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1. Introduction 
 

The fundamental period is a key parameter for the 

seismic design of a building structure using the equivalent-

lateral-force procedure; in principle, it can be accurately 

evaluated by means of an eigenvalue analysis (Shibata 

2010) on a structural model. In most building-design 

projects, since the building’s period cannot be analytically 

calculated before it has been designed, accurate 

computation is generally not possible in the preliminary 

design stage, and, typically, simple formulae for the 

fundamental period are used to initiate the design process. 

These simple formulae also serve as a basis for limiting the 

period from a finite-element model by applying the upper-

bound factor suggested in the 2003 NEHRP Recommended 

Provisions for Seismic Regulations for New Buildings and 

subsequently in ASCE 7-05 (ASCE 2005). Therefore, at 

present, simple formulae for estimating the fundamental 
period with good accuracy play an important role in 

structural design (Asteris et al. 2015, Young and Adeli 

2014). 

Many researchers have previously proposed such 

formulae for this purpose. Generally, there are two kinds of 

simple formulae for the fundamental period: empirical 

(Asteris et al. 2015a, Asteris et al. 2015b, Asteris et al. 

2016a, Asteris et al. 2016b, Asteris et al. 2017, Kose 2009, 

Young and Adeli 2014, Shafei and Alirezaei 2014, 

Hatzigeorgiou and Kanapitsas 2013, Kwon and Kim 2010, 

Crowley and Pinho 2004, Balkaya and Kalkan 2003, Goel 

and Chopra 1997, Goel and Chopra 1998) and analytical  
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(Hsiao 2009, Leng et al. 2013, UBC 1997, EC 2007, 

Eurocode 8 2004). A lot of empirical formulae have been 

developed. Asteris et al. (2015b, 2016a) give an extensive 

review of these formulae. Empirical formulae adopted in 

most codes are simply expressed in terms of the height of 

buildings (Eurocode 8 2004, UBC 1997 et al.). Some 

researchers take into account other parameters apart from 

the height of building. Kose (2009) takes into account the 

presence of infill walls and frame type. Hatzigeorgiou and 

Kanapitsas (2013) proposed an expression considering the 

soil flexibility, the influence of shear walls, and the external 

and internal infill wall. Asteris et al. (2015b, 2016a) 

proposed a more accurate formula that takes into account 

the number of stories, the number of span, the span length, 

the infill wall panel stiffness and the percentage of openings 

within the infill wall. Further, Asteris et al. (2017) 

recognized that the vertical geometric irregularity 

significantly influences the fundamental period, and 
proposed a reduction factor to quantify this effect. 

Analytical formulae also have been adopted in many 

codes (Eurocode 8 2004, UBC 1997, EC 2007). This study 

focus on the analytical ones, which have generally been 

developed based on vibration theory for a multiple-degree-

of-freedom (MDOF) system. Among these, Rayleigh’s 

method, Geiger’s method, and Dunkerley’s method are the 

three most widely used; the first two of which were 

specified in the 1997 Uniform Building Code (UBC 1997), 

the Japanese seismic code (EC 2007), respectively. 

In this paper, a new, simpler, and more accurate method 

for estimating the fundamental period of a MDOF system is 

proposed. The rest of the paper is organized as follows. 

Firstly, several most widely used simple formulae for 

estimating the fundamental period are briefly reviewed in 

Chapter 2. Then, in Chapter 3, the new method is described. 

In this method, the fundamental period is estimated by 
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replacing the complicated MDOF system with an equivalent 

single-degree-of-freedom (SDOF) system. Then, to 

investigate the accuracy of the proposed method, the 
fundamental periods of numerous MDOF models are 

estimated by the proposed method in Chapter 4 and 

compared to their accepted values. Finally, the main results 

of this study are concluded in Chapter 5. 

 

 

2. Review of the current methods 
 

Many studies have contributed calculation methods for 

estimating the fundamental period of MDOF systems. This 

section reviews several most widely used methods briefly. 

The first one, Rayleigh’s method, is a simple theoretical 

technique based on energy principles, which was specified 

in the 1997 Uniform Building Code (UBC 1997). To 

introduce the basic consideration of Rayleigh’s method for 

the fundamental period, consider a MDOF system 

undergoing free harmonic motion with a fundamental 
frequency ω1. The displacement vector {x(t)} and velocity 

vector {x´(t)} of the MDOF system corresponding to 

fundamental vibration are given by  

    )sin()( 11   tutx  (1) 

    )cos()( 111   tutx  (2) 

where {u} is a displacement vector representing the 

fundamental mode shape corresponding to fundamental 

vibration and φ1 is the phase angle of the harmonic 

vibration. 

