artificial boundary conditions has been developed in the 

last six decades. The early artificial boundary conditions 

include  the viscous boundary (Lysmer 1969), the 

viscous-spring boundary (Deeks and Randolph 1994, Du et 
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al. 2006, Liu et al. 2006, Du and Zhao 2010), the 

extrapolation boundary (Liao and Wong 1984, Liao 1996), 

the infinite element method (Zhao 2009), the boundary 

element method (Hall and Oliveto 2009, Galvín and 

Romero 2014) and the boundary element and infinite 

element coupling (Zhang et al. 1999). The further 

developments include the perfectly matched layer (Berenger 

1994), the Dirichlet-to-Neumann (DtN) method (Givoli 

1999, Du and Zhao 2010, Zhao 2011), the high-order local 

non-reflecting boundary condition (Givoli 2004), the scaled 

boundary finite element method (Song and Wolf 1997, 

Zhang et al. 1999, Wolf, 2003, Birk and Behnke 2012, 

Chen et al. 2015). The viscous and viscous-spring 

boundaries are easily coupled with the finite element 

method and are stable and efficient, although they are 

approximate. 

In this paper, three-dimensional SSI problem is analyzed 

in time domain by using the commercial finite element 

software ABAQUS
®  

(1998). The earthquake as the plane 

body wave is obliquely incident from the linearly elastic 

layered half space. The earthquake input method is 

developed. An easy-to-understand mechanic derivation is 

given for the site response analysis method (Zhao et al. 

2015). The viscous and viscous-spring artificial boundary 

conditions are proved to have the sufficient accuracy for the 

seismic SSI. 

The resting parts of this paper are organized as follows. 

The direct method to solve the seismic SSI problem is 

summarized in Section 2. The finite element model for the 

soil-structure system of Daikai subway station is illustrated 

in Section 3. The model for the obliquely incident 

earthquake is given in Section 4. The earthquake input 

method is developed in Section 5. The method is verified in 

Section 6. The effect of the obliquely incident earthquake 

on the response of Daikai subway station system is studied 

in Section 7. Conclusions follow in Section 8. 

 

 
2. Direct method for seismic soil-structure 
interaction 

 

The seismic SSI problem is shown in Fig. 1(a). An 

artificial boundary is introduced to divide the soil-structure 

system into the finite and infinite domains. The finite 

domain contains the structure and its adjacent soil. It is 

modeled by the finite element method. After the spatial 

discretization the finite element equation of the finite 

domain is 
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(1) 

where the subscripts B and R denote the degrees of freedom 

on artificial boundary and the rest of the finite domain, 

respectively; u, u  and ü are the absolute displacement, 

velocity and acceleration vectors, respectively; M, C and K 

are the mass, damping and stiffness matrices, respectively; 

and fB is the action force vector of the infinite domain to the 

finite domain. The finite domain is initially resting. 

Although the linear elastic finite element equation is written 

in Eq. (1) for simplicity, the finite domain may contain the 

possible material, geometry and contact nonlinearities. 

The infinite domain is usually assumed as the linearly 

elastic layered half space with an excavation. The infinite 

domain is truncated but its earthquake input and radiation 

damping effects should be considered. The response of the 

infinite domain can be decomposed into the scattered and 

free fields. It can be written at the artificial boundary as  

F

B

S

BB fff 
 

(2) 

F

B

S

BB uuu   and  
F

B

S

BB uuu    (3) 

where the superscripts S and F denote the scattered and free 

fields, respectively. The seismic free field can be obtained 

by performing a site response analysis before the SSI 

analysis. The site under earthquake is the linearly elastic 

layered half space subjected to the obliquely incident plane 

body wave.  

The scattered field is absorbed by an artificial boundary 

condition imposed on the artificial boundary of the finite 

domain. The viscous boundary (Lysmer 1969) is the 

well-known artificial boundary condition. To avoid the 

low-frequency instability due to the absence of stiffness in 

the viscous boundary, the viscous-spring boundary has been 

developed (Deeks and Randolph 1994, Liu et al. 2006, Du 

et al. 2006, Du and Zhao 2010). The viscous boundary is a 

special case of the viscous-spring boundary with zero 

stiffness. The viscous-spring boundary is obtained from the 

one-dimensional wave motion theory, and has been applied 

approximately to the two- and three-dimensional wave 

problems. The formulation of the viscous-spring boundary 

can be written as 

S

BB

S

BB

S

B uCuKf  
 

(4) 

where 

BK  and 

BC  are the stiffness and damping 

matrices, respectively. If the spatially lumped discretization 

is used, both the stiffness and damping matrices are 

diagonal. The viscous-spring boundary is a parallel 

spring-dashpot model for each degree of freedom on the 

artificial boundary. 

