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1. Introduction 
 

The passive structural control technology has developed 

greatly with inventions and applications of multiple types of 

dampers since 1980s (Soong and Spencer 2002, Housner et 

al. 1997). Passive control devices can be generally 

categorized into six major types: metallic dampers (Lee et 

al. 2016, Chan et al. 2009, Tsai et al. 1993), friction 

dampers (Mualla and Belev 2002, Bhaskararao and Jangid 

2006), viscoelastic dampers (Zhang and Soong 1992, Park 

2001), viscous fluid dampers (Lin and Chopra 2002, Lee 

and Taylor 2010), tuned mass/liquid dampers (Rana and 

S o o n g  1 9 9 8 ,  F u j i n o  e t  a l .  1 9 9 3 )  a n d 

electrorheological/magnetorheological dampers (Dyke et al. 

1996, Xu et al. 2000). Due to advantages such as simple 

structure, stable performance and reasonable cost, metallic 

dampers (MDs) have gained extensive attention as a reliable 

approach for seismic vibration control of civil structures. 

Metallic dampers are normally incorporated into the frame 

structure with braces, as shown in Fig. 1. Thus, the story 

drift can be effectively imposed on the metallic damper and 

cause its plastic deformation which dissipates the input  
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energy, while the frame and the brace remained undamaged 

during the earthquake. 

With the significantly increasing demand for 

engineering application of metallic dampers, a standard and 

an approach to evaluating the performance of metallic 

dampers are in great need. It is noted that the strength and 

stiffness of metallic dampers tend to deteriorate under 

cyclic loading due to fatigue damage. The Chinese Code for 

Seismic Design of Buildings (GB 50011-2010) proposed a 

standard to ensure the fatigue performance of metallic 

dampers, which requires that the metallic dampers should 

be able to endure a qualification test of at least 30 repeated 

cycles under their designed displacement amplitude. 

Meanwhile, the variation of the main design criteria should 

remain within 15% before and after the test. The main 

mechanical performance parameters, i.e. the elastic stiffness 

Kd, the plastic stiffness Kd', the yield displacement udy and 

the yield force Fdy are considered to be the essential factors 

of the above-mentioned design criteria. Therefore, the key 

to evaluating the fatigue performance of metallic dampers is 

to identify the mechanical performance parameters before 

and after the consecutive 30 cycles. 

The hysteretic behavior of the metallic damper within a 

structural system can be mathematically described by a 

hysteresis model. Various types of metallic dampers have 

been theoretically and experimentally studied over the last 

two decades (Tsai et al. 1993, Tehranizadeh 2001, Chan et 

al. 2009, Dusicka et al. 2010, Li et al. 2013, Han et al. 

2014, Deng et al. 2015, Lee et al. 2016, Ji et al. 2016). 

However, different patterns of metallic dampers share the 

same types of hysteresis models, including bilinear model  
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(Chen et al. 2006), Ramberg-Osgood model (Sireteanu et 

al. 2014) and Bouc-Wen model (Chan et al. 2009, Sireteanu 

et al. 2014), among which the Bouc-Wen model is generally 

considered to be the most suitable class of hysteresis model 

for metallic dampers. The Bouc-Wen model was first 

proposed by Bouc(1967) and later generalized by Wen(1976). 

The traditional Bouc-Wen model includes 6 parameters and 

involves a differential equation, which makes the parameter 

identification complicated. Moreover, the traditional Bouc-

Wen model is functionally redundant (Ma et al. 2004). In 

order to obtain the mechanical performance parameters of 

the metallic dampers through the Bouc-Wen model, the 

model needs to be modified in terms of eliminating the 

redundant parameter, and the relations between the model 

parameters and the performance parameters need to be 

uncovered. 

The Genetic Algorithm as a powerful optimization tool, 

has been used in several studies to identify the Bouc-Wen 

model parameters over the past few years (Ismail et al. 

