
Earthquakes and Structures, Vol. 13, No. 3 (2017) 279-288 

DOI: https://doi.org/10.12989/eas.2017.13.3.279                                                                  279 

Copyright ©  2017 Techno-Press, Ltd. 
http://www.techno-press.com/journals/eas&subpage=7                                      ISSN: 2092-7614 (Print), 2092-7622 (Online) 

 

1. Introduction 
 

Nowadays with great improvement of science, computer 

simulations need to be even more realistic. One important 

simulation, which involves many research fields, is 

dynamic analysis of structures subjected to time-dependent 

loadings. A quick look at the history of numerical analysis 

of such structures reveals that numerous methods exist in 

this field; each having different characteristics. For 

example, Modal analysis is highly accurate for dynamic 

analysis of structures with linear behavior but has the 

disadvantage of finding eigenvalues and eigenvectors of the 

system which becomes very hard when the number of 

degrees of freedom increases remarkably. Another 

disadvantage of this method is its disability of solving 

nonlinear problems. This goes with Frequency domain 

analysis methods as well. 

Through various existing methods, time stepping 

methods have become most popular among scientists to the 

point that most of them exist in commercial computer 

programs. These methods have different characteristics and 

can be categorized in many different ways. One 

categorization has something to do with the information 

needed to reach an equilibration on a time step. From this 

point of view, these methods are categorized into two  
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classes being explicit and implicit. The methods which use 

the differential equation at time 𝑡 to predict a solution at 

time 𝑡 + ∆𝑡 are called explicit (Bathe and Wilson 1976, 

Dokainish and Subbaraj 1989, Belytschko and Lu 1993, 

Pezeshk and Camp 1995, Chang 2007, Chang 2009, Noh 

and Bathe 2013, Chang 2014, 2016). For most real 

structures, a very small time step is required to obtain a 

stable solution using explicit methods. Of course recently 

unconditionally stable explicit methods have also been 

proposed (Chang and Liao 2005, Rezaiee-Pajand and 

Hashemian 2016). Implicit methods try to reach equilibrium 

at time 𝑡 + ∆𝑡 after the solution at time 𝑡 is found (Bathe 

and Wilson 1976, Pezeshk and Camp 1995, Gholampour 

and Ghassemieh 2013, Bathe 2014, Soares 2016, Tornabene 

et al.
 
2016). There is also another class in this categorization 

called predictor-corrector which utilizes both formulations 

of explicit and implicit methods (Howe 1991, ZHAI 1996, 

Lourderaj et al. 2007, Rezaiee-Pajand and Alamatian 2008). 

In another classification, time stepping methods are 

divided into conditionally and unconditionally stable 

methods. A method is called stable if the numerical 

solution, under any initial conditions, does not grow without 

bound; and is called unconditionally stable if the 

convergence of the solution is independent of the size of the 

time step ∆𝑡 . The Newmark's family of methods, 

depending on the values of the constants used, stand in this 

category. In the Newmark integration method, the 

acceleration varies linearly or remains constant within two 

instances of time (Newmark 1959). Wilson- θ  (Wilson 

1962) is another example of such methods. A very 

important factor in numerical methods is their percentage 

period elongation and percentage amplitude decay by which 
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the accuracy of these methods are assessed. 

It has been less than a decade that a new kind of time 

stepping methods have been introduced to the world of 

dynamic
 
analysis.

 
These

 
methods,

 
called

 
composite methods, 

try to split the time step into multiple steps each to be 

solved using different time stepping method algorithms    

(Bathe and Baig 2005, Bathe 2007, Silva and Bezerra 2008, 

Leontyev 2010, Bathe and Noh 2012, Chang 2014, Gautam 

and Sauer 2014, Chandra et al. 2015, Zhang et al. 2015, 

Wen et al. 2017, Wen et al. 2017, Zhang et al. 2017). The 

recent papers on composite schemes are mostly inspired by 

the method developed by Bathe and Baig (2005). Using the 

sub-step strategy similar to Bathe scheme, a generalized 

robust composite time integration scheme is proposed by 

Dong (Dong 2010) for nonlinear elastodynamics with the 

purpose of overcoming the stability problem of existing 

time integration schemes in problems with nonlinear 

behavior. In order to improve the dissipation control in 

composite time integration methods and as an extension to 

the proposed methods by Bathe and Baig (2005) and Dong 

(2010), a new composite time integration in which three 

sub-steps were utilized where the Trapezoidal rule is 

applied on the first and second sub-steps and the backward 

difference formula is adopted to perform the third sub-step 

analysis is proposed by Chandra et al. (Chandra et al. 