Substituting Eq. (3) into Eq. (4) and then into Eq. (2) 

and finally into Eq. (1), after some manipulations, obtain 

the finite element equation as 
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(5) 

with the seismic load  

F

B

F

BB

F

BBB fuCuKf     
(6) 

where the seismic load is nodal force arising from the free 

field response.  

Eqs. (5) and (6) represent the direct method for the 

seismic SSI analysis. As shown in Fig. 1(b), it can be  

574



 

Obliquely incident earthquake for soil-structure interaction in layered half space 

 

 

 

implemented in the preprocessing of the commercial finite 

element software. The process is as follows.  

First, building the finite element model of the finite 

domain in the preprocessing of the commercial software. 

This gives the left hand side of Eq. (5) without the stiffness 

and damping matrices of artificial boundary condition. The 

Daikai subway station is considered in Section 3. 

Second, giving the incident earthquake model. The 

earthquake is considered as the plane body wave of oblique 

incidence. The definition is given in Section 4.  

Third, inputting the given earthquake into the finite 

element model. The earthquake input is to apply the 

viscous-spring boundary and seismic load on the artificial 

boundary of the finite element model. This gives the 

stiffness and damping matrices of artificial boundary 

condition on the left hand side of Eq. (5) and the seismic 

load on the right hand side of Eq. (5), respectively. The 

earthquake input can be implemented in the preprocessing 

of the commercial software. The implementation does not 

require any modification of the finite element codes. The 

key of this step is to obtain the free field response by the 

seismic site response analysis and to give the stiffness and 

damping matrices of the viscous-spring boundary before the 

seismic SSI analysis. The two issues are discussed in 

Section 5. 

Fourth, solving Eq. (5) by the time integration algorithm. 

This is done by using the time integration solver in the 

commercial software, such as the widely used Newmark 

method. 

 
 
3. Finite element model 

 

The Daikai subway station in Japan is studied as an 

example in this paper. The geometry and material constants 

 

 

Table 1 Geometry and material constants of soil 

Layer 

number 

Depth 

(m) 

Density 

(kg/m3) 

Elastic 

modulus (MPa) 

Poisson 

ratio 

1 0-1.0 1900 99.3 0.333 

2 1.0-5.1 1900 110.0 0.488 

3 5.1-8.3 1900 164.0 0.493 

4 8.3-11.5 1900 204.0 0.494 

5 11.5-17.3 1900 326.0 0.490 

6 17.3-39.3 2000 648.0 0.487 

7 39.3-∞ 2100 1540.0 0.470 

 

 

of the structure are shown in Fig. 2. The burial depth of the 

underground structure is 4.8 m that is the distance from the 

horizontal ground surface to the top of structure. 

The soil is a horizontally layered half space. The 

geometry and material constants of the soil site are listed in 

Table 1. The continuity condition is satisfied at the interface 

between two soil layers. 

The finite element model of the soil-structure system is 

shown in Fig. 3. The continuity condition is satisfied at the 

interface between soil and structure. An artificial boundary 

is introduced into the soil to truncate the infinite domain. 

The three-dimensional artificial boundary consists of the 

five surfaces of cuboid where the outward normal of each 

surface is parallel to an axis of global coordinate (x,y,z). 

Both the length and width of the finite element model are 

70 m, and the depth is 40.3 m. It can be seen from the 

numerical example in Section 6 that such relatively small 

finite domain can obtain the accurate solution to the seismic 

SSI analysis. The finite element mesh size satisfies the 

requirement for the dynamic analysis. For 

three-dimensional finite element model, the number of the 

finite elements is 216048, and the number of nodes is 

244332.  

