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1. Introduction 
 

One of the experimental probes of microphysical 

processes is the viscoelasticity which is of interest in 

different applications. Mechanical analysis of a viscoelastic 

solid is sensitive to variation in environmental factors such 

as temperature, humidity and presence of diffusion. 

Viscoelastic solid plays important roles in engineering 

applications. Solutions may be investigated for viscoelastic 

wave equations and velocities of seismic wave propagating. 

The attenuation of seismic waves in viscoelastic media are 

very important for geophysical prospecting technology. 

Governing equations of viscoelastic solids maybe 

constructed according to Boltzmann superposition principle 

in most cases of linear viscoelasticity. It is interested to 

extend linear theory of viscoelasticity to most famous 

theory of thermo-viscoelasticity at finite strains. This 

process may be done after taken into consideration several 

requirements. The constitutive theory of finite 

thermoelasticity can be reduced during sufficiently 

deformation process as a second requirement. 

Different investigations are dealt with generalized or 

coupled thermoviscoelastic problems for many applications 

(Abd-Alla et al. 2004, Othman 2005, Tian and Shen 2005, 

Sarkar and Lahiri 2013, Ezzat et al. 2014, Abd-Alla et al. 

2017). Kovalenko and Karnaukhov (1972) discussed the 

influences of the heat effect via a generalized linearized 

theory of thermoviscoelasticity. Drozdov (1999) studied the 

non-isothermal viscoelastic behavior of polymers and  
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derived the constitutive relations at finite strains. Kundu 

and Mukhopadhyay (2005) discussed variable distributions 

in viscoelastic solid with spherical cavity due to theory of 

generalized thermoelasticity with relaxation time effect. 

Baksi et al. (2006) studied an infinite rotating magneto-

thermo-visco-elastic media subjected to heat source with 

one relaxation parameter to derive and solve its 

fundamental equations. Baksi et al. (2008) presented a 

thermoviscoelastic problem in an infinite isotropic medium 

subjected to point heat source in two dimensions. Kanoria 

and Mallik (2010) studied the thermoviscoelastic interaction 

in an infinite viscoelastic medium due to periodically 

varying heat sources taken into consideration Kelvin-Voigt-

type. Kumar and Partap (2011) studied the micropolar 

thermoelastic interactions in an infinite viscoelastic 

thermally conducting plate employing the coupled dynamic 

thermoelasticity and generalized theories of 

thermoelasticity. Ezzat et al. (2013) presented 1-D problem 

in the frame of thermoviscoelasticity with heat sources to 

deal with the coupled fractional relaxation equations due to 

the fractional calculus. 

Zenkour and his colleagues (Zenkour et al. 2013, Abbas 

and Zenkour 2014, Abouelregal and Zenkour 2014, 

Zenkour 2015, Zenkour and Abouelregal 2015, Zenkour 

2016, Zenkour et al. 2015) have investigated the effect of 

dual-phase-lags (DPLs) on thermoelastic structures 

subjected to different heating sources. The present DPLs 

model developed by Tzou (1995, 1996) is considered as an 

extension to the well-known generalized thermoelasticity 

theory (Lord and Shulman 1967, Green and Lindsay 1971, 

Green and Naghdi 1993). In this article, thermoelastic 

interactions in the present body in context of a generalized 

thermoelasticity with DPLs are investigated. Conducting 

orthotropic medium with variability thermal conductivity 
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including a solid cylinder is initially presented. The 

cylindrical boundaries are subjected to a temperature pulse 

and its surface is traction free (Zenkour and Abouelregal 

2014). Numerical results for all variables of the 

thermoviscoelastic body are graphically presented. A 

comparison has been made in two cases of the presence and 

absence of viscosity field and temperature-dependent 

thermal conductivity. 
 

 

2. Basic equations 
 

The Kelvin-Voigt approach is one of the macroscopic 

mechanical approaches that used to describe the viscoelastic 

response of a medium. It represents the delayed elastic 

response subjected to stress when the deformation is time 

dependent but recoverable. Here, we consider a viscoelastic 

orthotropic solid cylinder at environment temperature 𝑇0. 

The outer surface of cylinder is traction-free and subject to 

temperature pulse. The mentioned linear viscoelasticity 

Kelvin-Voigt approach maybe employed to deal with 

viscoelastic nature of present cylinder. The cylindrical 

coordinates system (𝑟, 𝜉, 𝑧)  is chosen to address this 

problem in which 𝑧-axis is lying along axis of cylinder. 