2009). Liu et al. (2011) and Ha et al. (2006) adopted the 

standard real-coded Genetic Algorithm to identify the 

parameters of Bouc-Wen model for magnetorheological and 

piezoelectric dampers/actuators. Charalampakis and 

Koumousis (2008) proposed a modified Genetic Algorithm 

named "GAHC", which was a combination of Sawtooth GA 

and Greedy Ascent Hill Climbing, and Kwok et al. (2007) 

developed the "computationally-efficient GA" by 

incorporating the selection operator into the crossover 

operator to reduce the computational complexity of the 

identification algorithm. Kyprianou et al. (2001) and Ma et 

al. (2006) used "Differential Evolution Algorithm" for 

identification of the Bouc-Wen model parameters, which 

was similar to the real-coded Genetic Algorithm. In this 

study, in order to further enhance the efficiency of the 

identification, the Relative Fitness Adaptive Genetic 

Algorithm (RFAGA) is proposed, which modifies the 

standard Genetic Algorithm by incorporating real-integer 

hybrid coding, relative fitness, adaptive crossover and 

mutation rates and elitism strategy. Moreover, a more 

reasonable approach to estimate the parameter range before 

identification of the Bouc-Wen model is proposed, which 

can greatly enhance the efficiency of the identification as 

well. Based on the RFAGA, an approach to evaluating the 

fatigue performance of the metallic damper is proposed 

which consists of four stages, with the first complete cycle 

as Phase I to identify its initial mechanical performance 

parameters, the consecutive 30 cycles as Phase II as 

requested in the Chinese Code for Seismic Design of 

Buildings (GB 50011-2010), a smaller half cycle as Phase 

III to eliminate the residual plastic deformation, and the last 

complete cycle as Phase IV to identify its final mechanical 

performance parameters. Then the initial and final values of 

the mechanical performance parameters are compared to 

check if the degradation of each parameter remains within 

15%, as suggested in the Chinese Code for Seismic Design 

of Buildings (GB 50011-2010). 

The rest of this paper is organized as follows. In Section 

2, a brief description is given to the modified Bouc-Wen 

model. The relations between the parameters of modified 

Bouc-Wen model and the mechanical performance 

parameters of the metallic damper are studied in Section 3. 

Relative Fitness Adaptive Genetic Algorithm (RFGA) is 

proposed to implement parameter identification of the 

modified Bouc-Wen model in Section 4, based on which the 

approach to evaluating the fatigue performance of the MDs 

with respect to the Chinese Code for Seismic Design of 

Buildings (GB 50011-2010) is developed and verified by 

experimental test data in Section 5. A conclusion is finally 

drawn in Section 6. 

 

 

2. Modified Bouc-Wen model 
 

The traditional standard Bouc-Wen model describes the 

restoring force in a hysteresis system in the following form 

(Wen 1976, Ma et al. 2004) 

F = αku + (1-α)kz (1) 

1exp exp
z Au u z z u z 


  

 (2) 

where F is the restoring force, u is the displacement, z is the 

internal hysteresis variable. k controls the initial tangent 

stiffness, α controls the ratio of post-yield to pre-yield 

stiffness. A, β and γ are nondimensional parameters that 

control the shape of the hysteresis loop, while exp is a 

positive scalar that decides the smoothness of the transition 

from elastic to plastic response. The overdot represents 

derivative with respect to time t. In addition, the initial 

value for z is 0, i.e., z(0)=0. 

Eq. (2) is normally a first-order nonlinear differential 

equation (unless exp=1). Thus, for most cases, no explicit 

expression can be given for parameter identification of the 

Bouc-Wen model. Moreover, the traditional Bouc-Wen 

model is functionally redundant (Ma et al. 2004). As a 

result, a specific Bouc-Wen hysteresis curve may 

correspond to multiple different parameter vectors. A 

drawback to this property is that identification procedures 

that use input-output data cannot determine the parameters 

of the Bouc-Wen model. 

Ma et al. (2004) proposed a simple and effective 

alternative to remove the redundancy by setting A=1. 

Consequently, Eq. (2) can be modified as 

1exp exp
z u u z z u z 


  

 (3) 

Thus, the modified Bouc-Wen model is described by 

Eqs. (1) and (3). Instead of 6 parameters (A, k, α, β, γ, exp)  
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Fig. 2 Hysteresis loops described by the Bouc-Wen model 

 

 

in the traditional Bouc-Wen model, the modified Bouc-Wen 

model has only 5 parameters (k, α, β, γ, exp). Meanwhile, 

the redundant parameter has been removed in model, so that 

parameter identification can be implemented directly based 

on the modified Bouc-Wen model. 