Finite domain

Artificial boundaryArtificial boundary

Finite domain

Infinite domainSeismic

Artificial boundary condition  
(a) Seismic soil-structure interaction problem          (b) Direct method 

Fig. 1 Direct method for seismic soil-structure interaction 
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Fig. 2 Geometry and material constants of structure 
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Fig. 4 Sketch map for obliquely incident earthquake 

inputted into site response or soil-structure system 
 
 
4. Obliquely incident earthquake 

 

The earthquake is the obliquely incident plane body 

wave from the underlying half space. The global coordinate 

(x,y,z) is located on the artificial boundary of the 

soil-structure system, as shown in Fig. 4. The earthquake is 

inputted from the coordinate origin. A local coordinate 

(x′,y,z′) is introduced to illustrate the incident wave 

direction. The x′oy plane is parallel to the wave propagation 

direction. The θ is the angle between the wave propagation 

direction and the y axis. The υ is the angle between the x 

and x’ axes.  

The three kinds of plane body waves are defined as 

follows. The P wave has the vibration direction along the 

wave propagation direction. The SV wave has the vibration 

 

 

direction perpendicular to the wave propagation direction 

and parallel to the x′oy plane. The SH wave has the 

vibration direction perpendicular to the x′oy plane. The time 

history of the incident earthquake at the coordinate origin is 

chosen as a half of the record at Kobe Maritime 

Observatory, as shown in Fig. 5. 

 

 

5. Earthquake input method 
 

5.1 Seismic site response 
 

The free field response is obtained by the seismic site 

response analysis. The site is the linearly elastic layered half 

space. The site response analysis under the obliquely 

incident earthquake solves the two-dimensional problem in 

the x′oy plane, as shown in Fig. 4. It consists of the in-plane 

problem under the incident P or SV wave and the 

out-of-plane problem under the incident SH wave. A 

time-domain numerical method (Zhao et al. 2015) has been 

proposed for the site response analysis from the obliquely 

incident P-SV waves. This method obtains the 

one-dimensional site response along the y axis. In this 

paper, a new mechanic derivation is given in Subsection 

5.1.1. According to the similar derivation, the method for 

the obliquely incident SH wave is given in Subsection 5.1.2. 

The resulting one-dimensional site responses in the local 

coordinate (x′,y,z′) are extended in Subsection 5.1.3 to the 

three dimensions in the global coordinate (x,y,z) including 

each finite element node on the artificial boundary. 

 

5.1.1 One-dimensional response in local coordinate 
from P-SV waves 

First, the underlying half space of the layered half space 

site is truncated. A boundary condition is developed and 

imposed on the truncation boundary of the residual layered 

site. The boundary condition is a relationship between the 

stress and velocity on the truncation boundary. It can be 

written as (Zhao et al. 2015) 

III ûSRuSσ  )-(
 

(7) 

 

    

70m70m

4
0
.3

m

y
x

z

 

Fig. 3 Finite element model of soil-structure system 
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where  T 
  yyxI στ σ  and  T

I
 

  yx uu ˆ 
 u  are the stress 

and velocity vectors on the truncation boundary, 

respectively; λ and G are the Lame constants of the 

underlying half space; cP and cS are the P and S wave 

velocities of the underlying half space, respectively; cx′ is 

the apparent wave velocity of the plane body wave along 

the x′-axis direction; and 
0Pu  and 

0SVu  are the time 

 

 

histories of the known incident plane P and SV waves on 

the truncation boundary, respectively. 

Second, the residual layered site is discretized only 

along the y direction by using the finite elements. This is 

similar to the thin layer method (Sun 2013, Kausel 1994). 

The resulting equation is 

   - uBσuB
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with the displacement and stress vectors, respectively 
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and the matrices B1, B2, B3 and B4 assembled from the 

following element matrices, respectively 
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where the superscripts I and L denote the degrees of 

freedom on the truncation boundary and the resting ones, 

respectively; Δy
 
is the element length; and ρj, λj and Gj are 
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Fig. 5 Time histories of incident earthquake (An et al. 1997b) 
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the density and the Lame constants of the j-th element, 

respectively. 

Third, Eq. (13) is transformed into the one dimension by 

using Snell’s law. The Snell’s law leads to the differential 

relation 

   
tcx' x' 






 1  
(19) 

Substituting Eq. (7) into Eq. (13) and applying Eq. (19) 

to the result, after some manipulations, lead to the dynamic 

equation only along y coordinate as 

  fKuuCCuM    B
 (20) 

with the mass matrix, the damping matrix, the stiffness 

matrix, the boundary damping matrix and the boundary 

force vector, respectively, as 
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(21) 

Eq. (20) can be solved by the standard time integration 

algorithm in structural dynamics, such as Newmark method. 

The displacement, velocity and acceleration of the site 

along the y coordinate are obtained. 

