
Earthquakes and Structures, Vol. 12, No. 5 (2017) 569-581 

DOI: https://doi.org/10.12989/eas.2017.12.5.569                                                                  569 

Copyright ©  2017 Techno-Press, Ltd. 
http://www.techno-press.com/journals/eas&subpage=7                                      ISSN: 2092-7614 (Print), 2092-7622 (Online) 

 

1. Introduction 
 

The issue of seismic vulnerability analysis (SVA) of 

infrastructures has been addressed in various international 

codes which explicitly define the criteria of assessment of 

existing structures by linear, nonlinear or approximate 

nonlinear analysis methods.  The most important 

contributions to the field of SVA over the past 30 years 

covering the advantages and draw backs of various 

methodologies are well documented by Calvi et al. (2006). 

Such SVA approaches are usually performed based on the 

evaluation in the determinist ic framework. But, 

uncertainties in various system parameters are inevitable to 

model earthquake action as well as structure itself. This 

causes significant deviations of various system responses 

obtained by the deterministic approach and the commonly 

used deterministic procedures disregarding the presence of 

system parameter uncertainty may lead to an improper 

assessment. Therefore, random nature of earthquake and 

uncertainty with regard to various system parameters should 

be considered properly in the assessment. With enormous 

computational growth and availability of commercial 

software for nonlinear structural analysis in the recent past, 

the highly-refined methods of structural analysis tools have 

facilitated SVA of existing structures realistically 

considering uncertainty in collected information data base. 

In fact, seismic fragility analysis (SFA) has emerged as an 

integrated platform for SVA in the context of performance 
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base earthquake engineering (PBEE) considering parameter 

uncertainty. Such analyses are gaining much importance for 

identifying seismic vulnerability of structure providing 

useful information for damage and loss estimations required 

for disaster response planning and decision‐making towards 

retrofitting of existing structures. The present study deals 

with SFA of structures.  

The SFA is basically a time dependent structural 

reliability analysis problem. The methods commonly used 

for SFA of structures include empirical, statistical and 

numerical analysis. In empirical approach, structural 

damage is evaluated by establishing seismic fragility curves 

based on the post-earthquake statistical data. But the real 

statistical record of data obtained by this method are very 

limited in most of the cases. Thus, the applicability of such 

approach is restricted to situations with similar conditions 

and cannot be used generically. On the contrary, the 

applicability of numerical analysis method is more generic 

in nature and are more commonly used for SFA of 

structures. An excellent state-of-the art development 

focusing on the seismic performance assessment of 

structures and life lines encompassing modelling of seismic 

actions, analysis and performance assessment of structures 

in probabilistic format is worth mentioning in this regard 

(Fragiadakis et al. 2015). The development of SFA by 

numerical analysis in the PBEE framework can be studied 

under two major subheads i.e., (i) the analytical SFA based 

on probabilistic seismic demand and capacity models and 

(ii) the simulation based SFA based on non-linear PBEE 

using random field theory and statistical simulation. The 

analytical SFA is a balance approach of accuracy and 

computational involvement under certain assumed 

conditions. Further, on analytical SFA can be seen 
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elsewhere (Marano 2008, Eads et al. 2013, Lu et al. 2014, 

Esra and Nazli 2014, Nicholas et al. 2014, Mandal 2016). A 

conceptually straightforward but computationally 

demanding methodology for SFA is based on direct Monte 

Carlo Simulation (MCS) technique. The validity and 

robustness of MCS based SFA by non-linear performance 

based analysis is well known (Dymiotis et al. 1999, Kwon 

and Elnashai 2006, Kazantzi et al. 2008, Balasubramanian 

et al. 2014, Gerard and Timothy 2016, Saha et al. 2016). In 

the brute-force MCS, uncertainty in structural parameters 

and seismic inputs are randomly selected, based on their 

probability distributions to create multiple structure-

earthquake combinations. Seismic response analysis is 

performed on each such combination. The process is 

repeatedly performed to obtain the probability of response 

exceeding certain threshold value. Further, one needs to 

repeat the evaluation of failure probability for each intensity 

for complete generation of a fragility curve. Such direct 

simulation approach is desirable as it does not require an 

assumption about the shape of the failure surface. However, 

the full simulation approach needs a large number of 

replications to obtain acceptable confidence in probabilities 

of failures of structures, typically very small in magnitude. 

For each replication in the simulation process, the 

computation of maximum response requires to perform 

complete nonlinear time history analysis (NLTHA) which is 

computationally demanding for real building structures. The 

enormous time requirement for such simulation analysis of 

building frame to extract story drifts for statistical analysis 

is studied by Kwon and Elnashai (2006). The number of 

simulations necessary might be of the order of several 

thousand for sufficient reliable estimate of probability of 

failure depending on the function being evaluated and the 

magnitude of probability of failure (Mann et al. 1974). The 

response surface method (RSM) based metamodeling 

technique is found to be useful in this regard to replace the 

complex mechanical model of a structure which otherwise 

involve large computational need for response analysis. The 

applications of RSM for SFA of structures are numerous in 

the recent past (Franchin et al. 2003, Towashiraporn 2004, 

Buratti et al. 2010, Unnikrishnan et al. 2013, Park and 

Towashiraporn 2014, Saha et al. 2016). A comparison 

between various RSMs for SFA of structures in this regard 

is notable (Möller 2009). Generally, the RSM is based on 

global approximation of scatter position data, obtained by 

using the least squares method (LSM). However, the LSM 

is one of the major sources of error in the prediction by the 

RSM. The RSM based on the moving least squares method 

(MLSM) is found to be more efficient in this regard (Kim 

2005). This has been successfully applied in approximation 

of complex responses in reliability analysis (Kang et al. 

2010, Taflanidis and Cheung 2012, Minas and Chatzi 2015, 

Goswami et al. 2016).  