2015). Similar to this work, Wen et al. (Wen et al. 2017) 

proposed a three sub-step method in which Trapezoidal rule 

is applied on the first sub-step and the Euler backward 

method is applied on the second sub-step, as for the third 

sub-step, the Houbolt method is utilized. The last three 

mentioned methods assessed numerically for their 

performances and different features by Wen et al. (Wen et 

al. 2017). Composite methods have proved their ability to 

overcome highly instable conditions. These conditions are 

very common in nonlinear problems as well as flexible 

structures which have vast range of natural frequencies 

(Chang 2002, 2015). 

This study, motivated by the method developed by 

Bathe and Baig (2005), proposes a new composite time 

integration method which divides a time step into two sub-

steps. The first sub-step is solved using the well-known 

Newmark’s method (Newmark 1959) and for the second 

sub-step the Simpson’s Rule (Scherer 2017), which is a 

double step method, is applied. The stability, accuracy, and 

overshoot behaviors of the method are analyzed and 

through numerical examples the method is compared to the 

existing ones. 

 

 

2. The proposed algorithm 
 

If a single degree of freedom system is considered with 

a (non-)linear behavior 

ttsttttttt PfUUU
t   KCM   (1) 

in which U is the displacement,U is the velocity,U is the 

acceleration, M is the mass, C is the damping, Kt is the 

tangent stiffness in time t, P is the exciting force,
tsf is the 

internal force, and t is the time step duration. The time step 

is divided into two equal or unequal sub-steps being t

and t )1(  . Imagine the solution is known up to time t 

and the solution of time tt  is to be calculated. The first 

sub-step is solved using Newmark method; as follows 
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in which  and  are the constants of Newmark family of 

methods in which the choice of 4/1 and 2/1 leads to 

the Trapezoidal Rule. Substituting Eqs. (2) and (3) into the 

equation of motion, the incremental equation is obtained; as 

follows 
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ttttt UUU     (7) 

The calculated values for displacement, velocity, and 

acceleration at the end of the first sub-step are used as 

initial values for the second sub-step. 

The second sub-step is solved using Simpson’s Rule. 

The following equations are related to the second sub-step 
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Substituting Eqs. (8) and (9) into the equation of 

motion, the following equation is obtained 
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in which α, β and γ are the constant parameters kept into 

account so that the method could have unconditional 

stability, which is discussed in detail on the next section. It 

is notable that incremental equations, presented in Eqs. (4) 

and (10), can be solved linearly or nonlinearly; in case 

nonlinear behavior is considered, an equilibrium path 

tracing algorithm like Newton-Raphson method needs to be 

applied on the incremental equation. 

 

 

3. Stability 
 

It is common to assess the stability of a time integration 

method by considering the equation of motion for a single 

degree of freedom system with arbitrary initial conditions. 

The amplification matrix [A] is calculated for such problem 

and then the spectral radius of this matrix is calculated. The 

method is stable if spectral radius is less than or equal to 

unit (Gholampour et al. 2011, Bathe and Noh 2012, Bathe 

2014, Verma et al. 2015, Mohammadzadeh et al. 2017). Eq. 

(14) shows the amplification matrix of Newmark method in 

a free vibration problem; as follows 
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in which the constants of the amplification matrix [A] are 

presented in Appendix A. For the second sub-step the 

following amplification matrix is obtained 
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in which the constants of the amplification matrix [B] are 

presented in Appendix A. Finally, the amplification matrix 

for the proposed composite method is obtained; as follows 
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If it is to find the stability region, the critical state being 

zero damping ratio has to be considered. Fig. 1 presents the 

spectral radius as a function of Tt / . 

According to Fig. 1, one definite region of unconditional 

stability is presented in Eq. (17) 

 
Fig. 1 Spectral Radius as a function of Tt /  

 

 

4.0  & 5.0  & 3/5.0    (17) 

Of course there may exist more regions of unconditional 

stability for the constant parameters to be chosen from; here 

only one definite region is discussed. Additionally, in order 

to assess the weak instability presence in the proposed 

method, consider the free vibration of a 2DOf system where 

a relatively high frequency mode is included; as presented 

in Fig. 2(a). 