Finally, the stress is computed. The stresses τx′y and σy 

can be obtained by the dynamic equation of each finite 

element from the known motions obtained above. The 

stresses σx′ 
and σz′ can be then obtained from the 

stress-displacement relationship where ∂uy/∂y is eliminated 

by the σy-displacement relationship and ∂ux′/∂x′ is 

eliminated by Eq. (19).  

 

5.1.2 One-dimensional response in local coordinate 
from SH wave 

The boundary condition to replace the truncated 

underlying half space is 

 
0SHI,z'SI,yz' uuρcτ  2cosθ   (22) 

where τyz′,I and 
I,z'u  are the stress and velocity on the 

truncation boundary, respectively; ρ and cS are the density 

and S wave velocity of the underlying half space, 

respectively; and 
0SHu  is the time histories of the known 

incident plane SH wave on the truncation boundary. 

The finite element equation of the residual layered site 

discretized along the y direction is 

   - uBσuB
u

B 
322

2

1 




x'
 (23) 

with the displacement and stress vectors, respectively 

   









Lu

u
I,z'u

 and    









0

σ
I,yz'τ

 (24) 

and the matrices B1, B2 and B3 assembled from the element 

matrices, respectively 
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21

2

6
3

je yρΔ
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(25) 

where the superscripts I and L denote the degrees of 

freedom on the truncation boundary and the resting ones, 

respectively; Δy is the element length; and ρj and Gj are the 

density and the shear modulus of the j-th element, 

respectively. 

The dynamic equation along y coordinate is 

fKuuCuM  
B

 (26) 

with the mass matrix, the stiffness matrix, the boundary 

damping matrix and the boundary force vector, 

respectively, as 

   
2

1
3

x'
c

B
BM   ,  2BK  , 
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f
    

0SHS uρc cosθ2
 

(27) 

The stress computation is similar to that in the P-SV 

wave case. 

 

5.1.3 Three-dimensional response in global 
coordinate 

Snell’s law means that the plane wave propagates along 

x′ axis with the constant velocity cx′, as shown in Figure 4b. 

The three-dimensional site response on the artificial 

boundary can therefore be obtained from the above 

one-dimensional response. The displacement vector of the 

node i on the artificial boundary can be written in the local 

coordinate (x′, y, z′) as  












       ),,,(

                 
),,,(

(1)

iiij
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,

i
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tt
tzyx

00

0

u

0
u i

 

with 

x'

,

i

,

i

i
c

zx
t

 sincos 
  

(28) 

where 
(1 )F

Biu  is the displacement of the node i; uj is the 

obtained displacement of the node j on y axis; the local 

coordinates of the nodes i and j are (x′i, yi, z′i) and (0, yi, 0), 

respectively; t denotes time; ti is the time of the plane wave 

propagating along the x′ direction from j to i; and the 

superscript (1) denotes the value given in the local 

coordinate (x′, y, z′). The velocity, acceleration and stress 

can be extended to three dimensions by the same way as the 

displacement. If the time t−ti is not at the temporally 

discrete point, the site response is obtained by the 

interpolation of those at the two discrete points on both 

sides of t−ti. 
The site response of the node i on the artificial boundary 

in the local coordinate (x′, y, z′) can be transformed into the 

global coordinate (x, y, z) by the coordinate transform as 

(1)F

Bi

F

Bi uQu 1  and 
TF

Bi

F

Bi 11 QσQσ
(1)

  (29) 
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where 
F

Biu  and 
(1 )F

Biu  are the site displacement vector of 

the node i in the global and local coordinates, respectively; 
F

Biσ  and 
(1 )F

Biσ  are the site stress matrix of the node i in the 

global and local coordinates, respectively; and Q1 is the 

coordinate transform matrix as  























cos0sin

010

sin0cos

1

     

     

-    

    Q

 

(30) 

the superscript T denotes the matrix transposition. 

Once the free field response on the artificial boundary is 

obtained by the site response analysis, the seismic load Eq. 

(6) can be written for the node i as 

F

Bi

F

BiBi

F

BiBiBi fuCuKf 
 

 
(31) 

with the nodal force obtained from the stress by the lumped 

finite element discretization along the artificial boundary as 

dσf
F

Bii

F

Bi A
 

(32) 

where d is the outward normal of the artificial boundary at 

the node i; and Ai is the area for the node i on the artificial 

boundary due to the lumped discretization. 