Then, the maximum kinetic energy, KE, of the system 

can be expressed as  

    2
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where [M] is the mass matrix of the MDOF system, and the 

maximum strain energy, SE, of the system can be expressed 

as 

   uKuSE
T

][
2

1
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where [K] is the stiffness matrix of the MDOF system. 

It is known that when the kinetic energy of the system is 
maximal, the strain energy will be zero; on the contrary, 

when the strain energy of the system is maximal, kinetic 

energy will be zero. Then, based on the principle of 

conservation of energy (i.e., total mechanical energy is 

constant), the KE is equal to the SE. Accordingly, the 

fundamental frequency ω1 is given by 
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As shown in Eq. (5), before calculating the fundamental 

period using Rayleigh’s method, the fundamental mode 

shape {u} should be determined. For simplicity, instead of 

using an accurate eigenvalue analysis, the fundamental 

mode shape is always determined based on some 

assumption. Thus, the accuracy of Rayleigh’s method 

depends entirely upon the assumed fundamental mode 

shape. A widely used estimate for the fundamental mode 
shape is the static displacement resulting from subjecting 

the masses in the system to forces proportional to their 

weights. Based on this assumption, the fundamental period, 

TR, is given by 
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where Gi = gmi, mi is the mass of the ith degree of freedom, 

and n is the number of total degrees of freedom. 

The second technique, Geiger’s method, is also a widely 

used approximation method for estimating the fundamental 

period of a MDOF system. This method was specified in 

the Japanese seismic code (EC 2007). To introduce the 

basic consideration of this method, consider an SDOF 

system with mass m and lateral stiffness k. Then, the 

fundamental period TG of the SDOF system can be given by 

kg

mg

k

m
TG  22   (7) 

By defining kmg and 2gC  , TG can be 

expressed as 

C
TG


  (8) 

where δ represents the top lateral displacement resulting 

due to the weight of the system. 

When Eq. (8) is applied to estimating the fundamental 

period of an MDOF system, the top displacement (in cm) is 

estimated by 
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In Japanese seismic code (EC 2007), C is determined 

empirically according to the number of stories n and equals 

5.4 when n = 2 and 5.7 when n > 2.  

Eurocode 8 (2004) also uses Eq. (8) to estimate the 

fundamental period, but C is adopted as 5. 

Note that, as with Rayleigh’s method, when Eq. (8) is 

used to calculate the fundamental period, the top 

displacement should be estimated. 

Another method, Dunkerley’s method, is based on the 

flexibility of the system-eigenvalue problem and provides 

an “upper-bound” estimation of the fundamental period. 
The basic premise of this method is to reduce the actual 

system into a number of simple subsystems; then, the 

square of the fundamental period, , equals the sum of 

that of each subsystem. Dunkerley’s equation can be 

expressed as 

22
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Fig. 1 Illustration of the concept of replacing a 2-DOF 

system with an equivalent SDOF system 

 

 

where Tii is the natural period of an SDOF system with 

mass “mi” acting alone at state i. 

Unlike the previous two methods, Dunkerley’s method 

considers only the mass and stiffness of the analyzed 
MDOF system, without mode shape or top displacement. 

However, it has been reported that this method is not as 

accurate as the others (Leng et al. 2013). 

A new, simpler, and more accurate method for 

estimating the fundamental period of MDOF structures is 

described in the following chapter. 

 

 

3. The proposed method for estimating the 
fundamental period 
 

A simple method for estimating the fundamental period 

of an MDOF system is proposed in this chapter. The basic 

principle is to replace a complicated MDOF system with an 

equivalent SDOF system for which the fundamental period 

can be easily obtained. To realize the SDOF-system 

equivalence, a procedure to replace a two-degree-of-
freedom (2-DOF) system with an SDOF system having the 

same fundamental period, called the two-to-single (TTS) 

procedure, is developed firstly; then, using the TTS 

procedure successively, the MDOF system can be replaced 

with an equivalent SDOF system having approximately the 

same fundamental period. 