Assuming K1=10
3
, K1=1, M1=1, and M2=1

 
with unitary 

initial displacement in both degrees of freedom, the 

displacement responses at the first and second DOFs are 

presented in Fig. 2(b) and Fig. 2(c), respectively.
 

According to Fig. 2(b), although the proposed method 

shows no weak instability, Bathe method has better 

performance in high frequency dissipation. Regarding the 

Fig. 2(c), the differences in responses at the second DOF 

are very marginal. In addition to this, the displacement 

response of the first DOF is calculated assuming K1=10
7
 

(Fig. 2(d)). 

According to the Fig. 2(d), the differences between 

responses of Bathe method and the proposed method are 

less tangible and no weak instability is observed in any of 

these methods. After defining stability regions, the accuracy 

of method has to be analyzed; as follows in the next section. 

 

 
4. Accuracy 
 

Unconditional stability may provide a remarkable 

advantage to a method but without having the required 

accuracy in the responses, a method would not be of interest 

to any operator. Assessment of accuracy in time stepping 

methods is usually followed by considering the following 

equation 

02 2  UUU    (18) 

This way, the variables considered in the stability and 

accuracy analyses are only Δt, ω, and ξ ( Bathe 2014). 
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(a) Highly flexible 2DOF system 

 
(b) Displacement response of the first DOF 

 
(c) Displacement response of the second DOF 

 
(d) Displacement response of the first DOF(K1=10

7
) 

Fig. 2 Weak instability assessment of the proposed method 

through solving a highly flexible system 
 

 

 

Amplitude decay, also known as numerical damping, is 

the percentage
 
distortion

 
of

 
amplitude

 
in

 
the responses 

compared to
 
the

 
exact

 
solution.

 
Fig.

 
3

 
presents

 
the percentage 

 
Fig. 3 Percentage numerical damping versus Tt /  

 

 
Fig. 4 Percentage period elongation as a function of Tt /  

 

 

amplitude decay of the proposed method along with the 

other known methods where damping is equal to zero 

(critical case) and unit displacement initial condition is 

assumed. 

The advantage of having two reasonable levels of 

numerical damping in the proposed method is easily 

perceptible from Fig. 3. As stated in (Bathe and Noh 2012), 

a
 
reasonable amount of numerical damping sometimes helps 

a method to provide more accurate responses as well as 

keep its stability during analysis. Of course it should be 

noted that, it is possible to provide the method with 

different levels of numerical damping; but according to Fig. 

1, the unconditional stability will be lost; so, in this case, it 

is required to consider the stability region of the proposed 

method in the analysis. 

In addition to distortion in amplitude, time marching 

methods usually yield responses that suffer from distortion 

in period. The period elongation factor has the duty of 

measureing such distortion. This error is generally reported 
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as the percentage difference between the true period and the 

period of computed solution of undamped free vibration of 

SDOF systems (Bathe 2014, Shrikhande 2014). Fig. 4 

presents the percentage period elongation error for various 

methods. 
Fig. 4 illustrates that the proposed method even with the 

choice of (α=0.4; β=0.5; γ=0.5), which provides the method 
with numerical damping, produces slightly higher amount 
of period elongation compared to the Newmark method 
with the choice of (β

 
=

 
3/10; γ

 
=

 
11/20). It is also perceptible 

from this figure that the proposed method with the choice of 
(α=0.4; β=0.3; γ=0.6) has the lowest amount of period 
elongation error among the presented methods. 
 

 

5. Overshoot 
 

This section concerns with the overshoot behavior of  

time integration methods (Goudreau and Taylor 1972). This 

 

 

behavior of numerical time integration methods is carried 

out by studying the solution of a model problem at the first 

time step using different time step sizes. To this end, the 

absolute errors in displacement and velocity for two cases, 

being with and without presence of damping, are calculated. 

Please be noticed that in order to present an overshooting 

method the results of CH-α (Chung and Hulbert 1993) are 

also included in the figures. Additionally, the overshooting 

results of Bathe method and CH-α method can also be 

found in a recent study by Kadapa et al. (Kadapa et al. 