In the present study, an adaptive RSM based 

metamodeling technique is attempted as an effective 

alternative for improved approximation of nonlinear seismic 

responses. This will enable to apply the brute-force MCS 

technique to the metamodels formed based on limited 

NLTHA (i.e., at the design of experiment points only) of the 

structure to extract story drifts for statistical analysis. 

Specifically, the core numerical simulation in the 

framework of MLSM based RSM is adopted to approximate 

the nonlinear dynamic response of structure. It is well 

known that the simulation based SFA largely hinges on 

proper evaluation of structural demand parameters through 

NLTHA. As the LSM yields a global approximation, the 

predicted responses by the LSM based RSM may fail to 

capture the actual trend of the responses within a local 

domain. On the contrary, the MLSM based RSM; basically, 

a local approximation approach is expected to be more 

effective in approximating the nonlinear responses. The 

purpose of the present study is to explore the effectiveness 

of the MLSM based RSM to estimate seismic fragility of 

structures compare to that of obtained by the usual LSM 

based RSM. In doing so, the repetition of seismic intensity 

for complete generation of fragility curve is avoided by 

including this as one of the predictors in the seismic 

response estimate model. For NLTHA, a representative 

ground motion bin corresponds to the specified hazard level 

of the location of the structure is prepared so that 

statistically meaningful study can be performed for seismic 

demand analysis. The study area is considered to be the 

Guwahati City of the Northeast (NE) region of India. As the 

recorded accelerograms in the focused region of the present 

study is very scarce, apart from recorded accelerograms, the 

ground motion bin also includes artificially and 

synthetically generated accelerograms. The accuracy 

possible to achieve to approximate nonlinear seismic 

response and subsequently to estimate seismic fragility is 

first demonstrated by considering a SDOF non-linear spring 

mass model. Finally, the superiority of the proposed MLSM 

based RSM over the conventional LSM based RSM for SFA 

of structures is elucidated by considering a moment 

resisting reinforced concrete (RC) frame of a typical multi 

storied building.  

 

 

2. Simulation based seismic fragility analysis 
 

The seismic fragility evaluation primarily involves the 

solution of a time dependent structural reliability analysis 

problem. The limit state of interest in the reliability analysis 

problem is the difference between the seismic demand (D) 

and capacity (C) of a structure considering uncertainty due 

to earthquake motions, structural properties, physical 

damage, economic and human losses etc. The problem can 

be envisaged as 

( , ) ( , ) ( , )Z t C t D t C D C DX ,X X X       (1) 

In the above, XC and XD are the variables governing the 

capacity and demand, t is the time parameter. The 

computation of the probability that the limit state function is 

negative means to evaluate the seismic risk of the structure 

i.e.  

0 Failed, 0 Limiting and 0 SafeZ Z Z       (2) 

Therefore, the seismic risk estimate is mathematically the 

evaluation of the following multi-dimensional integral 
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0

( )f Z
Z

P f dZ



  X             (3) 

Where, X is an „n‟ dimensional vector of variables 

involving XC and XD, fZ(X) is the joint probability density 

function (pdf) of the involved random variables. The exact 

computation of the above is often computationally 

demanding. In fact, the joint pdf of fZ(X) is hardly available 

in closed form. Various approximations i.e. the analytical 

and simulation based fragility analysis as mentioned earlier 

are usually adopted to obtain the probability of exceeding a 

response parameter for different limit states of damage 

considering a specific seismic intensity measure. This is 

customarily termed as SFA. Considering the focus of the 

present study, the rest of the paper focuses on the simulation 

based SFA approach.  

The simulation based approach allows defining an 

approximate relationship between the failure probability 

and seismic intensity in the context of performance based 

SFA by realistic modelling of seismic input, non-linear 

performance based analysis and use of random field theory 

in the framework of statistical simulation. As already 

mentioned, the approach requires simulating large number 

of NLTHAs of structure for reliable estimate of fragility and 

makes the approach computationally challenging. The RSM 

based metamodeling to replace the computationally involve 

complex mechanical model of a structure is found to be a 

viable alternative in this regard. The present study 

attempted to explore the effectiveness of MLSM based 

RSM for SFA of structures. The related formulations are 

presented in the following section. In doing so, the basic 

concept of RSM based SFA is first introduced to set the 

background of the proposed approach. 

 

 

3. Fragility analysis by RSM 
 

The RSM primarily uncovers analytically complicated 

or an unknown relationship between several inputs and 

desired output through empirical models (non-mechanistic) 

in which the response function is replaced by a simple 

function (often polynomial) that is fitted to data at a set of 

carefully selected points referred as design of experiment 

(DOE), normally obtained from experimental investigation 

or numerical simulation.  

The SFA in the framework of metamodel technique 

starts with defining the input system parameters and desired 

output response variables. A response measure that best 

describes damage from seismic effect is selected as the 

output variable. These could be base shear, maximum roof 

displacement, peak inter-storey drift, damage indices, 

ductility ratio, and energy dissipation capacity to identify 

the damage states depending on the type of structure being 

investigated. Uncertainty due to earthquake is implicitly 

incorporated in the analysis by using a suite of 

accelerograms. In doing so, the dual response surface 

approach (Lin and Tu 1995) is adopted opportunely to 

overcome an unwieldy process of generating response 

surface models for individual earthquakes. The responses 

are evaluated at each DOE point for all the input ground 

motions in the suit. The vector of the mean, yµ and standard 

deviation (SD), yσ of any desired response „y‟ are then 

computed at the considered intensity level. The response 

surface (RS) for mean and SD are then obtained for the 

considered responses i.e. 

