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1. Introduction 
 

Observations from many previous major earthquakes 

have clearly revealed that the seismic spatial variability play 

an important role on the dynamical response of extended 

structures subjected to seismic ground motion (Kawashima 

et al. 2009, Wang et al. 2010). Seismic spatial variability 

stems mainly from the wave passage effect, coherence 

effect, and local site effect. In Southwest district of China, 

the variations of seismic ground motions are more evident 

due to the complexity of mountainous site topographies. 

During the recent earthquakes occurred in the mountainous 

area of China (such as the Wenchuan earthquake of May 12, 

2008 and Lushan earthquake of April 20, 2013), it was 

observed that seismic spatial variability has a significant  
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effect on the seismic performance of spatially extended 

structures like the long-span and high-pier railway bridges 

(Jia et al. 2013). 

In the dynamical analysis of a long-span high-pier 

railway bridge, the multiple support excitations may excite 

the symmetrical mode of vibration largely so that the 

amplification of structural response can be induced. 

Extensive studies of ground motion spatial variabilities 

have been conducted for various types of long-span bridge 

structures such as suspension bridges (Harichandran et al. 

1996, Yau et al. 2007), cable-stayed bridges (Nazmy et al. 

1992, Kahan et al. 1996, Dumanogluid et al. 2003, Soyluk 

et al. 2004), arch bridges and bridge pounding and isolation 

(Hao 1997, Hao 1998, Jankowski et al. 2000, Zanardo et al. 

2002, Chouw et al. 2006, Bi et al. 2010, Ates et al. 2005), 

but very few attempts are devoted to the long-span high-

pier railway bridges (Jia et al. 2013, Zhang et al. 2014). 

Structural analysis of long-span bridges with spatially 

varying ground motions (SVGM) is generally performed by 

time history method or stochastic vibration and response 

spectrum schemes. Definition of the input time history is a 

changeling issue for the time history method while the 

stochastic vibration approach has the drawback of 

complexity in theory and extensive amount of linear 

computation (Berrah et al. 1992, Kiureghian et al. 1981). 

However, most earthquake resistant design codes in the 

world specify the response spectrum as the seismic input to 

obtain the maximum structural responses subjected to 

seismic waves in terms of the structure design (Cowan et al. 

2015, Liu et al. 2016, Wang et al. 2014, Konakli et al. 
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2011). 

Response spectrum analysis has been performed by 

several attempts for extended structures under multiple 

support excitations. Two factors on modal spectrum 

response and modal correlation coefficients are introduced 

into the usual uniform response spectrum method to account 

for the wave passage effect and incoherence effect; 

however, both the local site effect and correlation between 

static and dynamic terms in structure analysis cannot be 

modelled (Berrah et al. 1992, Berrah et al. 1993). The 

multiple support response spectrum (MSRS) analysis is 

based on random vibration theory and owns rigorous 

theoretical basis; however, it needs a large computational 

effort in structure analysis (Kiureghian et al. 1992). 

Some simplified methods have been proposed for 

MSRS analysis, but they are trade-off between accuracy 

and simplification (Heredia et al. 1995). Besides, almost all 

of the proposed MSRS approaches need a self-developed 

code that results in the modelling inconvenience for some 

complex structures such as long-span bridges. On the other 

hand, the general finite element (FE) software like ANSYS 

was widely used in structural analysis because of its 

powerful pre-process, algorithms and post-process 

procedures. However, those general FE platforms cannot 

achieve a MSRS analysis for extended structures subjected 

to SVGM. From the practical engineering analysis point of 

view, it is essential to develop an efficient analysis 

technique for response spectrum analysis of complex bridge 

structures. 

This paper is devoted to resolve the computational 

issues of response spectrum method for extended bridge 

structures under SVGM. Section 2 presents a theoretical 

basis including the improved MSRS theory and 

implementation of MSRS scheme in the general FE 

platform ANSYS. Numerical studies are conducted in 

Section 3 for seismic assessment of a practical high-pier 

railway bridge under SVGM. Conclusions and observations 

are drawn in Section 4. 