For the present axially symmetric problem, the 

displacement field is reduced to 

𝑢𝑟 = 𝑢(𝑟, 𝑡),     𝑢𝜉(𝑟, 𝑡) = 𝑢𝑧(𝑟, 𝑡) = 0.      (1) 

The Cauchy relations will be 

𝜀𝑟𝑟 =
𝜕𝑢

𝜕𝑟
,     𝜀𝜉𝜉 =

𝑢

𝑟
. (2) 

For a Kelvin-Voigt type, generalized Hooke’s law of the 

cylinder takes the form (Eringen 1967) 

{

𝜎𝑟𝑟
𝜎𝜉𝜉
𝜎𝑧𝑧
} = 𝜏𝑚 [

𝑐11 𝑐12
𝑐12 𝑐22
𝑐13 𝑐23

] {

𝜕𝑢

𝜕𝑟
𝑢

𝑟

} − {

𝛽11
𝛽22
𝛽33

} 𝜃,      (3) 

where 𝜏𝑚 = 1 + 𝑡0
𝜕

𝜕𝑡
. 

After neglecting body forces, one can obtain dynamic 

equation of cylindrical cavity as 

𝜕𝜎𝑟𝑟

𝜕𝑟
+

𝜎𝑟𝑟−𝜎𝜉𝜉

𝑟
= 𝜌

𝜕2𝑢

𝜕𝑡2
.            (4) 

Substituting Eq. (3) into Eq. (4) yields 

𝑐11𝜏𝑚 (
𝜕2𝑢

𝜕𝑟2
+
1

𝑟

𝜕𝑢

𝜕𝑟
) − 𝑐22𝜏𝑚

𝑢

𝑟2

= 𝜌
𝜕2𝑢

𝜕𝑡2
+ 𝛽11

𝜕𝜃

𝜕𝑟
+ (𝛽11 − 𝛽22)

𝜃

𝑟
. 

(5) 

The modified Fourier’s law may be presented as 

(1 + 𝜏𝑞
𝜕

𝜕𝑡
) �⃗� = −𝐾𝑟 (1 + 𝜏𝜃

𝜕

𝜕𝑡
)∇𝜃.       (6) 

The energy conservation equation can be expressed as 

−∇ ∙ �⃗� = 𝜌𝐶𝐸
𝜕𝜃

𝜕𝑡
+ 𝑇0

𝜕

𝜕𝑡
(𝛽11

𝜕𝑢

𝜕𝑟
+ 𝛽22

𝑢

𝑟
).        (7) 

By using Eqs. (6) and (7) to eliminate �⃗�, one can obtain 

heat conduction equation with DPLs (without heat source) 

in the form 

(1 + 𝜏𝜃
𝜕

𝜕𝑡
) (𝐾𝑟𝜃,𝑟),𝑟

= (1 + 𝜏𝑞
𝜕

𝜕𝑡
) [𝜌𝐶𝐸

𝜕𝜃

𝜕𝑡

+ 𝑇0
𝜕

𝜕𝑡
(𝛽11

𝜕𝑢

𝜕𝑟
+ 𝛽22

𝑢

𝑟
)]. 

(8) 

Different field equations in context of generalized 

thermoelasticity with the first relaxation time can be 

obtained from Eqs. (1)-(8) by setting mechanical PLs 

parameters 𝜏𝜃 = 0  and 𝜏𝜃 = 𝜏0  ( 𝜏0  is first relaxation 

time). Putting thermal PLs 𝜏𝜃 = 𝜏𝑞 = 0, one obtains the 

different field equations for coupled theory of 

thermoelasticity. Also on putting thermal PLs 𝜏𝜃 = 𝜏𝑞 = 0, 

and the thermomechanical coupling parameters 𝛽11 =
𝛽22 = 0  gives the uncoupled thermoelasticity governing 

equations. 

The thermal material properties in thermosensitivity 

medium may be temperature-dependent and give nonlinear 

heat conduction problem. To get exact solution one can 

assume simply nonlinear properties of the material, in 

which thermal conductivity 𝐾𝑟  and specific heat 𝐶𝐸  are 

linearly temperature-dependent (Noda 1986, Zenkour and 

Abouelregal 2016), but the thermal diffusivity 𝑘 

(𝑘 = 𝐾𝑟/𝜌𝐶𝐸) is considered to be constant. That is 

𝐾𝑟 = 𝐾𝑟(𝜃) = 𝑘0(1 + 𝑘1𝜃).           (9) 