( ) ( )y g and y h  X X
        

(4) 

Finally, the overall RS model to approximate the selected 

response is obtained as 

( ) ( ) ( ) ( ) [0, ( )]y y Z g Z g LN h     X X X X X  (5) 

The above is based on the fact that Z(X) follows lognormal 

distribution with zero mean and SD of magnitude yσ. It is to 

be noted here that obtaining fragility using Eqs. (4) and (5) 

is highly inefficient. The overall response of the structures 

approximated as above is conditioned on a specific level of 

earthquake intensity. Hence, the entire process of generating 

the RS models need to be repeated for different earthquake 

intensity involving a new set of DOE points for each 

intensity level. And for each DOE, one needs to perform a 

fresh set of NLTHA to obtain response output required for 

generation of RS at each intensity level. Thus, the 

computational time and effort required to generate a 

complete fragility curve will be enormous. To circumvent 

this, the earthquake intensity parameter can be included as 

an added dimension in the RS model in addition to the 

structural uncertain parameters (Towashiraporn 2004, Saha 

et al. 2016). The intensity measure i.e., the peak ground 

acceleration (PGA) herein is included within the RS model 

as one of the predictors in the RS model and Eq. (4) 

becomes 

( , ) ( , )y g PGA and y h PGA  X X
   

(6) 

The selected response is now obtained as earlier i.e. 

( ) ( , ) [0, ( , )]y y Z g PGA LN h PGA   X X X  
(7) 

It may be noted that the response approximation as 

described above is no longer conditional to a specific 

intensity of earthquake. The response obtained from the 

above metamodel depends on the structural properties as 

well as the level of seismic intensity. Therefore, the 

response surface described by Eq. (6) is used in the present 

study instead of Eq. (4) to estimate the mean and SD of 

seismic responses. Thus, the overall response of the 

structure approximated subsequently through Eq. (7) is not 

specific to a certain level of earthquake intensity. The 

required computational cost may increase in the initial 

metamodel building process due to this additional 

parameter. However, the overall process is much more 

efficient since the needs of repetitive generation of RS 

models are eliminated. Metamodels for different levels of 

seismic intensity can be obtained directly by evaluating the 

RS at specific values of intensity measures. In order to draw 

a fragility curve, the process is repeated at simulation level 

by adjusting the control variable i.e. the seismic intensity 

parameter to other intensity values. It becomes 

computationally much viable avoiding repeated 

construction of RS models for each PGA values. The 

present work is intended to study the effectiveness of the 

571



 

Shyamal Ghosh and Subrata Chakraborty 

MLSM based efficient RSM compare to LSM based RSM 

to approximate the nonlinear seismic responses. The LSM 

and MLSM based RSMs are presented in the following 

subsections.  

 

3.1 LSM based RSM 
 

If there are n response values yi corresponding to n 

numbers of observed data, xij (denotes the i-th observation 

of the j-th input variable xj in a DOE), the relationship 

between the response and the input variables can be 

expressed as 

y y = Xβ
                

(8) 

In the above multiple non-linear regression model, X, y, β 

and εy are the design matrix containing the input data from 

the DOE, the response vector, the unknown co-efficient 

vector and the error vector, respectively. Typically, the 

quadratic polynomial form used in the RSM is as following 

0
1 1 1

k k k

i i ij i j
i i j

x x x  
  

    y =

        

(9) 

In the LSM of estimation technique, the unknown 

polynomial coefficients are obtained by minimizing the 

error norm defined as 

   

2

0
1 1 1 1

n k k k T
i i i ij i j

i i i j
L y x x x )   

   

 
       

 
 

y - Xβ y - Xβ (10) 

And, the least squares estimate of β is obtained as, 

 T T


 
 

β X X X y
1

            
(11) 

Once the polynomial coefficients β are obtained from the 

above, the response y can be readily evaluated for any set of 

input parameters.  

 

3.2 MLSM based RSM  
 

The MLSM based RSM is a weighted LSM that has 

varying weight functions with respect to the position of 

approximation. The weight associated with a particular 

sampling point xi decays as the prediction point x moves 

away from xi. The weight function is defined around the 

prediction point x and its magnitude changes with x. The 

least-squares function Ly(x) can be defined as the sum of the 

weighted errors as following 

2 T T

1

( ) = ( ) ( ) ( )( )
n

y i i
i

L x w x x


   ε W ε y Xβ W y Xβ (12) 

Where, W(x) is the diagonal matrix of the weight function. 

It can be obtained by utilizing the weighting function such 

as constant, linear, quadratic, higher order polynomials, 

exponential functions etc. In the present study, the 

following exponential function has been used (Taflanidis 

and Cheung 2012) 

2k 2k

2k

exp(- (d/cD)  )- exp(-(1/c) )
w(d) = 

1-exp(-(1/c) )  

if d <D, else „0‟(13) 

In the above, d is the distance of the point where 

approximate response is required to the origin of the 

approximating domain and D is the radius of the sphere of 

influence, chosen at any point of interest such that it 

contains sufficient numbers of DOE points to avoid 

singularity in the solution. The parameters, c and k are used 

for better efficiency. Eventually, a weight matrix W(x) can 

be constructed by using the weighting function in the 

diagonal terms as follows 

1

2

n

w(x-x ) 0 0 0

0 w(x-x ) .. 0

( )= .. .. .. ..

.. .. .. ..

0 0 .. w(x-x )

x

 
 
 
 
 
 
 
 

W

   

(14) 

The weighting function has its maximum value of unity at a 

normalized distance of zero and zero value (minimum) 

outside of unit normalized distance, i.e., w (0.0) = 1.0 and w 

(d/D>1.0)=0.0. The function decreases smoothly from 1.0 

to 0.0. By minimizing the least-squares estimators Ly(x), the 

coefficients β(x) can be obtained by the matrix operation as 

below 

1
( ) ( ) ( )T Tx x x


 
  

β x W x x W y
       

(15) 

It is important to note here that the coefficients β(x) are the 

function of the location x, where the approximation is 

sought. Thus, the procedure to calculate β(x) is a local 

approximation and the moving processes performs a global 

approximation throughout the whole design domain.  