 

3.1 A procedure to replace a 2-DOF system with an 
SDOF system 
 

In order to develop the TTS procedure to reduce a 2-

DOF system to an SDOF system with the same fundamental 

period, a 2-DOF system and an equivalent SDOF system 

are considered, as shown in Fig. 1. In essence, developing 
the TTS procedure means expressing parameters including 

mass, meq, and stiffness, keq, of the equivalent SDOF system 

in terms of the parameters of the 2-DOF system. For this 

purpose, the following two equivalent equations are 

considered 

21 mmmeq   (11) 

DOFeq TT  2  (12) 

here, mi, i = 1, 2, is mass of the ith degree of freedom and 

T2-DOF is the fundamental period of the 2-DOF system; Teq is 

the fundamental period of the equivalent SDOF system. In 

order to determine the stiffness, keq, of the equivalent SDOF 

system using Eq. (12), the fundamental period, T2-DOF, of 
the 2-DOF system should be derived firstly. 

Consider the 2-DOF system in free harmonic vibration. 

The basic eigen problem for this system is represented as 

      0)( 2  uKMi  (13) 

where ωi, i = 1, 2, are the free­vibration frequencies, [M] 

and [K] are the mass and stiffness matrices of the 2-DOF 

system, respectively, and are expressed as 
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and ki, i = 1, 2, is the stiffness of the ith degree of freedom. 

By eigenvalue analysis, the fundamental frequency ω1 

can be given by 
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As T2-DOF = 2π/ω1, according to Eq. (12), the stiffness, 

keq, of the SDOF system is given by 
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Using Eq. (11) and (15), an equivalent SDOF system 

having the same fundamental period as the 2-DOF system 

can be obtained. 

 

3.2 A procedure for estimating the fundamental 
period of an MDOF system 
 

Successively using the procedure for replacing a 2-DOF 

system with an equivalent SDOF system as described 

above, a procedure for finding the fundamental period of an 

MDOF system can be developed. The concept of this 

procedure is illustrated in Fig. 2. And, the procedure 

includes following steps:  
1. For the MDOF system shown in Fig. 2(a), the top two 

masses m1 and m2 are assumed to lie on rigid ground and 

can be considered as a 2-DOF system. Then, based on the 

TTS procedure(i.e., Eq. (11) and (15)), an equivalent SDOF 

system having the same fundamental period as the top 2-

DOF system can be obtained, forming a new MDOF system 

as shown in Fig. 2(b). 

2. Then, as in step (1), the top two masses of the new 

MDOF system as shown in Fig. 2(b) are considered as a 

new 2-DOF system lying on rigid ground and can be 

replaced with another equivalent SDOF system using Eq. 

(11) and (15) again, forming another new MDOF system, as 

shown in Fig. 2(c). 

3. By application of the TTS procedure successively to 
the remaining lower masses, finally, the MDOF system is 
replaced with an equivalent SDOF system, as shown in Fig. 
2(d). Then, the fundamental period can be readily obtained. 
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Fig. 2 Illustration of the concept of replacing an MDOF 

system with an equivalent SDOF system 
 

 

3.3 Validation of the rigid-ground assumption 
 

In the procedure for replacing an MDOF system with an 

equivalent SDOF system described in the previous section, 

at each step of replacement, the top two masses are always 

considered as a 2-DOF system lying on rigid ground. 

However, except at the final step, the 2-DOF system lies on 

a floor with limited stiffness. In order to validate the rigid-

ground assumption, the fundamental periods of a large 

number of MDOF structures are computed using the 

procedure described in Section 3.2 and compared with those 

obtained using an eigenvalue analysis. 

The analyzed MDOF structures are divided into two 

major categories: MDOF structures with floor stiffness 

varying with height and those with only one special floor 
with different stiffness from the others. As the mass of the 

actual structure generally varies less significantly as a 

function of height than does stiffness, the mass, m0, of the 

analyzed structures is considered constant.  

In the first category, the variation of stiffness with height 

is expressed as 

0
1krk i

i
  (16) 

where ki is the stiffness of the ith mass point, as shown in 

Fig. 2(a), k0 is a constant value, and factor r represents the 

variation degree of stiffness along height. Eq. (16) means 

that, the stiffness of the top story equals k0, and stiffness of 

any lower ith story is r times as large as that of the upper i-

1th story. Generally, as the stiffness of the actual structure 

increases from the top to the bottom, factor r is considered 
to vary from 1 to 1.5. 