So, new variable 𝜓 maybe assumed to represent heat 

conduction in Kirchhoff transformation (Noda 1986) in the 

form 

𝜓 =
1

𝑘0
∫ 𝐾𝑟(𝜃)d𝜃
𝜃

0
.             (10) 

The substitution of Eq. (9) into Eq. (10) gives 

𝜓 = 𝜃 (1 +
1

2
𝑘1𝜃).             (11) 

From Eq. (11), it follows that 

∇𝜓 =
𝐾𝑟(𝜃)

𝑘0
∇𝜃,     

𝜕𝜓

𝜕𝑡
=

𝐾𝑟(𝜃)

𝑘

𝜕𝜃

𝜕𝑡
.        (12) 

Finally, the substitution of Eq. (12) into Eq. (8) gives 

general heat equation considering variable thermal 

conductivity as 

(1 + 𝜏𝜃
𝜕

𝜕𝑡
) (
𝜕2𝜓

𝜕𝑟2
+
1

𝑟

𝜕𝜓

𝜕𝑟
)

= (1 + 𝜏𝑞
𝜕

𝜕𝑡
) [𝜌𝐶𝐸

𝜕𝜓

𝜕𝑡

+
𝑇0
𝑘0

𝜕

𝜕𝑡
(𝛽11

𝜕𝑢

𝜕𝑟
+ 𝛽22

𝑢

𝑟
)]. 

(13) 

From Eqs. (11), the equation of motion will be 

𝑐11𝜏𝑚 (
𝜕2𝑢

𝜕𝑟2
+
𝜕𝑢

𝜕𝑟
) − 𝑐22𝜏𝑚

𝑢

𝑟2

= 𝜌
𝜕2𝑢

𝜕𝑡2
+

𝛽11
1 + 2𝑘1𝜃

𝜕𝜓

𝜕𝑟

+ (𝛽11 − 𝛽22) (
√1 + 2𝑘1𝜓 − 1

𝑘1𝑟
). 

(14) 
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In the linear form, since 𝜃 = 𝑇 − 𝑇0 such that and 

|𝜃/𝑇0| ≪ 1, then the governing equations are reduced to 

𝑐11𝜏𝑚 (
𝜕2𝑢

𝜕𝑟2
+
1

𝑟

𝜕𝑢

𝜕𝑟
) − 𝑐22𝜏𝑚

𝑢

𝑟2

= 𝜌
𝜕2𝑢

𝜕𝑡2
+ 𝛽11

𝜕𝜓

𝜕𝑟
+ (𝛽11 − 𝛽22)

𝜓

𝑟
, 

(15) 

{

𝜎𝑟𝑟
𝜎𝜉𝜉
𝜎𝑧𝑧
} = [

𝜏𝑚𝑐11 𝜏𝑚𝑐12 −𝛽11
𝜏𝑚𝑐12 𝜏𝑚𝑐22 −𝛽22
𝜏𝑚𝑐13 𝜏𝑚𝑐23 −𝛽33

] {

𝜕𝑢

𝜕𝑟
𝑢

𝑟

𝜓

}. (16) 

The following dimensionless variables maybe 

considered here 

{𝑢′, 𝑟′, 𝑅𝑖
′} =

𝑐0
𝑘
{𝑢, 𝑟, 𝑅𝑖},     {𝑡

′, 𝑡0
′ , 𝜏𝑞

′ , 𝜏𝜃
′ } =

𝑐0
2

𝑘
{𝑡, 𝑡0, 𝜏𝑞 , 𝜏𝜃},

𝜎𝑖𝑗
′ =

𝜎𝑖𝑗

𝑐11
,     𝑘1

′ = 𝑇0𝑘1,     𝜓
′ =

𝜓

𝑇0
,     𝑐0

2 =
𝑐11
𝜌
.

 (17) 

Using the quantities (17) in the governing Eqs.  (16) and 

suppressing dashes, we obtain 

𝜏𝑚 (
𝜕2𝑢

𝜕𝑟2
+

1

𝑟

𝜕𝑢

𝜕𝑟
) − 𝑐2𝜏𝑚

𝑢

𝑟2
=

𝜕2𝑢

𝜕𝑡2
+ 𝜀1

𝜕𝜓

𝜕𝑟
+ 𝜀3

𝜓

𝑟
,   (18) 

(1 + 𝜏𝜃
𝜕

𝜕𝑡
) ∇2𝜓 = (1 + 𝜏𝑞

𝜕

𝜕𝑡
) [

𝜕𝜓

𝜕𝑡
+

𝜕

𝜕𝑡
(𝜀4

𝜕𝑢

𝜕𝑟
+ 𝜀5

𝑢

𝑟
)],      (19) 