 

 

2. Theoretical basis 
 

2.1 Modeling of spatially varying ground motions 
 

The cross-power spectral density (c-PSD) function 

matrix of SVGM at m spatial points can be used to model 

the spatial seismic field as 
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In which Smm () is auto-power spectral density (a-PSD) 

function at mth excitation point and it can be derived 

through transformation from response spectra by Eq. (2); 

)()()()(  iSiSipiS llkkklkl   denotes c-PSD at 

arbitrary spatial points k and l; 

)/exp()()( app

L

klklkl diipip   is the coherency 

function representing the variability of ground acceleration 

at ground support k and l; )( ipkl denotes the module of 

coherency function )( ipkl
; L

kld  is the distance between 

spatial supports k and l along the wave propagation 

direction, app is the apparent wave velocity of seismic 

motion and )/exp( app

L

kldi   is the phase part of )( ipkl

that represents the wave-passage effect. 

The a-PSD (i.e., Smm ()) model can be derived from a 

design response spectrum based on the direct relationship 

between the PSD function and response spectrum as (Kaul 

et al. 1978) 
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In which  is a critical damping ratio of 5% in this 

paper; R() denotes response spectrum at frequency point 

; T is the duration of ground motions and is assumed here 

in to be 25s; r is probability of exceedance of 0.95. The 

module of coherency function )( ipkl  proposed by Loh 

and Yeh (1998) is determined as 

  cos)( a

kl eip           (3) 

Where a=1/(16) and  is the travel time between 

excitation points k and l. 

Based on Eqs. (1) to (3), the PSD matrix for SVGM can 

be constructed and used in Section 2.2 to perform a MSRS 

analysis for a long-span high-pier railway bridge. The 

element Skl(i) of c-PSD matrix in Eq.(1) denotes the 

change of PSD at the kth point due to the seismic excitation 

at lth point. Namely Skl(i) reveals the nature of these 

mutual effects on the values of PSD at different ground 

motion points. Consequently the summation is completed in 

accordance with the rows of c-PSD matrix. Based on Eq. 

(1) and the above discussions, the total values of PSD at 

each excitation point can be expressed by 
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
m

j
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1
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To carry out the response spectrum analysis of long-

span high-pier bridges, Eq. (4) will be transformed to 

response spectrum values by the inverse function of Eq. (2) 

as 
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Once one can get the total response spectrum values by 

means of Eq. (5) (in which the spatial variabilities of 

ground motions have been taken into account), they will be 

inputted directly into the structure motion equations for 

MSRS analysis. Moreover, the consideration of spatial 

variabilities of ground motions is completed before the 

solution of structural motion equation. Hence the approach 

proposed in the paper overcomes the difficulty in general 
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FE software (like ANSYS) that, a complete incoherent 

analysis of extended structures subjected to SVGM can be 

only performed with input spectra uncorrelated to each 

other. The method proposed herein can be used to carry out 

dynamical analysis of extended structures subjected to 

multiple support excitations including the incoherence 

effect, wave passage effect and local site effect, which is 

greatly convenient in practical engineering assessment of 

spatially extended structures under SVGM using MSRS.  

 

2.2 Method of MSRS analysis 
 

Using the proposed improved modelling approach for 

seismic inputs in ANSYS, the theoretical derivation of 

MSRS method is presented in this section for extended 

lumped mass structures. The coupled equations of motion 

for a linear discretized, n multi-degree-of-freedom 

(MDOF), and multiply supported structures under 

unidimensional translational seismic excitations can be 

expressed as 
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Where the subscripts s and b denote, respectively, the 

structure and the base; Us is the n-vector of (total) 

displacements at the unconstrained DOF; Ub denotes the m-

vector of prescribed support displacements; Ms, Cs and Ks 

are n×n mass, damping and stiffness matrices, respectively; 

and Pb is the m-vector of reaction forces at the support 

DOF. Generally, the total response displacements can be 

decomposed into the pseudo-static component Us
s
 and 

dynamic one Vs for solving the Eq. (6) as 
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The pseudo-static component satisfies the following 

equation without the inertia and damping terms 
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Due to Eq. (8), we can get Us
s
 

bsbs

s

s UKKU 1              (9) 

Substituting Eqs. (7) and (9) into Eq. (6), the dynamic 

component of the response can be derived in a differential 

form as 

bsbsbssbsbssssssss UCKKCUKKMVKVCVM  )( 11    (10) 

Considering the conditions that both stiffness and 

damping matrices satisfy the rigid body assumption, one 

can obtain 
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In which Es and Eb are the rigid displacement vectors 

with regard to the active direction of support motion. 