 

 

3. Mechanical performance parameters of metallic 
dampers 
 

Typical hysteresis loops of metallic dampers described 

by the Bouc-Wen model are shown in Fig. 2. Point 0 is the 

origin. Point 2 and 3 correspond to the positive and negative 

designed displacement amplitude of the metallic damper 

respectively. Point 1 is defined as the ‘apparent yield point’, 

which is the intersection of the elastic tangent line and the 

plastic tangent line. Displacement and restoring force 

corresponding to point 1 are defined as the yield 

displacement udy and yield force Fdy. The slopes of line 01  

and 12  are defined as the initial elastic stiffness Kd and 

the plastic stiffness Kd'. (udy, Fdy, Kd, Kd') are the main 

mechanical performance parameters of the metallic damper, 

which are the crucial indexes in the evaluation of metallic 

dampers. Additionally, Point 2 and 3 are also defined as the 

'shift point' at which the loading direction changes, i.e., the 

sign of the velocity  changes. Slope of the curve 

immediately after the 'shift point' is defined as the shift 

stiffness Ks. The relations between the above-stated 

performance parameters and the Bouc-Wen model 

parameters need to be studied first. 

Dividing Eq. (3) by  yields 

1
1

exp expudz
z z z

du u
 


    (4) 

By solving Eq. (4), it reveals that the model is able to 

simulate softening system (i.e. the slope of the hysteresis 

curve decreases as |z| increases) with β+γ>0, and hardening 

system (i.e. the slope of the hysteresis curve increases as |z| 

increases) with β+γ<0, as shown in Fig. 3. Due to yielding 

of the metal material, the hysteresis loops for metallic 

dampers normally indicate a softening system. 

For softening systems, |z| reaches a maximum value zm 

by setting Eq. (4) to zero. For 0u   and z>0, or 0u    

 
(a) β+γ>0, β=γ 

 
(b) β+γ>0, β<γ 

 
(c) β+γ>0, β>γ 

 
(d) β+γ<0, β>γ 

Fig. 3 Hysteresis shapes for z with different β and γ 
 

 

and z<0, it gives 

1

m

1 exp

z
 

 
  

 

 (5) 

In the initial state, i.e., t=0, combining Eq. (3), u(0)=0 

and z(0)=0, we get the initial slope of z 

0

1
t

dz

du 

  (6) 

According to Eqs. (5)-(6), when the system initiates in a 

positive direction, i.e., 0u  and z>0, or in a negative  

u

u

u

z

u

z

u

z

z

u
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Fig. 4 z-u curves 
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Fig. 5 Schematic of the Bouc-Wen model 

 

 

direction, i.e.,  and z<0, the relation between z and u 

is shown in Fig. 4, where points Y+ and Y- are the 

intersection of the initial tangent line z=u and the ultimate 

bounds z=±zm, i.e., the equivalent yield points in the z-u 

curves. Thus the equivalent yield displacement in the z-u 

curves is 

uy= zm (7) 

According to Eq. (1), the restoring force F can be taken 

as the parallel combination of an elastic linear part F1=αku 

and a hysteretic nonlinear part F2=(1-α)kz, as shown in Fig. 

5. Thus, the yield displacement in the F-u hysteresis system 

is equal to the equivalent yield displacement in the z-u 

curves, which gives 

udy = uy = zm=

1

1 exp

 

 
 

 

 (8) 

Combining Eqs. (4), (5) and (8), we get the yield force 

Fdy = αkudy + (1-α)kzm =

1

1 exp

k
 

 
 

 

 (9) 

Differentiate Eq. (4) with respect to dispalcement u 

 1
dF z

k
d

d

duu
k     (10) 

Thus, when t=0, combining Eqs. (6), (10) and u(0)=0, 

we get the initial elastic stiffness 

d

0u

dF
K

du
k



   (11) 

Differentiate Eq. (1) with respect to displacement with 

u→∞, it follows 

 1
u u

dF z
k

d
k

u ud

d
 

 

    (12) 

The slope of the internal hysteresis variable z decreases 

to 0 as u approaches infinity, as shown in Fig. 4, which 

gives 

0
u

dz

du 

  
(13) 

By substituting Eq. (13) into Eq. (12), we get the post-

yield stiffness 

Kd' = αk (14) 