{

𝜎𝑟𝑟
𝜎𝜉𝜉
𝜎𝑧𝑧
} = [

𝜏𝑚 𝜏𝑚𝑐1 −𝜀1
𝜏𝑚𝑐1 𝜏𝑚𝑐2 −𝜀2
𝜏𝑚𝑐3 𝜏𝑚𝑐4 −𝜀6

]

{
 
 

 
 
𝜕𝑢

𝜕𝑟
𝑢

𝑟
𝜓 }
 
 

 
 

, (20) 

where 

𝑐1 =
𝑐12
𝑐11
,     𝑐2 =

𝑐22
𝑐11
,     𝑐4 =

𝑐23
𝑐11
,     𝜀1 =

𝛽11𝑇0
𝑐11

,     𝜀2 =
𝛽22𝑇0
𝑐11

,

𝜀3 =
(𝛽11 − 𝛽22)𝑇0

𝑐11
,     𝜀4 =

𝛽11
𝜌𝐶𝐸

,     𝜀5 =
𝛽22
𝜌𝐶𝐸

,     𝜀6 =
𝛽33𝑇0
𝑐11

.

 (21) 

To solve the present problem one can consider some 

initial and boundary conditions. The initial conditions may 

be given by as 

𝑢(𝑟, 𝑡)|𝑡=0 =
𝜕𝑢(𝑟, 𝑡)

𝜕𝑡
|
𝑡=0

= 0,     𝜃(𝑟, 𝑡)|𝑡=0 =
𝜕𝜃(𝑟, 𝑡)

𝜕𝑡
|
𝑡=0

= 0,

𝜓(𝑟, 𝑡)|𝑡=0 =
𝜕𝜓(𝑟, 𝑡)

𝜕𝑡
|
𝑡=0

= 0.

 (22) 

Assuming small value of disturbance and confined to 

neighborhood of interface 𝑟 = 𝑅 and hence vanish as 𝑟 →
0. Then, the regularity conditions are 

𝑢(𝑟, 𝑡) = 𝜓(𝑟, 𝑡) = 𝜃(𝑟, 𝑡) = 0   and   𝑟 → ∞.        (23) 

 

 

3. Solution of the problem 
 

Firstly, we assume that the surface 𝑟 = 𝑅 of cylinder is 

subjected to temperature pulse in the form 

𝜃(𝑅, 𝑡) = {
𝜃0 sin(𝜔𝑡) ,     0 ≤ 𝑡 ≤

𝜋

𝜔
,

0,         𝑡 >
𝜋

𝜔
,

        (24) 

where 𝜃0 is the amplitude. Secondly, the boundary plane 

surface 𝑟 = 𝑅 of cylinder is traction free. That is 

𝜎𝑟𝑟(𝑅, 𝑡) = 0. (25) 

Using Eq. (11), then one gets 

𝜓(𝑅, 𝑡) = 𝜃0 sin(𝜔𝑡) +
1

2
𝑘1𝜃0

2 sin2(𝜔𝑡).       (26) 

Applying the Laplace transform to Eqs. (18)-(20) with 

the aid of Eq. (22) and let us take a material with 𝛽11 = 𝛽22 

(i.e., 𝜀4 = 𝜀5 = 𝜀) and 𝑐11 = 𝑐22, one obtains 

(
d2

d𝑟2
+
1

𝑟

d

d𝑟
−
1

𝑟2
−

𝑠2

1 + 𝑡0𝑠
) �̅� =

𝜀1
1 + 𝑡0𝑠

d�̅�

d𝑟
, (27) 

∇2�̅� =
𝑠(1+𝜏𝑞𝑠)

1+𝜏𝜃𝑠
[�̅� + 𝜀 (

d𝑢

d𝑟
+

𝑢

𝑟
)],          (28) 

{

𝜎𝑟𝑟
𝜎𝜉𝜉
𝜎𝑧𝑧

} = [
1 𝑐1 −𝜀1
𝑐1 1 −𝜀2
𝑐3 𝑐4 −𝜀6

]

{
 

 (1 + 𝑡0𝑠)
d𝑢

d𝑟

(1 + 𝑡0𝑠)
𝑢

𝑟

�̅� }
 

 

.       (29) 

Here, an over bar represents Laplace transform of 

corresponding function and 𝑠 is Laplace variable. Eqs. (27) 

and (28) maybe given as 

 