From Eq. (11), we can obtain 

ssbsb EKEK  , ssbsb ECEC        (12) 

For the uniform seismic excitations we have 

gbb uEU    and can obtain the following Eq. (12) 

gssssssss uEMVKVCVM        (13) 

Which is the classical motion equation for a linearly 

discretized, multi-DOF system under uniform ground 

motions. 

Neglecting the damping term in the forcing function, the 

motion equation of systems under non-uniform ground 

motions can be expressed as 

bsbssssssss UKKMVKVCVM  1     (14) 

This can be commonly solved by modal superposition. 

Using the transformation Vs=Y and the orthogonality 

conditions as well as the assumptions of proportional 

modes, Eq. (14) can be derived as 
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The kth modal component can be written as  
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Where the subscript k denotes the mode number, yk the 

modal displacement, k the fraction of modal damping, k 

the modal frequency, and 
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Where the index i denotes the degrees of freedom 

associated with the prescribed support motions; Ak is a row 

vector with m components Aki and k denotes the kth 

participation factor. 

Based on the stochastic vibration theory, yk can be 

calculated by using spectral representation method in 

solving Eq. (16) and its PSD function can be expressed as  

)()(
22 

kukk

P

yk SHS          (18) 

In which 
P

ykS  denotes the PSD function of yk for the 

case of partially correlated excitations; Hk() is the kth 

modal transfer function; and )(
kuS  is the PSD function of 

the modal support motion. 

According to Eq. (13), the following equation can be 

obtained as  
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Where ij denotes the real part of the lagged coherency 

function representing the incoherence effect of SVGM (also 

termed as the frequency-dependent spatial correlation 

coefficient); dij is the distance between the supports; and 

)(
guS   

is the a-PSD function of ground motion. Eq. (18) 

can be written in the matrix form as  

)()( 
gk u

T
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In which Q=[ij] denotes the coherency matrix. 

Based on Eqs. (18) and (20), one obtains 
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Eq. (21) represents the case of non-uniform excitations; 

however if the motion is uniform (i.e., ij=1), one has 

)()()(
22 

gukkyk SHS          (22) 

In which Syk is the PSD function of the modal response 

for fully correlated support excitations. The comparison is 

conducted in terms of Eqs. (20) and (22), and then it 

follows that 
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As seen from Eq. (23), the relationship between PSD 

functions for partially correlated support motions and fully 

correlated motion are developed. Because of a modified 

method proposed by Berrah and Kausel (1992), one can 

obtain the relationship between response spectra for the 

partially correlated support motions and fully correlated 

motion as  
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In which ),( kk

PR   is a response spectrum which 

accounts for the spatial characteristics of ground motions  

 

 

 

Fig. 1 Flow chart of the improved MSRS approach 

and ),( kkR   is a response spectrum for uniform 

seismic excitations. 

As discussed in Section 1.0, all the MSRS method needs 

to develop a self-code which is impractical for the usage by 

engineers in the practical engineering application. On the 

other hand, general FE software like ANSYS (which is 

acceptable to engineers) can be used an attractive 

alternative of self-codes for MSRS analysis. However, 

ANSYS and the other computational FE software can only 

carry out the analysis of long-span bridges subjected to 

fully incoherent ground motions. Therefore, this paper 

presents an improved method in promoting the application 

of MSRS analysis of practical engineering structures under 

SVGM. The procedure of the improved approach is 

presented in details in flow chart of Fig. 1. 

It should be noted that the improved MSRS approach is 

limited to linear elastic analysis by failing to model both the 

material and geometric nonlinearity; however, the proposed 

approach can be extended to account for structure 

nonlinearity using the method like the seismic response 

modification factor R method. 