As shown in Fig. 2,  is satisfied after both 

the positive and negative shift points. Therefore, Eq. (3) can 

be revised as 

(1 ( ) )
expdz du

z
dt dt

     (15) 

By substituting Eq. (5) into Eq. (15), we get the slope of 

the z-u curve immediately after the shift points 

1
dz

du

 

 


 


 (16) 

Combining Eqs. (10) and (16), we get the shift stiffness 

 

(17) 

By comparing Eqs. (11) and (17), the relation between 

Kd and Ks is as follows 

 

(18) 

 

 

4. Parameter Identification by RFGA 
 

Genetic Algorithms (GAs) as a powerful and popular 

stochastic search algorithm were first proposed by Holland 

(1975) based on the idea of Darwin’s evolution theory, and 

then developed by Goldberg (1989). GAs find the global 

optimal solution in complex multidimensional search space 

by simultaneously evaluating multiple points in the 

parameter space. They require only information concerning 

the quality of the solution and do not require linearity in the 

parameters. Thus, GAs are widely used to solve 

optimization, parameter identification and many other 

problems in various domains. 

In this study, a modified form of Genetic Algorithms 

named Relative Fitness Adaptive Genetic Algorithms  
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Fig. 6 Influence of exp to the hysteresis shape 

 

 

(RFAGA) is adopted for parameter identification of the 

modified Bouc-Wen model, featuring relative fitness 

function as well as adaptive crossover and mutation 

probabilities. Major steps of parameter identification in this 

study are elaborated as follows. 

 

4.1 Parameter ranges 
 

Before starting the parameter identification with GA, the 

value range of each parameter needs to be confirmed, which 

composes the entire search space of interest. Upper and 

lower bounds of the parameters are given as 

UB=(kU, αU, βU, γU, expU) (19a) 

LB=(kL, αL, βL, γL, expL) (19b) 

Generally, significantly large initial ranges could be set 

for the parameters to encompass all possibilities, and then 

narrowed down by a few trials of the parameter 

identification process. However, this could be time-

consuming and sometimes misleading. In order to enhance 

the efficiency of the identification, the bounds of the 

parameters need to be narrowed down to more specific 

ranges. 

exp governs the smoothness of the transition from 

elastic to plastic response, and is usually set as a positive 

integer in common practice. As exp goes near 10 or above, 

the Bouc-Wen curve almost turns into a bilinear model (see 

Fig. 6), which is rarely seen in the hysteresis loops of 

metallic dampers. Thus, for most cases, practical bounds of 

exp could be set as expL=1 and expU=10, i.e., 

1 ≤ exp ≤ 10 (20) 

Given that Kd and Kd' represents the slope of the elastic 

response curve and the slope of the plastic response curve 

respectively, and the intersection of the elastic and plastic 

response curves is the 'apparent yield point', which 

corresponds to the yield displacement udy, the upper and 

lower bounds of Kd, Kd' and udy could be estimated from the 

test hysteresis curves as shown in Fig. 7, i.e., 

KdL ≤ Kd ≤ KdU (21) 

KdL' ≤ Kd' ≤ KdU' (22) 
 

 

Fig. 7 Estimation of upper and lower bounds for Kd, Kd' and 

udy 

 

 

udyL ≤ udy ≤ udyU (23) 

By substituting Eqs. (11) and (14) into inequalities (21) 

and (22), it gives the bounds for k and α as kU = KdU, kL = 

KdL, 
dU

U

dL

K

K



 , 

dL
L

dU

K

K



 , i.e., 

KdL ≤ k ≤ KdU (24) 

dL dU

dU dL

K K

K K


 
   (25) 

By substituting Eq. (8) into inequality (23), it gives 

 
(26) 

where a and b are defined as 

 
(27a) 

 
(27b) 

in which exp0 is an initial guess of the parameter exp within 

the range defined in inequality (20) depending on the actual 

smoothness of transition in the hysteresis loop. According 

to previous theoretical and experimental investigation 

results (Tsai et al. 1993, Chen et al. 2006, Chan et al. 2009, 

Dusicka et al. 2010, Li et al. 2013, Han et al. 2014, 

Sireteanu et al. 2014, Deng et al. 2015, Ji et al. 2016, Lee et 

al. 2016), the shift stiffness Ks is normally quite close to the 

initial elastic stiffness Kd for metallic dampers. 