(𝐷𝐷1 −
𝑠2

1+𝑡0𝑠
) �̅� =

𝜀1

1+𝑡0𝑠
𝐷�̅�,          (30) 

𝜀𝑞𝐷1�̅� = (𝐷1𝐷 − 𝑞)�̅�,            (31) 

where 

𝐷 =
d

d𝑟
,     𝐷1 =

d

d𝑟
+

1

𝑟
,     𝑞 =

𝑠(1+𝜏𝑞𝑠)

1+𝜏𝜃𝑠
.     (32) 

Assuming that the radial displacement 𝑢 is represented 

as first derivative of new thermoelastic potential unknown 

𝜙. That is 

𝑢 =
d𝜙

d𝑟
,                (33) 

then, Eqs. (30) and (31) are given by 

(𝐷1𝐷 −
𝑠2

1+𝑡0𝑠
) �̅� =

𝜀1

1+𝑡0𝑠
�̅�,            (34) 

𝜀𝑞𝐷1𝐷�̅� = (𝐷1𝐷 − 𝑞)�̅�.        (35) 

Eliminating �̅� from Eqs. (34) and (35), one gets 

{∇4 − [
𝑠2

1+𝑡0𝑠
+ 𝑞 (

𝜀1𝜀

1+𝑡0𝑠
+ 1)] ∇2 +

𝑞𝑠2

1+𝑡0𝑠
} �̅� = 0,   (36) 

which can be rewritten as: 

(∇2 −𝑚1
2)(∇2 −𝑚2

2)�̅� = 0,          (37) 

where 𝑚1
2 and 𝑚2

2 are the roots of the equation 

𝑚4 − [
𝑠2

1+𝑡0𝑠
+ 𝑞 (

𝜀1𝜀

1+𝑡0𝑠
+ 1)]𝑚2 +

𝑞𝑠2

1+𝑡0𝑠
�̅� = 0.      (38) 
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These roots are given by 

𝑚1
2,𝑚2

2 =
1

2
(2𝐴 ± √𝐴2 − 4𝐵),        (39) 

where 

𝐴 =
𝑠2+𝑞𝜀1𝜀

1+𝑡0𝑠
+ 𝑞,     𝐵 =

𝑞𝑠2

1+𝑡0𝑠
.         (40) 

Eq. (37) tends to the following modified Bessel’s 

equation of zero order 

(
d2

d𝑟2
+

1

𝑟

d

d𝑟
−𝑚1

2) (
d2

d𝑟2
+

1

𝑟

d

d𝑟
−𝑚2

2) �̅� = 0.   (41) 

It is easy to solve the above equation under regularity 

conditions that 𝑢, 𝜃, 𝜓 → 0 as 𝑟 → 0. This solution is 

expressed as 

�̅� = ∑ 𝐴𝑖𝐼0(𝑚𝑖𝑟)
2
𝑖=1 ,            (42) 

where 𝐴𝑖, 𝑖 = 1,2 represent two parameters depending on 

𝑠 of Laplace transform. The substitution of Eq. (42) into 

Eq. (34) gives 

𝜀1

1+𝑡0𝑠
�̅� = ∑ (𝑚𝑖

2 − 𝑠2)𝐴𝑖𝐼0(𝑚𝑖𝑟)
2
𝑖=1 .        (43) 

Substituting from Eq. (42) into Laplace transform of Eq. 

(33), one obtains 

�̅� = ∑ 𝑚𝑖𝐴𝑖𝐼1(𝑚𝑖𝑟)
2
𝑖=1 .           (44) 

The corresponding stress components maybe obtained in 

the form 

𝜎𝑟𝑟 = −
1 + 𝑡0𝑠

2𝑟
∑{𝑟(𝑚𝑖

2 − 2𝑠2)𝐼0(𝑚𝑖𝑟)

2

𝑖=1

+𝑚𝑖[2𝑐1𝐼1(𝑚𝑖𝑟)
+ 𝑟𝑚𝑖𝐼2(𝑚𝑖𝑟)]}𝐴𝑖, 

(45) 

𝜎𝜉𝜉 =
1 + 𝑡0𝑠

2𝑟
∑{𝑟[𝑚𝑖

2(𝑐1 − 2) + 2𝑠
2]𝐼0(𝑚𝑖𝑟)

2

𝑖=1

+𝑚𝑖[2𝐼1(𝑚𝑖𝑟)
+ 𝑟𝑐1𝑚𝑖𝐼2(𝑚𝑖𝑟)]}𝐴𝑖, 

(46) 

𝜎𝑧𝑧 =
1 + 𝑡0𝑠

2
∑{[𝑐3𝑚𝑖

2 −
2𝜀6
𝜀1
(𝑚𝑖

2 − 𝑠2)] 𝐼0(𝑚𝑖𝑟)

2

𝑖=1

+
2𝑚𝑖𝑐4𝐼1(𝑚𝑖𝑟)

𝑟

+ 𝑐3𝑚𝑖
2𝐼2(𝑚𝑖𝑟)}𝐴𝑖 . 