 

 

3. Numerical example of a long-span and high-pier 
bridge 
 

The proposed scheme in this paper can achieve high 

computational efficiency, which is particularly attractive in 

seismic analysis of large and complex practical structures 

subjected to multiple support ground motions. Hence, a 

high-pier railway bridge is adopted to demonstrate the 

practical application of the proposed scheme. For brevity, 

this section focuses on the local site effect, partially 

coherent effect and wave passage effect on the longitudinal 

required separation distance between adjacent bridge 

segments to avoid multi-sided pounding and the moment at 

the top and the bottom of high piers. It is noted that effect of 

the frequency ratio of adjacent bridge segments is ignored 

for brevity and the dynamical computation in this paper is 

limited in linear scope. 

 

3.1 Description and model of a high-pier railway 
bridge 

 
A long-span high-pier continuous rigid frame bridge is 

employed for the seismic analysis. The railway bridge 

consists of the left bridge system and the right bridge 

system and has a total span of 466 m. The left bridge 

segment is a prestressed-concrete continuous rigid frame 

system with layout of 81.9 m+168 m+89.05 m, while the 

right segment is a prestressed-concrete continuous beam 

system with layout of 33.8 m+56 m+40.1 m. Piers of the 

railway bridge are numbered from Pier i to Pier m, which 

have variable hollow cross-sections. These configurations 

are presented in details in Fig. 2. A 3-D FE model of the 

high-pier railway bridge selected in the paper is built in a 

general finite element platform ANSYS. The main girders 

and piers are modeled by using beam44 element. The 

combin14 element is used to model the bearings. The 

mass21 element is adopted to simulate the large masses that  
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Fig. 2 Schematic view of the railway bridge (unit: m) 

 

Table 1 Material properties 

Elements Materials Parameters Values 

Bridge girder C55 

Density 2625 (kg/m
3
)

 

Poisson’s ratio 0.2 

Modulus of Elasticity 35.5 (GPa) 

Pier C45 

Density 2400 (kg/m
3
)

 

Poisson’s ratio 0.24 

Modulus of Elasticity 32.5 (GPa) 

 
 
are attached to structural supports in the large mass method. 

The bottom of Piers i to m are fixed due to the boundary 

condition. The vertical DoF(Z), transverse DoF(Y), and the 

rotational DoF with respect to Z(Rotz) and X(Rotx) 

directions are fixed both in the north and south abutments of 

the railway bridge. All DoFs of Pier i, Pier j, and Pier l (the 

DoF in the connection point of the piers and main girders) 

are coupled with the corresponding DoF of the main 

girders, while the longitudinal DoFs(X) in the connection 

points of pier k, pier m, and two abutments are connected by 

the axial sliding bearings with, respectively, different spring 

stiffness of 47911 (kN/m) in the left abutment, 47878.5 

(kN/m) and 16254.5 (kN/m) in pier k, 43237 (kN/m) in pier 

m, and 16302.75 (kN/m) in the right abutment. The 

mechanical properties for the bridge girders and piers are 

listed in Table 1.  

 
3.2 Analysis case and response spectrum input 
 
3.2.1 Analysis case 
To illustrate the implementation of the improved 

approach proposed in this paper for response spectrum 

analysis of a long-span high-pier bridge, a total of three 

cases has been taken into account (Case 1: local site 

effect+fully incoherence effect; Case 2: local site effect 

+partially coherence effect; Case 3: local site effect +wave 

passage effect + coherence effect).  

Case 1 can only be performed in ANSYS platform and 

the other cases cannot be carried out due to the deficiency 

of FE software. The main objective of this section is to 

overcome the difficulty that ANSYS can only perform an 

analysis for local site effect and fully incoherent effect, 

namely case 1. Moreover, the comparison between different 

case analysis results is conducted to illustrate the  

 

Fig. 3 The seismic input spectra at bottom of pier i, j, k, l, 

and m. (a) Design response spectra, (b) Transformed power 

spectra, (c) Modified response spectra considering ground 

motion spatial variabilities, (d) Comparison of the smooth 

and modified response spectra. Note: NSP denotes the 

spectra curve without smoothing and SP the ones with 

smoothing. 