Consequently, based on Eqs. (17) and (18), the difference 

between β and γ is small. Thus, with inequality (26), the 

initial bounds for β and γ can be set as 

 
(28) 

 
(29) 

According to the above stated equations and 

inequalities, ranges of the five model parameters (k, α, β, γ, 

exp) can be established. Additionally, the initial setting of 

exp0 or the bounds for β and γ can be further revised based 
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on the results of a trial implementation of the parameter 

identification if needed. 

 

4.2 Real-integer hybrid coding 
 

Traditional Genetic Algorithms use binary coding to 

represent values of variables. However, in parameter 

identification, it would need excessive length of binary 

coding strings to achieve desired precision, which may 

seriously affect the efficiency of the algorithm. As 

aforementioned, the parameters k, α, β and γ are real 

numbers, while the parameter exp is usually set as a positive 

integer. Therefore, the real-integer hybrid coding is adopted 

here instead of the traditional binary coding. The model 

parameter set is encoded into a hybrid real-integer string 

w=(w1, w2, w3, w4, w5), where w1, w2, w3, w4 are real 

numbers representing the values of k, α, β and γ 

respectively, while w5 remains a positive integer 

representing the value of exp. 
 

4.3 Objective function and fitness function 
 

The aim of the parameter identification is to minimize 

the error between the test data and the simulation data. 

Thus, the objective function for this problem could be set as 

the root-mean-squared-error (RMSE) as follows 

sim test 2

1

1
( )

n

i j j

j

e F F
n 

 
  

 
  (30) 

where ei is the objective function of the ith chromosome in 

the population. n is the total number of data points. 
sim

jF  is 

the simulated restoring force of the jth point, while 
test

jF  is 

the tested restoring force of the jth point. Note that ei has 

the same unit with the restoring force. Individuals with less 

error should possess higher fitness values, and thus have 

larger chances to be selected, which means the objective 

function and the fitness function should be inversely 

related. In addition, the fitness function should always 

remain non-negative. For such instances, fitness function is 

commonly set as 

max  i iCf e   (31) 

where fi is the fitness function of the ith chromosome in the 

population. Cmax is a constant representing the upper bound 

of the objective function. However, Cmax cannot be 

determined for the objective function described in Eq. (30) 

in this study. Thus, as an alternative, Relative Fitness 

Genetic Algorithm (RFGA) is adopted in this study, whose 

fitness function is described as 

max max min

max min

     (32. )

           

      if                                    

   ( 0)    if                    (      32 ) .  

i i

i

e e e ef a

c c e ef b

  

  





，

，
 

(32a) 

(32b) 

where emax and emin are the maximum and minimum 

objective function value in the population, respectively. c is 

a nonzero constant. Thus, the chromosomes with less error 

will have higher fitness values, and thus have larger chances 

to be selected. 

4.4 Selection 
 

Selection is a genetic operator that makes more copies 

of better individual chromosomes in a new population. 

Selection is usually the first operator applied on population. 

By evaluating the chromosomes with the fitness function, 

good individuals in a population are selected and forms a 

mating pool. Thus, in selection operation the process of 

natural selection cause those individuals that encode better 

solutions to produce copies more frequently.  

There are various methods for the selection operator, 

such as Roulette Wheel Selection, Rank Selection, Steady 

State Selection and Tournament Selection. In this study, the 

Roulette Wheel method is adopted as the selection operator. 

The probability of the ith chromosome to be selected is 

 

(33) 

 

4.5 Crossover and mutation 
 

Crossover and mutation are two important procedures 

that direct the search for solutions by exploitation and 

exploration. The crossover operator aims to refine the best 

solution found so far, while the mutation operator is 

devoted to search for solution spaces that have not been 

covered. The two-point arithmetic crossover method and 

single point mutation method are employed in this study. 

In particular, modified adaptive crossover and mutation 

rates are adopted in this study. Srinivas (1994) proposed a 

theory of adaptive probabilities of crossover and mutation 

in GA, in which pc and pm are not fixed but dependent on 

the fitness value. Chromosomes with fitness value below 

average will be crossed or mutated more frequently. 