 

5.2 Viscous-spring boundary condition 
 

The viscous-spring boundary (Deeks and Randolph 

1994, Du et al. 2006, Liu et al. 2006, Du and Zhao 2010) is 

a parallel spring-dashpot model for each degree of freedom 

on the artificial boundary, as shown in Fig. 6, when the 

lumped finite element discretization is used. The viscous 

boundary is a special case of the viscous-spring boundary 

with the zero spring coefficient. The spring provides the 

stiffness to avoid the possible zero-frequency instability of 

the viscous boundary. 

 

5.2.1 Formulation in local coordinate 
As shown in Fig. 6, the local coordinate (N, T1, T2) is 

same as that of representing the stress in solid mechanics. N 

is the outward normal of the artificial boundary and T is the 

tangential. For the finite element node i on the artificial 

 

Table 2 Parameters of viscous-spring boundary 

 KNi KTi CNi CTi 

Three 

dimensions 

4G

r
 

2G

r
 ρcP ρcS 

Two dimensions 
2G

r
 3

2

G

r
 ρcP ρcS 

where ρ and G is the mass density and shear modulus of the 

infinite domain, respectively; cP and cS are the P and S wave 

velocities, respectively; and r is a constant decided by the 

artificial boundary size that is chosen as the height of the 

finite element model here. For the layered half space, the 

different choices of these material constants are discussed in 

the numerical example. 

 

 

boundary, the viscous-spring boundary Eq. (4) is given in 

the local coordinate as 

(2)(2)(2)(2)(2) S

BiBi

S

BiBi

S

Bi uCuKf 


 
(33) 

where the subscript i denotes the node i; and the superscript 

(2) denotes the local coordinate (N, T1, T2). Three parallel 

spring-dashpot models are along three local coordinate 

axes, respectively. 

The spring and dashpot matrices can be written, 

respectively, as 


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(2)

00

00

00

 

 

AC  

(34) 

where Ai is the area for the node i on the artificial boundary 

due to the lumped discretization; KNi and KTi are the normal 

and tangential spring coefficients, respectively; and CNi and 

CTi are the normal and tangential dashpot coefficients, 

respectively. The spring and dashpot coefficients are listed 

in Table 2. 

The viscous-spring boundary is obtained based on the 

one-dimensional wave theory. They are applied 

y
x

z

KTi

CTi

KNi

CNi

CTiKTi

T2

T1

N

i

N

T1

T2

CNi

KNi

KTiCTi

CTi

KTi i

i

N

T1

T2

KNi

CNi

CTiKTi

KTi

CTi
i

N

T1

T2

KNi

CNi

KTi

CTi

i

N

T1

T2

KNiCNi

KTi

CTi

CTi

KTi

CTi KTi

Local coordinate (N,T1,T2) for viscous-spring 

boundary is same as that of representing stress in 

solid mechanics. N is outward normal of artificial 

boundary and T is tangential.
For each finite element node on artificial 

boundary, viscous-spring boundary consists of 

three lumped parallel spring-dashpot models along 

three local coordinate axes, respectively.

 

Fig. 6 Viscous-spring artificial boundary condition 
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approximately to the SSI problem especially for the 

horizontally layered half space site. The choice of the 

parameters listed in Table 2 is not unique. The effect of the 

different parameters on the response of the soil-structure 

system is studied in Section 6. 

 

5.2.2 Formulation in global coordinate 
For transforming Eq. (33) from the local coordinate (N, 

T1, T2) to the global coordinate (x, y, z), the following 

relationship between the vectors in two coordinates is used. 

S

Bi

S

Bi fQf 2
(2) , S

Bi

S

Bi uQu 2
(2)

 

and 
S

Bi

S

Bi uQu 
2

(2)
 

(35) 

where Q2 is the coordinate transform matrix, and can be 

written for the artificial boundary surfaces with the outward 

normal as positive x direction, negative x direction, positive 

z direction, negative z direction and negative y direction 

shown in Fig. 6, respectively, as 
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(36) 

Substituting Eq. (35) into Eq. (33), and using the 

orthogonality of the coordinate transform matrix, obtain the 

viscous-spring boundary in the global coordinate as 

S

BiBi

S

BiBi

S

Bi uCuKf 


 
(37) 

with the spring and dashpot coefficient matrices in the 

global coordinate as 

22 QKQK
(2)

 BiBi

T
 and 22 QCQC

(2)
 BiBi

T
 (38) 

 

 

where the superscript T denotes the matrix transposition. 