 

 

application of the improved approach in practical seismic 

analysis of a long-span high-pier bridge subjected to 

SVGM. 

The seismic input spectra at different pier of the long-

span high-pier bridge are presented in Fig. 3. The design 

response spectra for the site conditions under piers i, j, k, l, 

and m are given in Fig. 3(a) based on the highway seismic 

design code of China (2008). The predominant periods for 

soils under piers i, j, k, l, and m are 0.35 sec., 0.65 sec., 0.45 

sec., 0.35 sec. and 0.35 sec., respectively. The design peak 

ground acceleration in horizontal direction are 0.2 g, 0.3 g, 

0.3 g, 0.2 g, and 0.3 g, respectively. The maximum 

horizontal design acceleration are 8.99 m/s
2
, 11.24 m/s

2
, 

14.61 m/s
2
, 8.24 m/s

2
, and 11.24 m/s

2
, respectively. For 

taking into account effects of ground motion spatial 

variation, the design response spectra of Fig. 3(a) is 

transformed using Eq. (2) into the a-PSD functions shown 

in Fig. 3(b). The modified response spectra (Case2: L+ 

Partially +Awv300) considering spatial variability of 

ground motions is presented in Fig. 3(c). As seen from Fig. 

3(c), the values of the modified response spectra for SVGM 

are greater than the ones in Fig. 3(a) without considering 

spatial variability. For comparisons of the seismic input, the 

smooth response spectra are adopted and the comparison of 

smooth response spectra and modified one is given in Fig. 

3(d). Finally, the input response spectra used in the MSRS 

analysis of the employed long-span high-pier bridge can be 

confirmed according to Fig. 3(d). 

 

3.2.2 Discussion of the input spectra 
As observed from Figs. 3(c) and (d), slight fluctuation 

on the resultant new response spectra curves (i.e., spectra 

considering the spatial variability effect) at each bottom of 
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bridge piers is observed. The phenomenon of fluctuation 

may be due to column superposition from the PSD matrix 

of Eq. (1) to account for ground motion spatial variability 

and conversion relation between PSD and response spectra 

in term of the complex function of Eq. (5). 

 

3.3 Numerical results and discussions 
 

For seismic analysis of the high-pier bridge subjected to 

SVGM, the circular frequency is bounded between ω

[0 300] rad/s, the damping ratios of all the modes of interest 

are assumed to be 0.05. Some seismic responses of interest 

will be obtained from the numeral analysis, such as the 

displacements of Nodes 20, 27, 28, 122, 158, 177, 266, and 

272, the moments at Node 124, 158 and 268, and the shear 

forces at Node 124, 158 and 268. The detail nodal layout 

for structural response of interest is shown in Fig.4. These 

nodal responses (Node 122, 158, 177, 266, and 272) are 

mainly for the top and bottom elements of the highest and 

shortest piers. Other nodes including Nodes 20, 27 and 28 

are for elements of the main girder at top of the highest pier 

and the end elements of the main girder at the connected 

segment of the two bridge systems.  

As seen from Fig. 5(a), the partially coherence effect of 

ground motion has an important influence on the seismic 

response of the railway bridge under Case2 (L+ Partially 

+Awv300). The fully incoherence effect, which only can be 

performed in ANSYS, has the smallest influence on the 

seismic response at the same nodes. Consequently it will 

underestimate the structural response of some key points 

governing the structural design, if one only uses the module 

of multiple point response spectrum provided in ANSYS. 

As seen in Fig. 5(b), the displacement response of beam 

elements increases first and then decreases with changes of 

seismic wave velocity from 50(m/s) to 1000(m/s). The 

 

 

 

Fig. 4 Node layout of structural response of interest (N20 

denotes Node 20 and others are the same means) 

 

 

Fig. 5 Node displacement response at key positions of the 

bridge under Case1, Case2 and Case3. Note: L is expressed 

as local site condition, Fullyin denotes fully incoherent 

effect, and Awv stands for apparent wave velocity 

Table 2 Nodal displacement of structural response (Unit: m) 