(47) 

The boundary conditions appeared in Eqs. (25) and (26) 

in Laplace domain may be transfer to 

�̅�(𝑅, 𝑠) = 𝜃0𝜔 (
1

𝑠2+𝜔2
+

𝑘1𝜃0𝜔

𝑠2+4𝑠𝜔2
) = �̅�(𝑠),      (48) 

𝜎𝑟𝑟(𝑅, 𝑠) = 0.             (49) 

Using Eqs. (43) and (45) into Eqs. (48) and (49) to get a 

system of two equations in 𝐴𝑖 as 

∑(𝑚𝑖
2 − 𝑠2)𝐴𝑖𝐼0(𝑚𝑖𝑟)

2

𝑖=1

=
𝜀1�̅�(𝑠)

1 + 𝑡0𝑠
, (50) 

∑{𝑅(𝑚𝑖
2 − 2𝑠2)𝐼0(𝑚𝑖𝑅)

2

𝑖=1

+𝑚𝑖[2𝑐1𝐼1(𝑚𝑖𝑅)
+ 𝑅𝑚𝑖𝐼2(𝑚𝑖𝑅)]}𝐴𝑖 = 0. 

(51) 

The solution maybe completed after getting 𝐴𝑖 . 

Moreover, the temperature �̅� can be easily obtained from 

Eq. (11) after applying Laplace transform as 

�̅�(𝑟, 𝑠) =
√1+2𝐾1�̅�−1

𝑘1
.            (52) 

 

 

4. Numerical results and discussions 
 

The obtained solution for temperature, radial 

displacement, and stresses is attempted in Laplace 

transform domain. In this section, we try to get the 

distributions of such variables in their inverted forms. 

Numerical inversion method based on a Fourier series 

expansion (Honig and Hirdes 1984) is adopted to invert 

Laplace transform in Eqs. (43)-(47). The variable quantity 

in Laplace domain maybe inverted to the time domain by 

using the expression 

𝑓(𝑡) =
e𝑐𝑡

𝑡
[
𝑓̅(𝑐)

2
+ Re {∑ (−1)𝑛𝑓̅ (𝑐 +

i𝑛𝜋

𝑡
)𝑁

𝑛=1 }],   (53) 

in which 𝑐 is experimentally satisfies the relation 𝑐𝑡 ≈ 4.7 

(Honig and Hirdes 1984). 

In order to observe the validity and efficiency of our 

system and also to get the distribution responses for 

different field variables like displacement 𝑢, temperature 𝜃 

and stresses 𝜎𝑟𝑟, 𝜎𝜉ξ and 𝜎𝑧𝑧 inside the medium we have 

done numerical computations with the help of computer 

programming. The results have been graphically presented 

for thermoviscoelastic (TVE) and thermoelastic (TE) 

cylinder. Results are calculated by choosing Cobalt as an 

orthotropic material with elastic properties (in SI units) at 

𝑇0 = 298 𝐾 (Misra et al. 1996) as 

𝑐11 = 𝑐22 = 3.071 × 10
11 N/m,     𝑐12 = 1.650 × 10

11  N/m,     𝜌 = 8836 kg/m3,

𝑘0 = 69 W/(mKs),     𝐶𝐸 = 427 J/(kg K),     𝛽11 = 𝛽22 = 7.04 × 10
6N/(m2K),

𝛽33 = 6.90 × 10
6N/(m2K).

 (54) 

The outer radius of cylinder is taken as 𝑅 = 1 and 

period of time is considered as 𝑡 = 0.12 . Results are 

illustrated in Figs. 1-15. The nature of variations of various 

fields observed in these figures indicates that the system of 

equations of viscoelastic orthotropic materials of efficiently 

compute the numerical solutions of the problem. Also the 

obtained solutions are in complete agreement with 

boundary conditions of the problem. From these figures, we 

find that the field quantities depend not only on state and 

space variables 𝑡 and 𝑟, but also depend on variability 

thermal conductivity parameter and phase-lags parameters. 