 

5.3 Initial condition for nonlinear analysis 
 

Eq. (1) can consider the nonlinearity of the finite 

domain to perform the nonlinear SSI analysis under 

earthquake. The initial stress due to gravity requires 

considering. It is obtained by a static analysis before the 

seismic SSI analysis. In the finite element model of Fig. 3, 

the normal displacement of the artificial boundary is 

constrained. The static analysis is performed under gravity. 

The stress is obtained. The obtained stress and constraint 

reaction are the initial condition of the SSI analysis under 

the earthquake and gravity. 

 
 
6. Verification 
 

6.1 Seismic site response 
 

This subsection verifies the proposed method for the site 

response from the obliquely incident earthquake and the 

three-dimensional site response analysis in Subsection 5.1. 

The Daikai site listed in Table 1 subjected to the earthquake 

shown in Fig. 5 is analyzed.  

In the proposed method, the one-dimensional finite 

element mesh is same as that along the depth of the 

artificial boundary of the finite element model shown in 

Fig. 3. The solutions obtained by the proposed method are 

shown in Figs. 7 and 8, respectively, for the obliquely 

incident P wave and SV wave. To demonstrate the 

effectiveness of the proposed method, the stiffness matrix 

method (Kausel and Roesset 1981) is used for comparison. 

It can be seen from the figures that the solutions obtained 

by the proposed method agree very well with that by the 

stiffness matrix method. The proposed method can obtain 

the accurate site response. The solution by the stiffness 

matrix method has the possible large error from about 0 to 1 

s due to the Fourier transform. The proposed method avoid 

this problem due to that it works in time domain.  

The three-dimensional site is further analyzed by the 

direct method in ABAQUS
®  

subjected to the one-dimensional  
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Fig. 7 Site responses from obliquely incident P wave of θ=30° and υ=60°. (a) Displacements and (b) 

accelerations along y direction at ground surface; and (c) Maximum principal stresses at depth of 40.3 m 
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site response obtained by the proposed method. If the 

extension and input of the site response are right, the 

three-dimensional site response along y axis should agree 

with the one-dimensional response by the proposed method. 

The solutions obtained by the three-dimensional analysis 

are also shown in Figs. 7 and 8. It can be seen that the 

solutions obtained by the three-dimensional site response 

analysis agree very well with those by the proposed method.  

 

6.2 Viscous-spring boundary condition 
 

This subsection studies the accuracy of the viscous- 

spring boundary given in Subsection 5.2. The viscous- 

spring boundary absorbs the scattered field. It does not 

affect the results in the free field computation in the above 

 

 

 

section although it is an approximate method. However, the 

scattered field exists in the seismic SSI problem. The 

accuracy of the viscous-spring boundary should be studied 

in the seismic SSI.  

To study the accuracy of the viscous-spring boundary, a 

finite element model of the sufficiently large finite domain 

should be used to obtain a reference solution. The location 

of the truncation boundary in the reference model is chosen 

according to the finiteness of the wave propagation velocity. 

The location should assure that the solution at the interested 

domain is not affected by the fictitious wave arising from 

the scattered field reflected by the truncation boundary 

during the analysis. The reference model is so large that its 

computational cost is not acceptable for the three - 

dimensional problem. The accuracy of the viscous-spring 
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Fig. 8 Site responses from obliquely incident SV wave of θ=10° and υ=60°. (a) Displacements and (b) 

accelerations along x direction at ground surface; and (c) Maximum principal stresses at depth of 40.3 m 
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Fig. 9 Soil-structure interactions by two- and three-dimensional analyses from obliquely incident P wave of θ=30° 

and υ=0°. Displacements along y direction (a) at depth 4.1 m of left artificial boundary, (b) in the middle of bottom 

artificial boundary, (c) at depth 4.1 m of right artificial boundary, and (d) in the middle of central column; and (e) 

Relative displacements along y direction between top and bottom of central column 
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boundary is therefore studied by the two-dimensional 

analysis. 