2017). Fig. 5(a) and Fig. 5(b) present the overshooting 

analysis results for the displacement and velocity, 

respectively where damping is assumed to be zero. 
According to the results presented in Fig. 5(a) and Fig. 

5(b), no overshooting is observed in the proposed method 
and Bathe method in displacement and velocity; this is 
while, significant overshooting is present in CH-α method’s 
velocity responses. Fig. 5(c) and Fig. 5(d) present the 
overshooting analysis results for the displacement and  

  
(a) Overshoot results of displacement (0.0 % damping) (b) Overshoot results of velocity (0.0 % damping) 

  
(c) Overshoot results of displacement (10.0 % damping) (d) Overshoot results of velocity (10.0 % damping) 

Fig. 5 Overshooting assessment of the proposed method through solving a model problem at the first time step using different 

time step sizes 
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velocity, respectively where damping is assumed to be 10 

percent. 

As illustrated in Fig. 5(c) and Fig. 5(d), the proposed 

method and Bathe method do not suffer from overshooting. 

On the other hand, CH-α method has shown remarkably 

high overshoot in the results of both displacement and 

velocity when damping is assumed to be present. 

 

 

6. Numerical examples 
 

In order to have a practical assessment of the proposed 

method, in this section the proposed method has been 

applied on the several benchmark problems. 

 
6.1 Example 1 

 

This example is a benchmark problem chosen from 

(Bathe 2014) and involves a bar under dynamic axial 

 

 

Fig. 7 A SDOF system with nonlinear behavior 

 

 

loading with linear elastic behavior. Fig. 6(a) presents the 

characteristics of this example in detail. The bar is made of 

two materials giving it a stiff and flexible sections and the 

load is acting on the stiff part. 

The bar is initially at rest and is subjected to a dynamic 

axial force for which the formula is shown in Fig. 6(b). The  

 

 

(a) A linearly behaving bar under axial force (b) The equation of dynamic axial force 

 
(c) The modeled structure of the bar 

 

 

(d) Responses to the bar obtained by various method (e) von Mises stress contour at t=0.01 sec. 

Fig. 6 First Example: the bar under dynamic axial load 
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Fig. 8 The elastic-perfect plastic behavior (Chopra 2007) 

 

 

response of the bar at time 0.01 sec. was sought. 

As stated in (Bathe 2014), the static correction provided 

the mode superposition method highly accurate responses. 

Solution of this problem demands consideration of 

sufficient number of elements. As illustrated in Fig. 6(c), 

the bar is modeled with twenty quadrilateral four-noded 

elements. 

The results of displacement of nodes along the bar has 

been presented in Fig. 6(d) for various methods. Please be 

noticed that the mode superposition method with static 

correction has been adopted as reference solution. Also 

Newmark trapezoidal rule is applied on this problem with 

two different time step sizes being 0004.0t sec. and

002.0t sec. while for the proposed method a time step 

size of 0.005 sec. is adopted. 

As it is perceptible from Fig. 6(d), the responses 

obtained by different methods are very close to each other; 

the only place in which the responses have perceptible 

differences is in the middle of the bar. In this region, 

Trapezoidal rule with a time step size of 0.002 sec. has 

tangible digression from the reference solution; this is while 

the proposed method and Bathe method with a time step 

size of 0.005 sec. (more than 2 times longer than 

Trapezoidal-rule’s) continue on agreement with the 

reference solution. The von Mises stress contour is 

displayed in Fig. 6(e). The mentioned differences are less 

tangible in this figure. 

 

6.2 Example 2 
 

This example assesses the proposed method in a 

nonlinear SDOF problem where damping is present. The 

SDOF system is shown in Fig. 7 and the force-displacement 

behavior of this system is shown in Fig. 8 in which it is 

presented that the problem has elastic-perfect plastic 

behavior (Chopra 2007). 

The dynamic load acting on the structure is a half-

harmonic force; as presented in Fig. 9. The problem is 

solved using Trapezoidal rule with 1.0t sec. and the 

proposed method with 2.0t sec. (the values of t are 

recorded as well) Please be noticed that in order to have a 

reference solution for the methods to be compared with, 

Trapezoidal rule with 01.0t sec., which is a considerably 

 

Fig. 9 The harmonic load acting on the system (Chopra 

2007) 

 

 

Fig. 10 Displacement responses of SDOF system under 

dynamic loading 

 

 

Fig. 11 Velocity responses of SDOF system under dynamic 

loading 

 

 

short time step, is referred to as reference solution.  