For constructing the response surface model, various 

DOE are used e.g., Saturated Design, Factorial Design, 

Central Composite Design etc. But, such classical designs 

are more appropriate for physical experiments where 

replication errors exist. It may be noted in this regard that 

the experiment here will be a computer analysis of 

nonlinear seismic response in which the random or 

replicating error term is missing. Thus, the absence of 

random error term leaves the least-square fit of a model 

without obvious statistical meaning (Simpson 2001). It is 

mentioned that for constructing the RS where experiments 

are performed artificially through computer simulation, 

DOE should have its design points filling the design space 

and treat all the regions of the design space equally (Park 

and Towashiraporn 2014). Thus, in order to construct an 

efficient RS model, a uniform design (UD) as proposed by 

Fang (1980), basically a space filling design appropriate for 

deterministic computer experiments is adopted in the 

present study. The UD table used in the numerical study to 

obtain the various design points is readily available at 

http://uic.edu.hk/isci/UniformDesign/UD%20Tables.html 

for different levels of sampling points for a given numbers 

of factors.  
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4. Selection of ground motion bin  
 

Proper selection of ground motion record is the most 

important aspect for NLTHA of structure governing the 

seismic response outcome (Zeinab and Masoud 2016). The 

most acceptable form for this is the use of recorded 

accelerograms. However, due to limited resource of 

recorded accelerograms for the focused region of the 

present case study (the Guwahati city of NE India), the 

choice of natural ground motions is limited to eight 

numbers. To supplement this limitation, the accelerograms 

are further generated artificially and also synthetically by 

identifying the most vulnerable magnitude (Mj) and distance 

(Ri) combination for the specific hazard level of the location 

under consideration to ensure the variability in the input 

ground motion. These are briefly discussed in the following. 

 

4.1 Natural accelerogram records 
 

The eight natural accelerogram records are selected 

from the past earthquake data in the region which covers a 

surface magnitude range from 6.0 to 8.0 and epicentral 

distance within 300 km for rock site, corresponding to the 

considered hazard level as identified from the 

disaggregation of PSHA of the Guwahati city. Due to the 

limited recorded accelerograms in the region, the records 

are also selected from Northern Himalayan earthquakes 

with similar subsoil sites available in the COSMOS virtual 

data centre 

(http://strongmotioncenter.org/vdc/scripts/default.plx). 

Table 1 shows the details of the selected earthquake 

accelerograms. 

 

4.2 Artificial accelerograms 
 

The artificial accelerograms are generated following the 

iterative methodology proposed by Gasparini and 

Vanmarcke (1976). The power spectral density (PSD) 

function compatible to the acceleration response spectra for 

rock and hard soil for 5% damping (IS 1893 2002) is 

obtained following Kaul (1978). For each cycle, the 

response spectrum generated for the simulated ground  

 

 

Table 1 Selected accelerograms records for NE region of 

India 

Name Date Station Comp. 
Mag. 

(Ms) 

Dist. 

(km) 

Depth 

(Km) 

Site 

Geology 

PGA 

(g) 

Indo-Burma 

Border 

6 Aug, 

1988 
Baigao S28W 7.2 230 90 

Soft 

Rock 
0.217 

Indo-Burma 

Border 

6 Aug, 

1988 

Berlongfe

r 
N14W 7.2 201 90 

Soft 

Rock 
0.337 

Indo-Burma 
Border 

8 May, 
1997 

Jellalpur N02E 6.0 24 34 
Soft 
Rock 

0.136 

Indo-Burma 
Border 

8 May, 
1997 

Katakhal S01W 6.0 40 34 
Soft 
Rock 

0.159 

Uttarkashi, 

India 

19 Oct, 

1991 
Bhatwari N85E 7.0 53 10 Rock 0.248 

Uttarkashi, 

India 

19 Oct, 

1991 
Uttarkashi N75E 7.0 31 10 Rock 0.304 

Chamoli, 
India 

28Mar, 
1999 

Gopeswar N20E 6.6 14 15 Rock 0.353 

Chamoli, 

India 

28Mar, 

1999 
Ukhimath N75W 6.6 19 15 Rock 0.091 

motion is compared with the target one. The ratio between 

the desired and the computed response is defined at each 

cycle and the corresponding PSD is recalculated as a 

function of the square of the aforementioned ratio. Using 

the modified PSD, a new ground motion is simulated and a 

new response spectrum is obtained, otherwise the procedure 

is repeated until convergence. The steady state motions are 

further multiplied by a deterministic envelope function 

(Saragoni and Hart 1974) to simulate the transient nature of 

earthquakes.  

 

4.3 Synthetic accelerograms  
 

The stochastic ground motion model as proposed by 

Boore (2003) is used for generation of synthetic 

acceleration time histories. The Fourier amplitude spectrum 

of ground motion at a site is expressed in terms of source 

and wave propagation functions as 

Ground motion (f) = C × Source (f) × Path (f) × Site (f) (16) 

Where, 3/ 4C R FH  is the scaling factor in which 

Rθφ represents the radiation pattern for a range of azimuths θ 

and take-off angles φ, F represents the free surface effect 

and H is the reduction factor accounting the partitioning of 

energy into two horizontal components. The crustal density 

and shear wave velocity are represented by σ and β, 

respectively.  

By using the ω-square model (Brune 1970), the source 

spectrum is obtained as 

2 0

2

M
Source(f) (2 )

[1 ( / ) ]c

f
f f




      

(17) 

Where, M0 is the seismic moment and the corner frequency, 
6 1/3

04.9x10 ( / M )cf     in which, fc is in hertz, β is in 

km/s, the stress drop, Δσ is in bars and M0 is in dyne-cm. 

The path term is interpreted in terms of geometrical 

spreading (GSP) factor and frequency dependent quality 

factor Q(f) and given as 

Path ( ) GSP( ).exp( / ( ) )f r fr Q f  
    

(18) 

The site term is obtained in terms of frequency dependent 

amplification and diminution factor as 

     Site f A f D f ?            (19) 

Where, A(f) represents the site amplification due to 

propagation of earthquake waves from the source region. 