 

 

 

The three-dimensional analysis is compared with the 

two-dimensional one. The three-dimensional analysis  

-0.30

-0.15

0.00

0.15

0.30
 Two-dimensional analysis  Three-dimensional analysis

 (a)

 

 

D
is

p
la

ce
m

en
t

(m
)

 

-0.30

-0.15

0.00

0.15

0.30
 (b)

 

D
is

p
la

ce
m

en
t

(m
)

 

-0.30

-0.15

0.00

0.15

0.30
 (c)

 

D
is

p
la

ce
m

en
t

(m
)

 

-0.30

-0.15

0.00

0.15

0.30
 (d)

 

D
is

p
la

ce
m

en
t

(m
)

 

0 5 10 15 20 25
-3.0

-1.5

0.0

1.5

3.0

 

Time (s)

D
is

p
la

ce
m

en
t

(1
0

-4
m

)  (e)

 
Fig. 10 Soil-structure interactions by two- and three-dimensional analyses from obliquely incident SV wave of 

θ=10° and υ=0°. Displacements along x direction (a) at depth 4.1 m of left artificial boundary, (b) in the middle of 

bottom artificial boundary, (c) at depth 4.1 m of right artificial boundary, and (d) in the middle of central column; 

and (e) Relative displacements along x direction between top and bottom of central column 
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Fig. 11 Two-dimensional soil-structure interactions by viscous-spring boundaries with different parameters from vertically 

incident P wave of θ=0°. Displacements along y direction (a) at depth 4.1 m of left artificial boundary, (b) in the middle of 

bottom artificial boundary, and (c) in the middle of central column; (d) Relative displacements along y direction between top 

and bottom of central column; and (e) Axial forces in the middle of central column. Reference means a finite element model 

of the sufficiently large finite domain 
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chooses the incident P or SV wave with υ=0°. The solutions 

in the plane of z=35 m are the adequately accurate plane 

strain solutions. Two-dimensional analysis performs the 

plane strain computation directly with the same parameters 

as the three-dimensional case. The elastic modulus of 

central column is 1/3.5 of that of concrete in the 

two-dimensional analysis. The two-dimensional viscous- 

spring boundary sees Table 2. The parameters of the 

viscous-spring boundary are determined according to the 

underlying half space. The results are shown in Figs. 9 and 

10. It can be seen from the figures that the two-dimensional 

solutions agree very well with the three-dimensional ones. 

This indicates that the accuracy study of the viscous-spring 

boundary in two dimensions can represent that in three 

dimensions. 

 

 

 

Two-dimensional SSI analysis is performed. The 

parameters in the viscous-spring boundary are chosen 

according to the half space and the surface layer, 

respectively. The solutions are shown in Figs. 11 and 12 

where the reference solutions are given. It can be seen from 

the figures that the solutions obtained by the different 

viscous-spring boundaries agree very well and all of them 

agree with the reference solution. This indicates that the 

viscous-spring boundary have the sufficient accuracy for 

the seismic SSI and its parameter change does not affect the 

accuracy considerably. In the radiation problem, the 

viscous-spring boundary has not such high accuracy and its 

parameter change affects the accuracy relatively 

considerably. The reason is that the scattered field is much 

less than the free is much less than the free field in the  
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Fig. 12 Two-dimensional soil-structure interactions by viscous-spring boundaries with different parameters from 

vertically incident SV wave of θ=0°. Displacements along x direction (a) at depth 4.1 m of left artificial boundary, 

(b) in the middle of bottom artificial boundary, and (c) in the middle of central column; (d) Relative displacements 

along x direction between top and bottom of central column; and (e) Shear forces in the middle of central column. 

Reference means a finite element model of the sufficiently large finite domain 
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Fig. 13 Comparison between soil-structure interaction and free field. Displacements at depth 4.1 m of left artificial boundary 

(a) along y direction from vertically incident P wave and (b) along x direction from vertically incident SV wave, respectively 
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seismic SSI. This can be seen in Fig. 13. 

 

6.3 Initial condition for nonlinear analysis 
 

This subsection verifies the method to compute the 

initial condition for nonlinear analysis given in Subsection 

5.3. The linear Daikai site subjected to gravity is analyzed. 

The obtained initial condition is applied to a new site 

model. This new model is computed under gravity. The 

results are shown in Fig. 14. It can be seen from this figure 

that the vertical stress is the gravity field and the vertical 

 

 

 

 

displacement is nearly zero. This indicates that the initial 

stress due to gravity is considered but the displacement does 

not. 