It is to be noted that field quantities are plotted along radial 
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direction (from right to left) with 𝑟 = 1 as a starting point 

and 𝑟 = 0 as an ending point. Three cases are discussed 

here as follows:  

In the first case, three values of variability thermal 

conductivity parameter 𝑘1 in the case of viscous solids are 

used. The values 𝑘1 = −1 and 𝑘1 = −0.5 are taken for 

variable thermal conductivity while 𝑘1 = 0 when thermal 

conductivity is temperature-independent. The variations 

with spatial coordinate 𝑟 has been observed in Figures 1-5 

when 𝜏𝑞  and 𝜏𝜃  remain constants (𝜏𝑞 = 0.2, 𝜏𝜃 = 0.1). 

It is seen that the parameter 𝑘1 has significant effects on 

all the fields. We also observed the following important 

facts: 

Fig. 1 shows that the variations of temperature 

distributions change initially and decrease with the passage 

of time. It can also be seen that temperature decreases as 

parameter 𝑘1 decreases. 

It is seen from Fig. 2 that value of displacement 

increases with the increase of parameter 𝑘1. It is also found 

that the effect of disturbance approaches zero at a distance 

far from the surface of the cylinder. Similar observations 

can be made from Figs. 3, 4, and 5 when thermal stresses 

are considered. 

 

 

 

Fig. 1 Distribution of temperature 𝜃  for different 

values of variability thermal conductivity 

 

 
Fig. 2 Distribution of radial displacement 𝑢  for 

different values of variability thermal conductivity 
 

 
Fig. 3 Distribution of stress 𝜎𝑟𝑟 for different values of 

variability thermal conductivity 

 

 
Fig. 4 Distribution of stress 𝜎𝜉𝜉  for different values of 

variability thermal conductivity 
 

 

 

• It is observed in Fig. 3 that the variation of 𝜎𝑟𝑟 ends 

with zero value at r=1 for all cases which agrees with 

boundary condition and it decreases continuously to 

attain its lowest value. It attains its highest negative at 

𝑟 ≈ 0.9 and has decreasing behavior for the interval 

1 ≥ 𝑟 ≥ 0.9 and increasing behavior for the interval 

0.9 ≥ 𝑟 ≥ 0. It can also be seen from the plot that 

variability thermal conductivity parameter 𝑘1 acts to 

increase the magnitude of stress 𝜎𝑟𝑟. It is found that the 

disturbance is prominent in the neighborhood of the 

surface of the cylinder and the disturbance gradually 

diminishes as the radial distance decreases. Similar 

observations can be made from Figs. 4 and 5 when the 

s t r e sse s  𝜎𝜉𝜉  and  𝜎𝑧𝑧  a r e  p lo t t ed  aga ins t  𝑟 . 

• It is also apparent from the figure that 𝜎𝜉𝜉  and 𝜎𝑧𝑧 

increase as the parameter 𝑘1 values decreases. 

The second case is devoted to discuss effect of 

mechanical relaxation time due to viscosity 𝑡0  on 

temperature, displacement and stresses when 𝜏𝑞 = 0.2 , 

𝜏𝜃 = 0.1 and 𝑘1 = −0.5. Three values (𝑡0 = 0.2, 0.1 and 

0) are considered in Figs. 6-10. The nature of variation of 
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the fields clearly changes with viscosity parameter 𝑡0 and 

a prominent effect of viscosity parameter upon all profiles 

under the DPL theory is indicated.  
 

 
 

 

Fig. 5 Distribution of stress 𝜎𝑧𝑧 for different values of 

variability thermal conductivity parameter 

 

 

Fig. 6 Distribution of temperature 𝜃 for mechanical 

relaxation time due to viscosity 𝑡0 
 

 

 

Fig. 7 Distribution of displacement 𝑢 for mechanical 

relaxation time due to viscosity 𝑡0 

 

 

 
Fig. 8 Distribution of stress  𝜎𝑟𝑟  for mechanical 

relaxation time due to viscosity 𝑡0 

 

 
Fig. 9 Distribution of stress 𝜎𝜉𝜉  for mechanical 

relaxation time due to viscosity 𝑡0 

 

 

The comparison of dimensionless physical quantities is 

made for the two different cases: (i) thermoviscoelastic 

solid (TVE) when 𝑡0 = 0.2  and 𝑡0 = 0.1 , and (ii) 

thermoelastic solid (TE) when 𝑡0 = 0. It is also observed 

the following important notes:  

• The influence of viscosity parameter is very 

pronounced on temperature and stresses. 