The diminution factor is represented as, D(f)=exp(-πk0f) in 

which k0 is the distance-independent high frequency 

attenuation operator (Kappa factor). Several methods are 

available in the literatures for evaluating site amplification. 

In this study, the amplification function A(f) is estimated 

from H/V ratio. In COSMOS virtual database, only one 

earthquake record is available for Loharghat station, 33 km 

away to Guwahati (Indo-Burma Border earthquake 6
th

 

August, 1988). The three orthogonal components of this 

record are used to calculate H/V spectrum. Fourier spectra 

of the three orthogonal components are calculated and 

smoothed by spectral smoothing algorithm (Konno and  
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Table 2 The parameters adopted for synthetic ground 

motion generation 

Parameters Values References 

Stress Drop (Δσ) 250 bars 
Raghukanth and 

Somala (2009) 

Quality Factor (Qf) 224f 0.93 
Raghukanth and 

Somala (2009) 

Geometrical 

spreading factor 

(GSP) 

1/r for r < 100 km 

1/10√r for r  

> 100 km 

Singh et al.(1999) 

Distance dependent 

factor (b) 
0.05 Boore (2003) 

Shear Wave Velocity 

(β) 
3.6 km/sec Mitra et al. (2005) 

Crustal Density (σ) 2900 kg/m3 Mitra et al. (2005) 

kappa factor (k0) 
0.8

,30(0.057 / ) 0.02sV   Chandler et al. (2006) 

Vs30 1.97 km/s Chandler et al. (2006) 

Reduction Factor (H) 1/√2 
Boore and Boatwright 

(1984) 

Radiation Pattern 

(Rθϕ) 
0.55 

Atkinson and Boore 

(1998) 

Free Surface 

Amplification (F) 
2.0 Boore (1996) 

 

 

Ohmachi 1998). Smoothed Fourier spectrums of the two 

horizontal motions are then averaged using a quadratic 

mean. The average spectrum is divided by the smoothed 

vertical spectrum to obtain the H/V ratio and multiplied by 

the near-surface attenuation term exp(-πk0f) to get the 

overall site amplification. Now, for generating synthetic 

accelerograms, white Gaussian noise is generated with zero 

mean and unit SD. This is filtered to retain the frequencies 

between 0 to 50 Hz and the filtered Gaussian noise is 

further windowed by envelope function (Saragoni and Hart 

1974). This windowed noise is now Fourier transformed 

and normalized with its root mean square value. The 

normalized ordinates of the Fourier amplitudes are then 

multiplied with the Fourier amplitude as obtained from the 

stochastic point source model to get the Fourier spectrum of 

the ground motion. This Fourier spectrum is then inverse 

Fourier transformed to obtain the synthetic accelerograms. 

Following this procedure, eight accelerograms are 

generated for different magnitudes between 6.0 to 8.0 and 

epicentral range within 300 km around the focused study 

area. Table 2 summarizes the various parameters necessary 

for generation of synthetic ground motion and the specific 

values adopted in the present study along with useful 

references. 

 

 

5. Numerical study 
 

To demonstrate the effectiveness of the proposed 

MLSM based RSM over the conventional LSM based RSM 

for SFA of structures, two examples are taken up. The first 

example is a simple nonlinear single degree of freedom 

(SDOF) system. Because of its simplicity, it is feasible with 

reasonable time to obtain large number of non-linear 

responses of the SDOF system with random system 

properties and earthquake inputs necessary for fragility 

computation by brute force MCS. Thus, this problem has 

been taken up to make a comparative study of the accuracy 

possible to achieve in seismic fragility computation by the 

LSM and MLSM based RSMs compare to that of obtained 

by the brute force MCS based approach.  The second 

example is a more realistic case study problem. A four-story 

RC frame  building considered to be located in the 

Guwahati city of NE India involving NLTHA by using 

commercial structural analysis software is taken up to 

elucidate the effectiveness of the proposed MLSM based 

RSM for efficient SFA of structure.  

 

5.1 Example 1: Simple nonlinear SDOF system 
 

The nonlinear spring-mass SDOF system as shown in 

Fig. 1(a) is characterized by a nonlinear spring connecting a 

lumped mass (m) to the ground. The nonlinear spring 

behaviour is described in Fig. 1(b). The damping is 

assumed to be proportional to system mass and stiffness. 

The system is subjected to seismic acceleration at the base 

and its response is obtained at each time step by numerical 

integration in Matlab platform.  

The fragility analysis requires that the computed 

responses are described probabilistically. This can be 

accomplished by simulating cases with random structural 

properties and earthquake inputs. To consider the record to 

record variation of stochastic earthquake motion, a suite of 

ground motion records is considered. The ground motion 

bin consists of twenty artificially generated accelerograms 

consistent with the design spectrum of the study region and 

another twenty synthetically generated for the Guwahati 

city as detailed in section 4. The mean and SD of the 

nonlinear response of the system is obtained based on these 

ground motions. The random variables considered are the 

frequency (ω rad/s), damping (ξ in percentage), yield force 

(Fy in N) and ratio of the post-yield to elastic stiffness (α). 

These are assumed to be statistically independent normal 
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Fig. 1 (a) The spring mass system Fig. 1 (b) The force deformation behaviour of the nonlinear spring 
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random variables. The ranges of the variables are depicted 

in Table 3. The PGA value is considered as control variables 

whose range varies from 0.1 g to 1.0 g. The maximum 

displacement of the mass is taken as the output response 

variable. 

The input variables in the RS models are composed of 

two components, the random variables (X1 to X4) and the 

control variable (X5). The random variables are those 

representing the uncertainties in the structural properties i.e. 