Furthermore, in the case that the average fitness shifts to a 

higher value, the proposed mechanism automatically favors 

a higher crossover and mutation rate. Thus, a trade-off 

between exploitation of the optimum solution and 

exploration of the solution space is maintained. However, in 

his theory, the crossover and mutation rates of the 

chromosomes with the highest fitness values are close to 0, 

which is unfavorable in the early stage of the evolution. To 

overcome the above stated problem, the crossover rate Pc 

and mutation rate Pm in this study are modified as shown in 

Eqs. (34)-(35). 

 

(34) 

   
 

 

m1 m2 avg

m1 avg

max avgm

m1 avg

    

                                         

P P f f
P f f

f fP

P f f

  
   


  

(35) 

where Pc1 and Pc2 are the upper and lower bounds of the 

probability of crossover respectively. Pm1 and Pm2 are the  

1

i
i n

j

j

f
p

f



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Fig. 8 Flow chart of the parameter identification process 

 

 

upper and lower bounds of the probability of mutation 

respectively. fmax is the maximum fitness value of the 

population, while favg is the average fitness value of the 

population. f' is the larger of the fitness value of the 

chromosomes to be crossed, while f is the fitness value of 

the chromosome to be mutated. According to Eqs. (34)-

(35), the crossover rate of the chromosome with the highest 

fitness value is Pc2, and the mutation rate of the 

chromosome with the highest fitness value is Pm2. 
 

4.6 Elitism strategy 
 

During iterations of GA, good individuals can be lost 

when crossover or mutation results in weaker offspring, 

which may influence the efficiency of the searching 

process. Elitism strategy (Rudolph 1994) is adopted within 

the selection operator to overcome the above stated 

problem. By copying one or several fittest individuals into 

the next generation, survival of the best chromosomes in 

subsequent generations are ensured. As a result, elitism can 

enhance the performance of GA significantly. In this study, 

the best individual of the ith generation is copied directly 

into the (i+1)th generation, replacing the worst individual of 

the (i+1)th generation. 

 

4.7 Terminating criteria 
 
There are many possible ways to terminate the GA 

iteration. For example, the GA may terminate after the 

expiry of a fixed number of generations. Alternatively, by 

monitoring the change on the fitness value, the GA may 

terminate when there are no more significant fitness 

improvements within a fixed number of iterations. In this 

study, the GA iteration stops when a selected number of 

generations (Nmax) is reached. 

After the parameters of normalized Bouc-Wen model 

are identified, the main performance parameters of the 

metallic damper could be obtained by Eqs. (8), (9), (11) and 

(14). 

The complete identification process can be expressed by 

the flow chart shown in Fig. 8, according to which the 

identification process is finally implemented via MATLAB 

code. 

 

 

5. Experimental verification 
 

Based on the parameter identification method developed 

in Section 4, the procedures for fatigue performance 

evaluation of metallic dampers with respect to the Chinese 

Code for Seismic Design of Buildings (GB 50011-2010) is 

proposed as follows. 

The loading protocol of the qualification test is shown in 

Fig. 9, which can be divided into 4 stages. The key time 

points are also shown in the figure, where t0, t1, t2 and t3 are 

the time when each stage begins; t4 is the time when the 

loading protocol ends; t2' is the time when the loading 

reverses direction in phase III; t3' is the time when the 

loading first reverses direction in phase IV. In phase I, the 

tested metallic damper sample is loaded for the first full 

cycle to obtain its initial mechanical performance 

parameters ( ) using the parameter 

identification method presented in Fig. 8. Then in phase II, 

it is loaded for 30 consecutive cycles under designed 

displacement amplitude ±um as requested in the Chinese 

Code for Seismic Design of Buildings (GB 50011-2010). 

Phase III is implemented to eliminate the residual plastic 

deformation. The hysteresis curves of the metallic damper 

in Phase III is show in Fig. 10. As shown, the loading path 

is A→B→O→C in Fig. 10, where point A correspond to t2 

in Fig. 9; point B correspond to t2' in Fig. 9; point O 

correspond to t3 in Fig. 9; point C correspond to t3' in Fig. 9. 