In the second category, the stiffness of only a special 

floor, ki, is considered variable, and the others are constant 

and equal to k0. The variation of the stiffness of this special 

floor is expressed as 

0rkki   (17) 

Eq. (17) means that, stiffness of the special story is r 

times as large as that of other stories equaling k0. In this 

case, factor r is considered to vary from 0.5 to 1.5, and i 

varies from 1 to n, where n the number of stories. 

It can be easily shown that, in these designed MDOF 

structures, the parameters controlling the fundamental 

period are the factor r, the ratio between stiffness and mass, 

k0/m0, and the number of stories n. Thus, the error in the 
estimated fundamental period caused by the rigid-ground 

assumption is also considered to be affected by these three 

parameters. The variation ranges of the parameter r have 

been introduced above, for the parameter k0/m0, two values, 

10,000 (kN/cm)/6 (t) and 10,000 (kN/cm)/60 (t), are 

considered in the following calculation. The value, 10,000 

(kN/cm)/6 (t), is determined according to an actual structure 

constructed in Japan (Tatsuya et al. 2015). To observe the 

possible effect of the parameter k0/m0 on the error clearly, 

another extreme value, 10,000 (kN/cm)/60 (t), is assumed. 

The extreme range assumed for the parameter k0/m0 is to 

observe the possible effect clearly instead of representing 

actual condition. And number of stories n is considered to 

vary from 3 to 10. 

The fundamental periods of these MDOF structures are 

calculated using the procedure described in Section 3.2 and 

compared against those obtained using an eigenvalue 
analysis. The errors are expressed by ratios of the 

fundamental periods calculated by the procedure in Section 

3.2, Tp, with those by an eigenvalue analysis, Te. Fig. 3(a) 

shows the results of the first category of MDOF structures. 

For the second category of MDOF structures, results are 

very similar regardless of the value of i expressed in Eq. 

(17); for simplicity, only representative results when i = n 

are shown in Fig. 3(b). In these figures, the horizontal 

coordinate is the factor r, representing the variation degree 

of stiffness, and the longitudinal coordinate represents the 

error. 

It is observed that, for both subcategories in which there 

is error in the estimated fundamental period, the maximum 

relative error is less than 8%. The errors are dependent on 

the factor r and the number of stories n, but not on the ratio 

k0/m0. The errors increase with increasing r for the first 

category but do not change noticeably for the second 
category. For both subcategories, the errors increase with n. 

Comparing the effects of n and r on the errors, that of n is 

clearly more prominent. 

The reason for the dependence on the number of stories 

is that, when replacing an MDOF system with an equivalent 

SDOF system, the top 2-DOF system at each step is 

assumed to lie on rigid ground, when in fact it lies on a 

floor with limited stiffness; thus, the more stories the 

analyzed MDOF system has, the more the assumptions 

used, resulting in a larger error. 

Generally speaking, the rigid-bedrock assumption used 

in the procedure described in Section 3.2 can cause a 

calculation error in the fundamental period, but the 

maximum relative error of the analyzed MDOF structures is 

below about 8%. The errors are affected by the number of 

stories n and the variation degree of the stiffness with 

height, although the former effect is more significant. 
 

3.4 Correction factor 
 
Based on the analysis in the previous subsection, the 

prediction of the fundamental period using the procedure 
described in Section 3.2 is improved with the appropriate 
introduction of a correction factor. 
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The fact that the error in the fundamental period 

obtained using the procedure in Section 3.2 is affected by 

the number of stories and the variation degree of the 

stiffness along height leads us to conclude that the 

correction factor should be expressed in terms of the 

number of stories, n, and a factor representing the variation 

degree of stiffness. However, since the variation degree of 

the stiffness of an actual building cannot be expressed as a 

single factor like the idealized one, r, used previously, and 

since an increase in the number of stories affects the error 

more significantly than variation of the stiffness, the 

correction factor is expressed only in terms of n. 

To isolate the effects of variations of stiffness and mass, 

MDOF structures with constant mass and stiffness with 

height are used to conduct the correction. MDOF structures 

composed of 3-20 stories are used for the correction. Then, 

a correction factor R is introduced, defined as the ratio 

between the fundamental periods obtained by an eigenvalue 
analysis and by the procedure described in Section 3.2. To 

determine the correction factor R, the fundamental ratios of 

the exact and predicted periods of all analyzed MDOF 

structures are computed, and the results are shown in Fig. 4. 