ω (X1), ξ(X2), Fy(X3) and α(X4) as detailed in Table 3. The 

control variable is the PGA that represents earthquake 

intensity level. It may be noted that the evaluation of RS at 

different values of PGA yield models for predicting the 

mean and SD of the response of the SDOF system due to 

specific levels of PGA for generating fragility curve. For 

developing RS model, the control variable is treated in a 

similar way as other random variables. As already discussed 

in section 3.3, the UD is adopted in the present study for 

DOE. For this, total thirty levels of sampling points for five 

factors are prepared following the UD table and 

transformed into real values of factors to implement the 

experiment. The NLTHA is carried out and the maximum 

responses of the SDOF system for forty scaled ground 

motions are estimated at each of these thirty sample points. 

The mean and SD of the maximum response for each of 

these cases (required as the input responses at the DOE 

points for constructing RS models) are then computed. For 

generation of LSM and MLSM based RS models, the 

quadratic polynomial with cross terms has been adopted 

which contains twenty-one unknown coefficients. The 

design matrices and the response vector for the MLSM and 

LSM based RSM remain same. Only the coefficient vector 

of the MLSM based approach changes at each point of 

interest due to the change in the weight matrix. The 

influence radius D for computing the weight matrix is 

chosen to ensure sufficient number of neighbouring 

supporting points (twenty-two for this problem) and the 

values of c and k are taken as 0.15 and 1, respectively 

(Taflanidis and Cheung 2012). The mean and SD of the 

responses at any point of interest can be evaluated with the 

help of these RS models and the total response is evaluated 

accordingly. 

To study the accuracy of the RS models in 

approximating the seismic responses, the mean and SD of 

response values are computed for different PGA values with 

the mean values of the random parameters by the usual 

LSM based and the proposed MLSM based RSM. The 

results are shown in Figs. 2-3. For comparative study, the 

mean and SD of the response are also obtained at these 

points by the brute force MCS method. For this, the 

NLTHA is performed at these checking points considering  

 

 

Table 3 The range of input variables 

Parameters ω (X1) ξ(X2) Fy(X3) α(X4) 

Upper limit 9.27 0.03 2.913 0.075 

Lower limit 3.29 0.01 1.035 0.025 

Mean 6.28 0.02 1.974 0.05 

COV 0.2 0.25 0.2 0.25 
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Fig. 2 Comparison of mean maximum displacement 

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

 

 

S
ta

n
d

a
r
d

 d
e
v

ia
ti

o
n

 o
f 

m
a

x
im

u
m

 

st
o

r
e
y

 d
r
if

tt

PGA (g)

 DMS

 RS_MLSM

 RS_LSM

 
Fig. 3 Comparison of SD maximum displacement 

 

 

all the ground motions of the bin and the mean and SD of 

the response are computed. The results are denoted as DMS 

and are shown in the same plots. The improvement possible 

to achieve by the proposed MLSM based RSM compare to 

the conventional LSM based RSM to estimate the mean and 

SD of nonlinear dynamic responses can be readily noted in 

these plots by comparing those with the direct MCS based 

results. The estimated response values by the MLSM based 

approach are closer to the brute force MCS based estimated 

response values than the LSM based values. This clearly 

implies the enhanced accuracy of the proposed MLSM 

based RSM.  

Furthermore, to study the improved response 

approximation capability of the proposed MLSM based 

RSM, various statistical metrics i.e., the Root Mean Square 

Error(RMSE), the co-efficient of determination (R2) and the 

average prediction error (𝜀m) usually used to check the 

validity of the metamodels are computed for both the LSM 

and MLSM based RSMs. The expressions of those metrics 

are as following 
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Where, ˆ
iy is the predicted response obtained by the 

metamodel and iy  is the actual response obtained by the 

direct MCS for i
th

 sample point; p is the total number of 
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samples (thirty thousand for the present numerical 

computation). The results of statistical tests for both the 

mean and SD using the LSM and MLSM based RSMs are 

shown in Table 4. As expected, it can be noted from the 

table that the lesser values of RMSE, εm and also R
2
 value 

closer to unity are attained by the MLSM based RSM which 

clearly indicate the improved accuracy of the proposed 

MLSM based approach to estimate the response statistics. 

Results are shown here for two PGA levels only and similar 

observations are noted for other cases. 

The seismic fragility is now computed by the usual 

LSM-RSM based, the proposed MLSM-RSM based MCS 

and also by the brute force MCS method. For fragility 

computation by RSM based MCS, the simulation is 

performed on the RS models of random variables for any 

desired level of PGA (X5). The random structural 

parameters (i.e., X1 to X4) are simulated corresponding to 

their respective pdf and are combined at random to generate 

a large number (thirty thousand herein) of SDOF system. 

The mean and SD values are computed from the respective 

RS model. The maximum displacement is obtained for each 

such SDOF system using Eq. (7) to obtain an ensemble of 

random responses for the considered seismic intensity level. 

The probability of exceeding a given threshold 

displacement is obtained accordingly from the ensemble 

yielding the probability of failure of the system for the 

considered level of seismic intensity. The process is 

repeated for different PGA levels to obtain the fragility 

curves by RSM. To obtain the fragility by brute force MCS, 

following the assumption that earthquake in a suit are 

equally likely to occur, the ground motions are selected 

randomly from the suit to associate it with each randomly 

simulated SDOF system. The NLTHA is performed on each 

earthquake structure combination and the maximum 

displacement is obtained and the probability of failure is 

computed with respect to the given threshold displacement. 

Figs. 4-6 shows the fragility curve obtained for different 

allowable displacements i.e., 0.203 m, 0.406 m and 0.812 

m, respectively. The improvement possible to achieve in 

seismic fragility computation by the proposed MLSM based 

RSM with respect to LSM based RSM when compared with 

the brute force MCS based fragility results can be readily 

noted from these plots. It may be noted here that the brute 

force MCS is still time consuming even for simple SDOF 

system as it needs thirty thousand NLTHA to obtain 

converged probability of failure values for each PGA levels. 