Thus, the hysteresis curve may return to the origin point at 

the end of Phase III, and Phase IV may start from the origin 

point. In phase IV, it is loaded for the last full cycle to 

obtain its final mechanical performance parameters (

dy1 dy1 d1 d1, , ,u F K K  ) using the parameter identification 

method presented in Fig. 8. Finally, the variations of the 

mechanical performance parameters between the first cycle 

and the last cycle are checked. If the variations are all 

within 15%, the tested metallic damper sample is qualified, 

or else it is disqualified. Additionally, it is suggested that we 

use the test data of a complete cycle for the identification to 

account for the variance within a complete cycle because 

the  h ys tere s i s  loop s  a r e  no t  a lwa ys  p er fec t ly  

dy0 dy0 d0 d0, , ,u F K K 
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Fig. 9 Loading protocol of the qualification test 
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Fig. 10 Hysteresis curve between t2 and t3' 
 

 

centrosymmetric. However, if the hysteresis loops are 

almost perfectly centrosymmetric, identification using the 

data of a quarter in the complete cycle (i.e., “the monotonic 

loading” part) can be an alternative to reduce the time cost 

for the identification. 

It is to be noted that the Bouc-Wen model adopted here 

does not explicitly simulate the process of fatigue behavior 

of the metallic dampers. It is used to identify the 

mechanical performance parameters before and after the 30 

consecutive cycles separately, and the fatigue performance 

is finally evaluated by comparing the identification results. 

A new type of metallic damper was developed and 

tested in Southeast University (Li et al. 2013). A symmetric 

test setup was adopted as shown in Fig. 11, which is a 

widely accepted loading scheme for metallic dampers (De 

la Llera et al. 2004, Shih and Sung 2005). 6 identical core 

plates of the tested metallic damper were loaded 

simultaneously by an MTS actuator. In order to evaluate the 

fatigue performance of the metallic damper, the loading 

protocol given in Fig. 9 was adopted. The loading 

displacement amplitude was set as ±um=±30 mm (i.e., the 

designed displacement amplitude). Force and displacement 

were measured and recorded during the test, from which the 

hysteresis loops were drawn as shown in Fig. 12. The 

maximum strain on the MD core plates reached about 0.018 

during the cyclic loading test (corresponding to the 

maximum displacement amplitude um=30 mm). 

The aforementioned RFAGA is adopted to identify the 

parameters of the modified Bouc-Wen model using the 

force-displacement data of the first and the last cycle in the 

test, respectively. The population size is set as n=40, 

maximum number of iterations Nmax=100, the upper and 

lower bounds of crossover probability Pc1=0.9 and Pc2=0.5, 

the upper and lower bounds of mutation probability Pm1=0.1 

and Pm2=0.02. The parameter ranges are first estimated by 

the method proposed in Section 4.1, which gives the lower 

bounds as (kL, αL, βL, γL, expL)=(40, 0.005, 0.05, 0.05, 1), 

and the upper bounds as (kU, αU, βU, γU, expU)=(100, 0.03, 

0.40, 0.40, 10) for the identification of both the first and the  

 
(a) Picture 

 
(b) Schematic 

Fig. 11 Test setup 

 

 
(a) First cycle 

 
(b) 30 consecutive cycles 

 
(c) Last cycle 

Fig. 12 Hysteresis loops of metallic damper 
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(a) First cycle 

 
(b) Last cycle 

Fig. 13 Experimental hysteresis loop vs. simulated 

hysteresis loop 

 

 

last cycle. Then 40 initial guesses are randomly generated 

within the ranges, which represent the first generation in the 

Genetic Algorithm. After the model parameters (k, α, β, γ, 

exp) are identified, the performance parameters (udy, Fdy, 

Kd, Kd') can be calculated by Eqs. (8), (9), (11) and (14).  

The identification results are listed in Table 1. As 

shown, the variations of mechanical performance 

parameters between the first cycle and the last cycle are all 

within 15%, which satisfies the requirements in the Chinese 

Code for Seismic Design of Buildings (GB 50011-2010), 

and therefore qualifies the tested metallic damper sample in 

terms of fatigue performance. The RMSEs of the final 

solution is 8.94kN and 7.38kN for identification of the first 

cycle and the last cycle respectively, and the relative errors 

are within 5%, which indicates that the errors between the 

experimental data and the simulation results can be 

minimized to a reasonable level. 