By trial-and-error analysis of a large number of functional 

forms, a very simple function is adopted for the correction 

factor R, given by 

30
1

)4.0(


 nR  (18) 

The accuracy of this function can also be found very 
well from Fig. 4. The standard deviation of residuals 
expressing the random variability of results by Eq. (18) is 
almost equal to 0.001. 

Finally, considering the correction factor, the 
fundamental period of an MDOF structure can be estimated 
as 

eq

eq

k

m
RT 2Pr   (19) 

where meq and keq are the mass and stiffness, respectively, of 

the final equivalent SDOF system obtained by the  

 

 

procedure in Section 3.2. 
The proposed method is composed of three equations 

(i.e., Eqs. (11), (15), and (18)), of which the second 
equation seems more complicated than the current methods 
introduced in Section 2 at first glance. In Rayleigh’s 
method, the mode shape should be determined first; and, in 
Geiger’s method, the top displacement should be estimated. 
As Eq. (15) is expressed in terms of only mass and stiffness 
without any other additional parameters, the proposed 
method is considered simpler and more direct than any 
presented in Section 2. 

It should be noted that, the proposed method is 
developed for estimation of the fundamental period of the 
widely used MDOF structural model. This means that, for 
an actual structure, it must be simplified as an MDOF 
model before applying the proposed method. During the 
simplification, besides the structural elements, the infill 
walls also should be properly considered in the model, since 
contribution of the infill walls to the fundamental period 
may be also crucial (Asteris et al. 2015b, Asteris et al. 
2016a).  

 
 

 
Fig. 4 Ratios between the fundamental periods 

obtained by eigenvalue analysis and by the method 

described in Section 3.2 

  

(a) Results for structures in the first category (b) Results for structures in the second category 

Fig. 3 Comparison of the fundamental periods obtained by the procedure described in Section 3.2 with those obtained by 

eigenvalue analysis 
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Table 1 Average relative error in the estimation results 

-- Fig. 6(a) (%) Fig. 6(b) (%) Fig. 6(c) (%) Fig. 6(d) (%) 

Proposed method 0.617 1.542 0.616 0.624 

UBC 1997 0.643 4.298 0.623 0.655 

Japanese code 3.032 3.890 3.084 3.000 

Dunkerley’s 

method 
10.935 18.615 10.876 10.967 

Eurocode 8 10.543 18.196 10.484 10.575 

 
 

In addition, as the proposed method considers variations 

of mass and stiffness with height, thus the method is 

available for structures with vertical irregularity. For 

structures with plan irregularities, torsion may be caused to 

the building, thus torsional stiffness should be considered in 

the model of the structure. However, during the derivation 

of the proposed method, only lateral stiffness is considered. 

Thus, the proposed method is only available for the shear-

type MDOF system. Improving the proposed method to 

analyze structures with plan irregularities is necessary in the 

further study. 

 

 
4. Examples using the proposed method 

 
4.1 Designed MDOF structures 
 
In order to investigate the accuracy of the proposed 

method, a recalculation of the fundamental periods of the 

two categories of MDOF structures introduced in Section 

3.3 is performed, and fundamental period ratios between the 

predicted periods, Tpr, and the exact ones are shown in Fig. 

5. It is observed that errors are very low for both categories, 

with the maximum relative error below 3%. Although the 

error increases with the number of stories for the first 

category of MDOF structures, the error level (3%) is 

considered acceptable for engineering use. 

In addition, in order to compare the accuracy of the 

proposed method with those of the methods introduced in 

Chapter 2, the fundamental periods of the two categories of 

MDOF structures are also estimated by the current methods.  

 

Table 2 Parameters of the analyzed actual structures 

Model No. Structure Location Structure Stories Direction 

01 

Wakayama-Ken of Japan 3 

X 

02 Y 

03 

Tochigi-ken of Japan 4 

X 

04 Y 

05 

Ibaraki-ken of Japan 5 

X 

06 Y 

07 

Ibaraki-ken of Japan 7 

X 

08 Y 

09 

Tokyo of Japan 23 

X 

10 Y 

11 

Tokyo of Japan 36 

X 

12 Y 

13 

-- 5 

X 

14 Y 

15 -- 5 -- 

16 

Tokyo of Japan 3 

X 

17 Y 

18 

-- 8 

NS 

19 EW 

 

 

MDOF structures with as many as 60 stories are considered 

for comparison. Representative results are shown in Figs. 6 

(a)-(d). In these figures, the horizontal coordinate is n and 

the longitudinal coordinates are the fundamental periods 

calculated by different methods.  