 

 

Table 4 The performance of LSM and MLSM based RSM 

 RMSE R2 εm 

0.6 g 

Mean
 LSM 2.77% 1.112 6.22% 

MLSM 2.44% 1.104 5.37% 

SD 
LSM 3.27% 1.117 11.36% 

MLSM 3.01% 1.016 10.97% 

0.3 g 

Mean
 LSM 2.76% 1.6498 15.74% 

MLSM 2.16% 1.5826 11.59% 

SD 
LSM 3.12% 1.7886 22.66% 

MLSM 2.87% 1.1542 20.30% 
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Fig. 4 Comparison of fragility curves for SDOF system 

(allowable displacements of 0.203 m) 
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Fig. 5 Comparison of fragility curves for SDOF system 

(allowable displacements of 0.406 m) 
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Fig. 6 Comparison of fragility curves for SDOF system 

(allowable displacements of 0.812 m) 

 

 

Therefore, the task of fragility computation of realistic 

building frame by brute force MCS will be computationally 

challenging as simulating even few thousands of NLTHA 

will involve enormous time.  

 

5.2 Example 2: A four storied RC framed building 
 

A four storied RC framed building considered to be 

located in the Guwahati city is further undertaken for 

numerical elucidation of the proposed SFA procedure. The  
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building plan is shown in Fig. 7(a). A transverse 2-D frame 

as shown in Fig. 7(b) is extracted from the building and 

considered for SFA. The dead load consists of self-weight 

of the structural and non-structural members. The live load 

is assumed to be 2 KN/m
2
. Based on onsite non-destructive 

test, the concrete grade is considered to be M25 i.e., the 

characteristic strength of 25 N/mm
2
 and reinforcing steel 

grade is mild steel having yield strength of 250 N/mm
2
. The 

reinforcement and geometric dimension details of the 

column and beam sections of the identified frame are shown 

in Figs. 7(c)-(d), respectively.  

The responses of the structure are obtained by NLTHA 

using commercial software SAP2000NL. The stress-strain 

characteristic of concrete is considered as per Mander‟s 

confined model (Mander et al. 1988) for the column 

members and unconfined concrete model for the beam 

members. For reinforcing steel, the simple stress-strain 

model with isotropic strain hardening behaviour is 

considered. These models are readily available as in-built  

 

 

model in the software. The beams and columns are 

characterized by the lumped plasticity model. For this 

purpose, the nonlinear hinges are assigned at the beam and 

column ends. The beams are modelled with moment hinges 

(M3) whereas the columns are modelled with axial-moment 

(P-M3) interacting hinges. Auto hinges are assigned 

according to the tables of FEMA 356 (2000). The NLTHA 

is carried out by the Hilber-Huges-Taylor (HHT) integration 

scheme. From the NLTHA, the maximum storey drift 

(MSD) values are obtained representing the structural 

demand. 

The uncertainty in the computed displacement demand 

obtained by the NLTHA occurs due to the uncertainty in the 

structural model parameters and random nature of ground 

motion. The parameters that are considered to be random 

are the concrete characteristic strength (fck), steel yield 

strength (fy), structural damping values (ξ). The statistical 

values of these parameters assumed to be statistically 

independent normal are provided in Table 5. As earlier, the  

 
Fig. 7 The details of the building frame (a) the building plan, (b) the 2D frame, (c) the details of the column sections and 

(d) the details of the beam sections considered for SFA 
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Table 5 The details of the various random parameters 

Variable Mean COV Upper Lower 

fck (Mpa) (X1) 25 0.2 30 20 

fy (Mpa) (X2) 250 0.2 300 200 

ξ (%) (X3) 5 0.4 3 7 

 

 

PGA is considered as control variable. The random nature 

of the ground motion is taken into account by using a suit of 

ground motion of the considered region. The ground motion 

bin consists of twenty-four numbers of earthquake time 

histories (natural, artificial and simulated, eight each) which 

are obtained as described in section 4. The input variables 

in the RS models are composed of two components. The 

variables X1, X2, and X3 (ref. Table 5) describe structural 

properties, while X4 indicates the intensity level of 

earthquake. The UD table consists of thirty different 

combinations of the input parameters. In turn, the bin of 

twenty-four acceleration records are used for the NLTHA at 

these thirty DOE points to obtain the mean and SD of MSD  

 

 

values required as the input responses at the design points 

for constructing RS models. The quadratic polynomial with 

cross terms has been adopted which contains fifteen 

unknown coefficients. The number of neighbouring 

supporting points taken is sixteen to obtain the D value and 

the values of c and k are taken as 0.15 and 1, respectively.  

To study the capability of the LSM and MLSM based 

RS models to approximate the nonlinear dynamic responses 

of the building frame, the mean and SD of the MSD values 

are evaluated at various combinations of the four input 

variables (other than those which are considered in the 

DOE). The pdf of the response approximated by the LSM 

and MLSM based RS models are shown in Figs. 8(a)-(d). 

The pdf of the responses considering the mean and SD of 

MSD values are also evaluated directly from NLTHA at 

these points when subjected to the same twenty-four ground 

motion time histories and are shown in the same plot for 

ease in comparison. The improved capability of the 

proposed MLSM based approach compare to the 

conventional LSM-RSM based MCS approach to capture 

 
(a) X1=22 Mpa, X2=231 Mpa, X3=3%, X4=0.32 g 

 
(b) X1=23.8 Mpa, X2=270.4 Mpa, X3=5.75%, X4=0.7 g 

 
(c) X1=25.1 Mpa, X2=265.5 Mpa, X3=3.4%, X4=0.12 g 

 
(d) X1=29.5 Mpa, X2=240 Mpa, X3=3.8%, X4=0.22 g 

Fig. 8 The comparison of probability distribution of MSD values for various combinations of input parameters (other 

than the DOE points) of RS model i.e., a) for X1=22 Mpa, X2=231 Mpa, X3=3%, X4=0.32 g, (b) for X1=23.8 Mpa, 

X2=270.4 Mpa, X3=5.75%, X4=0.7 g, (c) for X1=25.1 Mpa, X2=265.5 Mpa, X3=3.4%, X4=0.12 g and (d) for X1=29.5 

Mpa, X2=240 Mpa, X3=3.8%, X4=0.22 g 
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the probability distribution trend of the MSD when compare 

with that of obtained by the brute force MCS method can be 

readily noted from these plots. This clearly demonstrates 

the improved response prediction capability of the proposed 

MLSM based approach compare to the LSM based 

approach.  