Furthermore, the same identified parameter values of 

exp can be found in the first and the last cycles. This is  

 

 
(a) Identification for the 1st cycle 

 
(b) Identification for the last cycle 

Fig. 14 Convergence curves of RFAGA 

 

 

because the parameter exp determines the smoothness of 

transition from elastic to plastic response, and the 

smoothness of transition almost remained unchanged 

between the first and the last cycles. Besides, the search 

range for exp is set as positive integers within [1, 10] as 

aforementioned. Thus, it is reasonable that the identified 

values of exp remained unchanged. Additionally, as shown 

in Table 1, the identified parameter values of β and γ are 

quite close for the first and the last cycles, while a 

noticeable reduction in the identified parameter values of k 

is observed between the first and the last cycles. The reason 

is that k is the key parameter which controls the stiffness 

and strength, while β and γ controls the yield placement 

according to the equations given in Section 3. Noticeable 

degradation of stiffness and strength can be observed in Fig. 

12, while the yield placement remained almost unchanged. 

Thus, it is reasonable that the variations of β and γ are 

smaller, while the variation of k is larger in the 

identification results between the first and the last cycles. 
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Table 1 Identification results 

 

Modified Bouc-Wen model parameters MD mechanical performance parameters 
RMSE 

(kN) 

Relative 

error* k α β γ exp 
Kd 

(kN/mm) 

Kd' 

(kN/mm) 

udy 

(mm) 

Fdy 

(kN) 

First cycle 72.47 0.0142 0.1364 0.1446 1 72.47 1.03 3.56 257.90 8.94 3.07% 

Last cycle 65.18 0.0150 0.1396 0.1453 1 65.18 0.98 3.51 228.70 7.38 2.83% 

Variation — 10.06% 4.99% 1.40% 11.32% — 

*Relative error: The ratio of RMSE to the maximum restoring force of the hysteresis loop, i.e., RMSE / Fmax 
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Fig. 15 Experimental hysteresis loop vs. simulated bilinear 

hysteresis loop 

 

 

Comparison of hysteresis loops by test data and by 

simulation model based on identification results is shown in 

Fig. 13. As shown, the simulated curves fit well with the 

experimental data, which proves the validity of the proposed 

parameter identification method. Convergence curves of 

RFAGA are shown in Fig. 14, which indicates the 

RFAGA used in the parameter identification is able to 

converge quickly within 100 iterations. The time 

consumption of the parameter identification using the 

proposed RFAGA is around 10 minutes, which is an 

acceptable time cost for engineering application. 

Additionally, in order to clarify the difference between 

identification using the bilinear model and the Bou-Wen 

model, test data of the first cycle is used for the bilinear 

model identification as an example, in which the same 

objective function (RMSE) and algorithm (RFAGA) are 

used. The identified bilinear model is shown in Fig. 15. By 

comparing Fig. 13(a) and Fig. 15, the identified Bouc-Wen 

model fits the test data quite well, while the identified 

bilinear model exhibits noticeably larger deviation from the 

test data. Moreover, the RMSE of the bilinear model 

identification is 23.81 kN, which is significantly larger than 

that of the Bouc-Wen model identification. The main reason 

can be explained that the Bouc-Wen model is able to 

simulate the smooth transition from elastic to plastic 

response, which makes it more adaptive to the actual 

hysteresis curves of metallic dampers, while the bilinear 

model simplifies the transition to a sharp point. Thus, it is 

more reasonable and convincing to evaluate the fatigue 

performance of metallic dampers using the Bouc-Wen 

model. 

 

 

6. Conclusions 
 

This paper has presented an effective approach for 

parameter identification of the modified Bouc-Wen model 

and its application to evaluation of fatigue performance for 

metallic dampers. The major findings are summarized as 

follows: 

• Relations between the modified Bouc-Wen model 

parameters and the mechanical performance parameters of 

metallic dampers are uncovered. Consequently, the 

performance parameters can be obtained after the model 

parameters are identified. 

• A new method based on Relative Fitness Adaptive 

Genetic Algorithm (RFAGA) is proposed to identify the 

model parameters using the experimental test data. It is 

shown that RFAGA used in the identification is able to 

converge quickly, and the simulated hysteresis curves based 

on the identification results match well with the test 

hysteresis curves, which proves the effectiveness and 

efficiency of the identification method. 

• The procedures for evaluating the fatigue performance 

of metallic dampers are proposed based on the 

aforementioned findings, and verified by a qualification 

test. The approach is shown to be a useful and reliable tool 

for evaluation of metallic dampers with respect to the 

Chinese Code for Seismic Design of Buildings (GB 50011-

2010). 
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