• Fig. 6 shows that viscosity parameter acts to increase 

magnitude of temperature distribution. It is observed 

that 𝜃  in TEV theory is larger than its behavior as 

compared to TE theory. As the value of 𝑡0 increases the 

absolute values of 𝜃  increases. The behavior of 

temperature for both theories (TEV and TE) is alike. 

• From Fig. 7 we see that, when the viscosity increases, 

the absolute value of radial displacement 𝑢 decreases. 

• Values of 𝑢 in TE theory are the largest in comparison 

with those in TEV theory. The radial displacement 

component is also having similar pattern in the 

discussed three theories. 

• In Figs. 8 and 9, the absolute values of stresses 𝜎𝑟𝑟 

and 𝜎𝑧𝑧 increase as 𝑡0 increases. 

• The difference in values of 𝜎𝜉𝜉  at a particular point for 

various values of viscosity parameter is illustrated in 

Fig. 10. 
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Fig. 10 Distribution of stress 𝜎𝑧𝑧  for mechanical 

relaxation time due to viscosity 𝑡0 

 

 

Fig. 11 Distribution of the temperature 𝜃 for different 

times 𝑡 
 

 

Fig. 12 Distribution of the displacement 𝑢  for 

different times 𝑡 
 

 

Fig. 13 Distribution of stress 𝜎𝑟𝑟 for different times 𝑡 
 

 

Fig. 14 Distribution of stress 𝜎𝜉𝜉  for different times 𝑡 

 

 

Fig. 15 Distribution of stress 𝜎𝑧𝑧 for different times 𝑡 
 
 

The third case is to investigate how temperature, 

displacement and stresses vary with 𝑡 when phase-lags 𝜏𝑞, 

𝜏𝜃 and viscosity parameter 𝑡0 remain constants (Figs. 11-

15). We can see the significant effect of the time 𝑡 on all 

the studied fields. We found that, increasing in value of time 

causes increasing in values of temperature, displacement 

and stresses fields. 
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5. Conclusions 
 

This article constructs the model of generalized 

thermoviscoelasticity for a homogeneous orthotropic 

infinite solid cylinder with a variable thermal conductivity 

based on DPL model. Outer surface is taken to be traction-

free and under temperature pulse. The problem is 

numerically solved using Laplace transform technique. 

Numerical results for the displacement, temperature, 

stresses distributions are illustrated graphically. 

Comparisons are made of results due to various theories in 

cases of temperature dependent and independent modulus 

of elasticity. From the numerical results, it is concluded 

that: 

1. The viscosity parameter plays an important role and is 

more pronounced in thermoviscoelasticity case. 

2. The variability thermal conductivity parameter has 

significant effects on speed of wave propagation of all 

the studied fields. 

3. The phase-lags have great effects on the field 

quantities. 

4. The effects of the time parameter on all the studied 

fields are very significant. 

5. The theories of coupled thermoelasticity, generalized 

thermoelasticity with one relaxation time can extracted 

as special cases. 

Finally, the outputs of this article should prove useful to 

investigators in the development of continuum mechanics, 

as well as to investigators in neighbor branches. Also, the 

results presented here may provide interesting information 

for experimental scientists and researchers working on this 

subject. 
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Nomenclature 
 

𝐶𝐸 specific heat at uniform strain 

𝑐𝑖𝑗 isothermal elastic constants 

𝐼0(∙), 𝐼1(∙), 
𝐼2(∙) 

modified Bessel’s functions of second kinds of 

order zero, one and two 

𝐾𝑟 thermal conductivity 

𝑘0 thermal conductivity at ambient temperature 𝑇0 

𝑘1 
slope of thermal conductivity-temperature curve 

divided by 𝑘0 

𝑇0 environment temperature 

𝑡0 mechanical relaxation time due to the viscosity 

�⃗� heat flux vector 

𝑢𝑟 radial displacement 

𝛽𝑖𝑗  thermal elastic coupling components 

𝜀𝑟𝑟, 𝜀𝜉𝜉  radial and circumferential strains 

(𝑟, 𝜉, 𝑧) cylindrical coordinates system 

𝜌 material density 

𝜎𝑟𝑟, 𝜎𝜉𝜉 , 𝜎𝑧𝑧 normal mechanical stress components 

𝜃 = 𝑇 − 𝑇0 thermodynamical temperature 

𝜏𝜃 phase-lag of temperature gradient 

𝜏𝑞  phase-lag of heat flux 

𝜔 circular frequency of sinusoidal pulse 
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