It can be noted that all results obtained by the proposed 

method are much more accurate than those obtained by 

Dunkerley’s method, the Eurocode 8 method and Geiger’s 

method adopted in Japanese code. Indeed, the accuracy of 

the proposed method is nearly equivalent to that of 

Rayleigh’s method adopted in UBC 1997. Further 

comparisons
 
of

 
the

 
average

 
relative

 
errors

 
of

 
the

 
results 

estimated by different methods are conducted. The  

  
(a) Results for structures in the first category (b) Results for structures in the second category 

Fig. 5 Comparison between fundamental periods obtained by the proposed method and by eigenvalue analysis 

236



 

A simple approach for the fundamental period of MDOF structures 

 
 

corresponding results of those MDOF structures used in 

Fig. 6 are listed in Table 1. The average relative errors by 

the proposed method are smaller than those of the current 

methods. 

Generally speaking, the accuracy of the proposed 

method is very good and is much better than that of 

Dunkerley’s method and the Eurocode 8 method. For most 

of the estimated structures, the accuracy of the proposed 

method is better than those of Rayleigh’s method adopted in 

UBC 1997 and Geiger’s method adopted in Japanese code. 

 
4.2 MDOF models of actual structures 

 
Further accuracy investigations are performed by 

estimating the fundamental periods of 19 MDOF models of 
actual structures. Parameters of these MDOF models are 
listed in Table 2. A wide range of structures with 3-36 
stories are considered. Most of these structures are in Japan, 
and others are found in unknown locations. The 
fundamental periods of the 19 MDOF models are calculated 
by the proposed method and the current methods; the 
obtained results are listed in Table 3, and the corresponding 
relative errors are also estimated and listed in brackets. It 

 

 

Table 3 Fundamental periods and corresponding relative 

errors of the analyzed MDOF models calculated by 

different methods 

Model No. 
Theoretical 
method (s) 

Dunkerley’s 
method (s) 

UBC 
1997 (s) 

Japanese 
code (s) 

Proposed 
method(s) 

Eurocode 8 (s) 

01 0.213 
0.258 

(20.069) 
0.211 

(0.850) 
0.205 

(3.417) 
0.213 

(0.236) 
0.234 

(10.105) 

02 0.122 
0.148 

(20.059) 

0.121 

(0.833) 

0.118 

(3.326) 

0.122 

(0.323) 

0.134 

(10.209) 

03 0.313 
0.406 

(27.236) 
0.307 

(1.850) 
0.314 

(0.295) 
0.314 

(0.420) 
0.358 

(14.336) 

04 0.392 
0.527 

(31.768) 
0.383 

(2.322) 
0.394 

(0.458) 
0.394 

(0.448) 
0.449 

(14.522) 

05 0.139 
0.207 

(43.524) 

0.137 

(1.603) 

0.140 

(0.578) 

0.141 

(1.337) 

0.159 

(14.659) 

06 0.139 
0.207 

(43.524) 
0.137 

(1.603) 
0.140 

(0.578) 
0.141 

(1.337) 
0.159 

(14.659) 

07 0.713 
1.061 

(42.435) 
0.704 

(1.239) 
0.704 

(1.314) 
0.720 

(0.911) 
0.802 

(12.501) 

08 0.696 
1.038 

(41.781) 
0.686 

(1.422) 
0.692 

(0.653) 
0.707 

(1.591) 
0.789 

(13.256) 

09 1.026 
1.673 

(48.196) 
1.012 

(1.362) 
1.043 

(1.682) 
1.049 

(2.242) 
1.189 

(15.917) 

10 1.047 
1.811 

(56.246) 
1.032 

(1.385) 
1.074 

(2.558) 
1.076 

(2.828) 
1.224 

(12.916) 

11 2.084 
3.081 

(33.481) 
2.051 

(1.557) 
2.089 

(0.266) 
2.112 

(1.368) 
2.382 

(14.303) 

12 2.170 
3.180 

(32.368) 

2.138 

(1.508) 

2.172 

(0.067) 

2.198 

(1.283) 

2.467 

(14.076) 

13 0.150 
0.187 

(21.487) 
0.149 

(0.892) 
0.147 

(1.992) 
0.150 

(0.044) 
0.168 

(11.730) 

14 0.139 
0.206 

(43.525) 
0.137 

(1.604) 
0.140 

(0.583) 
0.141 

(1.338) 
0.159 

(14.665) 

  

(a) (b) 

  
(c) (d) 

Fig. 6 Fundamental periods calculated by different methods. (a) Results for structures in the first category when r = 1.      