Node Case1 Case2 Case3 

20 0.1244 0.2102 0.1718 0.1862 0.2102 0.2078 

27 0.1224 0.2069 0.1690 0.1832 0.2069 0.2045 

28 0.0425 0.0822 0.0716 0.0698 0.0822 0.0870 

122 0.1224 0.2068 0.1690 0.1832 0.2068 0.2045 

158 0.1244 0.2102 0.1718 0.1862 0.2102 0.2078 

177 0.0625 0.0863 0.0700 0.0731 0.0863 0.0873 

266 0.0409 0.0791 0.0689 0.0671 0.0791 0.0837 

272 0.0025 0.0038 0.0038 0.0029 0.0038 0.0040 

 

Table 3 Structural moment response (Unit: N·m) 

Node Case1 Case2 Case3 

124 4.12E+09 6.78E+09 5.57E+09 5.89E+09 6.78E+09 6.78E+09 

158 1.38E+09 2.27E+09 2.61E+09 1.97E+09 2.27E+09 2.27E+09 

268 2.10E+08 3.17E+08 3.13E+08 2.44E+08 3.17E+08 3.39E+08 

 

Table 4 Shearing force of structural response (Unit: N) 

Node Case1 Case2 Case3 

124 5.56E+07 7.82E+07 7.77E+07 5.92E+07 7.82E+07 8.67E+07 

158 2.89E+07 4.17E+07 3.74E+07 3.24E+07 4.17E+07 4.44E+07 

268 7.49E+06 1.12E+07 1.06E+07 8.79E+06 1.12E+07 1.25E+07 

 

 

Fig. 6 Nodal internal force of structural response. (a) 

Moment at Nodes 124, 158, and 268 under Case1 and 

Case2, (b) Moment at Nodes 124, 158, and 268 under 

Case1 and Case3, (c) Shear force at Nodes 124, 158, and 

268 under Case1 and Case2, (d) Moment at Node 124, 158, 

and 268 under Case1 and Case3 

 

 

multiple support excitation phase results in different 

response results, due to the variation of apparent wave 

velocity which is a function of frequency of ground motion. 

The structural response is above 1.5 times under Case1 as 

large as that of Case3 based on Table 2. 
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Fig. 6 shows the comparison of internal force of the 

railway bridge structure under different cases. The nodes 

such as Node 124, 158 and 268 from the top and bottom of 

piers are key points for structural design, due to the 

characteristic of high-pier railway bridges that flexural 

failure may occur at the highest pier and shear failure at the 

shortest one. As shown in Fig. 6, the internal force response 

at Node 124 is the maximum among these selected nodes of 

interest. At the same time, the combined case with local site 

effect, partially coherent effect, and passage wave effect 

with apparent wave velocity 300 (m/s) has the most 

significant influence on the seismic response and design of 

the highest pier (the most critical component for the high 

pier railway bridge). The detailed resultant data are listed in 

Table 3 and Table 4. Hence it is of prime importance that 

the improved approach proposed in this paper can achieve 

the response spectrum analysis of the high-pier railway 

bridge subjected to SVGM. 

 

 

4. Conclusions 
 

This paper proposed an improved approach for MSRS 

analysis of a typical high-pier railway bridge subjected to 

SVGM considering local site effect, coherence effect, and 

wave passage effect. The improved approach was based on 

the general FE platform ANSYS and has widely extended 

the spectral analysis module of ANSYS to more attractive 

practical engineering application. A comprehensive and 

systematic response spectrum analysis approach is derived 

for spatially extended structures under SVGM. The 

conclusions are drawn as follow. 

• It is inadequate to perform the seismic analysis only 

through the multi-point response spectrum analysis module 

of ANSYS, because this may under-estimate the seismic 

response of structures. 

• The proposed modified MSRS method overcomes the 

difficulty that response spectral analysis of long-span 

bridges under SVGM is performed inconveniently in 

general FE platform. 

• The modified MSRS method can be readily used in the 

practical engineering to achieve more accurate and 

comprehensive seismic analysis of long-span structures. 

• Spatial variabilities of ground motions including local 

site effect, coherent effect, and wave passage effect have 

important effect on the dynamical seismic response of long-

span high-pier bridges, to which the engineers should pay 

more attention on seismic design of the highest pier.  
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