Fig. 10 presents the displacement responses obtained by 

the mentioned methods as well as Bathe method. It is 

perceptible from this figure that the proposed method with 

the same solution effort with Trapezoidal rule, i.e., adoption 

of 2 times longer time step, has yielded more accurate 

responses and is in closest agreement with the reference 

solution. Additionally, the results of proposed method and  
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Fig. 12 Five story frame structure 

 

 

Bathe method have marginal differences. 

Fig. 11 presents the velocity responses of the SDOF 

system in time interval between 0.2 to 0.6 sec.. Again as 

this figure presents, the proposed method, though with a 

marginal difference, has yielded responses with better 

accuracy. Regarding Bathe method’s responses, in some 

points Bathe method has yielded responses with higher 

accuracy while in some other points the proposed method 

has shown more agreement with the reference solution. 

 

6.3 Example 3 
 

In this example a 5-story building is considered; as 

illustrated in Fig. 12. The moment resisting frame in this 

problem is studied by Rezaeei-Pajand and Hashemian ( 

Rezaiee-Pajand and Hashemian 2016). Columns and beams 

are assumed to be wide flange steel with cross sections 

W21×50 and W18×35, respectively. The modulus of 

elasticity is considered to be 2×10
10 

kg/m
2
 and the density 

of material is equal to 800 kg/m
3
. The structure is 

considered to be weightless. A 5000 kgf/m uniform 

distributed gravity load is acted on all stories. Additionally, 

a concentrated mass, m=1500 kgs, is considered at each 

node. According to Fig. 12, the frame is under a set of 

horizontal dynamic load,  tPF ii 20sin with iP being the 

force acting on each story and P1=4000 kgf. 
As studied by Rezaeei-Pajand and Hashemian, this 

problem is solved using Newmark Constant Acceleration 

(NCA), an Unconditional Stable Explicit (USE) and a quesi 

exact method as a reference solution (Rezaiee-Pajand and 

Hashemian 2016). Here, the proposed method and Bathe 

method with a time step equal to 0.02 sec., which is two 

times longer than the time step size adopted for the non-

composite schemes used in this Example,  is applied on 

the problem; so that a comparison could take place between 

the mentioned methods. In order to have a better sight on 

the responses, Fig. 13 shows the response obtained in time 

interval of 8.5 sec. and 9.5 sec.. 

According to Fig. 13, the proposed method has yielded  

 

Fig. 13 Roof displacement response 

 

 

responses with tangible difference from other two methods 

and has the closest responses to the Quasi-Exact method’s. 

 

 

7. Conclusions 
 

The Trapezoidal rule is used along with Simpson rule to 

develop a novel composite time integration method. The 

properties of the proposed method is carried out with 

stability and accuracy analysis. The stability analysis 

determined a definite unconditionally stable region for the 

constant parameters to be chosen from and accuracy 

analysis proved that the proposed method produces 

reasonable amount of amplitude decay which can be used 

for good in case needed. Also, minor period elongation has 

been reported after accuracy analysis. Finally, Benchmark 

problems, all selected from well-known books and papers, 

have been solved by the proposed method. 

As a conclusion, the method has several advantages 

being: high accuracy, thanks to the reasonable amount of 

amplitude decay and minor period elongation, 

unconditional stability, better responses in nonlinear 

problems, and problems involving multiple degrees of 

freedom as well as in plane stress/strain problems. Although 

the proposed method provides only two levels of numerical 

dissipation with the mentioned options for the constant 

parameters, one disadvantage of this method can be its less 

control on numerical dissipation. Please be noticed that 

solution effort of the proposed method is just like other non-

composite methods because the time step size in the 

proposed method can be adopted 2 times longer than non-

composite methods and still expect higher accuracy. 
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Appendix A 
 

The constants of the amplification matrix [A] are 

obtained; as follows 
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Also, the constants of the amplification matrix [B] are 

obtained; as follows 
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In the above equations, ξ represents the damping ratio, 

and ωn 
is the natural frequency of system. 
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