(b) Results for structures in the first category when r = 1.4. 
 
(c) Result for structures in the second category when r = 0.8.  

(d) Results for structures in the second category when r = 1.2 
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Table 3 Continued 

Model No. 
Theoretical 
method (s) 

Dunkerley’s 
method (s) 

UBC 
1997 (s) 

Japanese 
code (s) 

Proposed 
method(s) 

Eurocode 8 (s) 

15 0.691 
0.816 

(15.463) 
0.686 

(0.754) 
0.669 

(3.126) 
0.691 

(0.013) 
0.763 

(10.437) 

16 5.491 
8.094 

(43.031) 
5.346 

(2.638) 
5.520 

(0.531) 
5.625 

(2.441) 
6.897 

(25.625) 

17 5.933 
8.881 

(45.817) 
5.760 

(2.919) 
5.954 

(0.352) 
6.053 

(2.032) 
7.469 

(25.900) 

18 0.342 
0.403 

(13.273) 
0.339 

(0.904) 
0.335 

(2.023) 
0.343 

(0.287) 
0.382 

(11.694) 

19 0.355 
0.429 

(15.822) 

0.352 

(0.973) 

0.349 

(1.818) 

0.356 

(0.391) 

0.397 

(11.927) 

Error 
(Avg.) 

-- 33.637 1.485 1.348 1.098 14.602 

Error 
(Max.) 

-- 56.246 2.919 3.417 2.828 25.900 

 

 

can be seen that the average relative error by the proposed 

method equals 1.098% and that the maximum relative 

errorequals 2.828%. For 79% of the estimated MDOF 

models, relative error is less than 2%. This accuracy is 

encouraging, and results by the proposed method are 

considered to agree very well with those obtained by 

eigenvalue analysis. 
Comparing the results of the various methods, it can be 

seen that, for all estimated models, the relative error of the 

proposed method is much lower than that of Dunkerley’s 

method and the Eurocode 8 method; for 84% of the 

estimated models, the proposed method also obtains a 

smaller relative error than Rayleigh’s method adopted in 

UBC 1997. In addition, the average and maximum relative 

errors by the proposed method are the lowest, meaning the 

accuracy of this method is the highest.  

Generally speaking, the accuracy of the proposed 

method is reasonably good, with a maximum relative error 

below 2.828%. The accuracy is much better than that of 

Dunkerley’s method and the Eurocode 8 method, and is 

better than that of Geiger’s method adopted in Japanese 

code or Rayleigh’s method adopted in UBC 1997 for most 

of the structures considered. 

 
 
5. Conclusions 

 
On the basis of the preceding discussion, one can draw 

the following conclusions: 

• A simple method of evaluating the fundamental period 

by replacing the complicated MDOF system with an 

equivalent SDOF system is proposed. The proposed method 

is available for shear-type MDOF system. As the proposed 

method is composed of three simple explicit formulae, it 

can be conveniently implemented in simple spreadsheets. In 

addition, the application of the proposed method does not 

require expert knowledge concerning eigenvalue analysis; 

thus, the proposed method is thought can be used by 

practicing engineers conveniently. Moreover, as simple 

formulae are expressed in terms of the mass, stiffness, and 

number of stories directly without the mode shape or top 
displacement, the proposed method is a simpler and a more 

direct method.  

• The accuracy of the proposed method is investigated 

by estimating a series of designed MDOF structures and19 

MDOF models of actual structures, and is found to be 

reasonably good. The accuracy of the proposed method is 

much better than that of Dunkerley’s method and the 

Eurocode 8 method, and is better than that of Rayleigh’s 

method adopted in UBC 1997 and Geiger’s method adopted 
in Japanese code for most of the analyzed structures.  
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