 

 

7. Effects of obliquely incident earthquake 
 

7.1 Linear site  
 

This subsection gives the effect of the obliquely incident 

earthquake on the seismic site response. The Daikai site  
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Fig. 14 Initial conditions of free field from gravity. (a) Snapshot of vertical stress; (b) Vertical stress along depth; 

and (c) Snapshot of vertical displacement 
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Fig. 15 Site responses from P waves of vertical incidence θ=0° and of oblique incidence θ=30° and υ=60°, 

respectively. (a) Displacements and (b) accelerations along y direction at ground surface; and (c) Maximum 

principal stresses at depth of 40.3 m 
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Fig. 16 Site responses from SV waves of vertical incidence θ=0° and of oblique incidence θ=10° and υ=60°, 

respectively. (a) Displacements and (b) accelerations along x direction at ground surface; and (c) Maximum 

principal stresses at depth of 40.3 m 
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responses are shown in Figs. 15 and 16, respectively, from 

the incident P wave and SV wave. The relative differences 

of peak values between the oblique and vertical incidences 

are given. It can be seen that the effect of the obliquely 

incident earthquake on the site response is considerable. 

 

7.2 Linear soil-structure interaction 
 

This subsection gives the effect of the obliquely incident 

earthquake on the linear SSI. The seismic responses of the 

Daikai subway station system are shown in Figs. 17 and 18, 

respectively, from the incident P wave and SV wave. The 

relative differences of peak values between the oblique and 

vertical incidences are given. It can be seen that the effect 

of the obliquely incident earthquake on the linear SSI is 

considerable. 

 

7.3 Nonlinear soil-structure interaction 

 

This subsection gives the effect of the obliquely incident 

earthquake on the nonlinear SSI. The finite domain consider 

material nonlinearity and the truncated soil (infinite 

domain) is regarded as linear elastic.  The material 

nonlinearity of the soil in finite domain is considered by the 

Mohr-coulomb model of cohesion stress 20 KPa, friction 

angle 35 and dilation angle 2. The seismic responses of the 

Daikai subway station system are shown in Figs. 19 and 20, 

 

 

respectively, from the incident P wave and SV wave. The 

relative differences of peak values between the oblique and 

vertical incidences are given. It can be seen that the effect 

of the obliquely incident earthquake on the nonlinear SSI is 

considerable. 

 

 

8. Conclusions 
 

A method is proposed to input the obliquely incident 

earthquake into the SSI system in the layered half space. It 

consists of a new site response analysis method for free 

field and the viscous-spring boundary condition for 

scattered field.  

The site response analysis method is a time-domain 

one-dimensional finite element method. It has the same 

accuracy as the classical frequency-domain method such as 

the stiffness matrix method, and avoids the possible error 

due to Fourier transform. The approximate viscous-spring 

boundary condition have the sufficient accuracy and its 

parameter change does not affect the accuracy considerably, 

because the scattered field is much less than the free field in 

the seismic SSI. The proposed earthquake input method can 

be implemented in the preprocessing of a commercial finite 

element software. The effects of the obliquely incident 

earthquake on the response of Daikai site and subway 

station are considerable. The proposed earthquake input  
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Fig. 17 Linear soil-structure interactions from P waves of vertical incidence θ=0° and of oblique incidence θ=30° and 

υ=60°, respectively. Displacements along y direction (a) at ground surface and (c) in the middle of central column; (b) 

Accelerations along y direction at ground surface; Relative displacements along y direction between top and bottom 

(d) of central column and (e) of side wall; and (f) Maximum principal stresses in the middle of central column 
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Fig.18 Linear soil-structure interactions from SV waves of vertical incidence θ=0° and of oblique incidence θ=10° and υ=60°, 

respectively. Displacements along x direction (a) at ground surface and (c) in the middle of central column; (b) Accelerations 

along x direction at ground surface; Relative displacements along x direction between top and bottom (d) of central column 

and (e) of side wall; and (f) Maximum principal stresses in the middle of central column 
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Fig. 19 Nonlinear soil-structure interactions from P waves of vertical incidence θ=0° and of oblique incidence 

θ=30° and υ=60°, respectively. Displacements along y direction (a) at ground surface and (c) in the middle of 

central column; (b) Accelerations along y direction at ground surface; Relative displacements along y direction 

between top and bottom (d) of central column and (e) of side wall; and (f) Maximum principal stresses in the 

middle of central column 
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method can also be applied to the seismic SSI analysis of 

the other structure. The truncated soil is assumed as linear 

elasticity in the present work. The nonlinearity of the 

truncated soil should be considered in the future. 
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