The seismic fragility is now computed by the usual 

LSM based RSM and the proposed MLSM based RSM. As 

earlier, for fragility computation by RSM, the MCS is 

performed over the RS models of the random variables for 

any desired level of PGA (X4). The random structural 

parameters (i.e., X1, X2 and X3) are simulated 

corresponding to their respective pdf and are combined at 

random to generate a large number of sample frames. The 

mean and SD are computed from the respective RS model 

at each simulated random variables pair. Now, the 

maximum displacement is obtained for each such frame to 

obtain an ensemble of random responses. The probability of 

exceeding a given threshold displacement (for specified 

damage level) is now obtained accordingly from the 

ensemble providing the probability of failure of the system 

for the considered level of seismic intensity. The process is 

repeated for different PGA level to obtain the fragility 

curves by the LSM-RSM and MLSM-RSM based MCS 

method.  

The three structural limit states or performance levels, to 

be specific the Immediate Occupancy (IO), the Life Safety 
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Fig. 9 Comparison of fragility curves of the considered 

building frame at IO level 
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Fig. 10 The Comparison of fragility curves of the 

considered building frame at LS level 
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Fig. 11 Comparison of fragility curves of the 

considered building frame at CP level 

 

 

 (LS) and the Collapse Prevention (CP) as per FEMA 

356 (2000) are considered for seismic risk evaluation. The 

permissible MSD values of the IO, LS and CP levels 

associated with various performance levels of RC frame are 

taken as 1%, 2% and 4%, respectively as per FEMA 356. 

The fragility curves are shown in Figs. 9-11 for IO, LS and 

CP performance levels, respectively. Like the previous 

example, following the assumption that earthquake in a suit 

are equally likely to occur, the ground motions are selected 

randomly from the suit to associate with each random 

sample frame. 

The NLTHA is performed on each earthquake structure 

combination and the MSD value is obtained and the 

probability of failure is estimated with respect to the given 

threshold displacement. As already discussed, it needs 

enormous computation time to obtain fragility by the brute 

force MCS for this problem. Thus, a limited brute force 

MCS study (2000 number of simulations) is performed to 

get the trend of the brute force MCS based solution so that 

the quality of the proposed MLSM based fragility estimates 

could be judged with respect to that of by LSM based RSM. 

However, it is realized that the number of simulation 

required will be much higher than 2000 for getting 

converged fragility by the brute force MCS for the cases 

where probability of failure is very small e.g., fragility 

correspond to smaller PGA level and for CP limit state 

condition. Therefore, the trend based on 2000 simulations 

for 3 PGA levels i.e., 0.5, 0.7 and 0.9 for IO and LS limit 

state cases are only shown. The MLSM based results are 

found to be closer to the direct MCS results. Moreover, 

from the comparison of the estimate of the mean and SD of 

the MSD values, the accuracy of the proposed MLSM based 

RSM over the conventional LSM based RSM can be readily 

recognised. Thus, the capability of more accurate estimate 

of fragility by the proposed MLSM based RSM compare to 

that of obtained by the LSM based conventional RSM is 

apparent.  

 

 

6. Conclusions 
 

An adaptive algorithm to improve the accuracy of 

nonlinear dynamic response approximation for SFA of 
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structures using MLSM based RSM in the framework of 

MCS technique is presented. The repetition of intensity for 

complete generation of fragility curve is avoided by 

including this as one of the predictors to serve as a control 

variable in the seismic response prediction model. The 

improvement possible to achieve by the proposed MLSM 

based approach in nonlinear dynamic response 

approximation is quite apparent from the numerical results. 

Furthermore, the various computed statistical metrics i.e., 

the RMSE, R2 and 𝜀m values usually used to check the 

validity of the metamodels also confirm the superiority of 

the proposed MLSM based RSM approach. The MLSM 

based results come closer to the brute force MCS fragility 

results whereas the LSM based results are far away. The 

improvement in seismic fragility computation by the 

proposed MLSM based RSM with that of obtained by the 

conventional LSM based RSM when compared with the 

brute force MCS based fragility is clearly noted in the first 

example and also in the second example based on limited 

simulation study. It is also important to note that the 

conventional LSM provides non-conservative estimate of 

fragility over the MLSM. However, further study is felt 

essential to understand the accuracy of the proposed MLSM 

based approach considering more number of simulations or 

applying subset simulations algorithm particularly for the 

cases when probability of failures values are very small. 

Although the example application is focused to the 

particular building and location, the basic steps are generic 

enough to readily adopt to other structures i.e., bridges, 

water and energy supplies facilities etc. One only needs to 

change the mechanical model of the structure required to be 

evaluated. Thus, the proposed procedure can be used for 

efficient evaluation of SFA of structures.  

 

 

Acknowledgements 
 

The financial support received in TSD Scheme No. 

DST/TSG/STS/2012/45, 28.05.2013 from the DST, Govt. 

of India (for the project entitled “Seismic vulnerability 

assessment of existing building to North Eastern Region”) 

in connection with this work is gratefully acknowledged. 

 

 

References 
 

Atkinson, G.M. and Boore, D.M. (1998), “Evaluation of models 

for earthquake source spectra in eastern north America”, Bull. 

Seismol. Soc. Am., 88(4), 917-934. 

Balasubramanian S.R., Balaji Rao, K., Meher Prasad, A., 

Goswami, R. and Anoop, M.B. (2014), “A methodology for 

development of seismic fragility curves for URBM buildings”, 

Earthq. Struct., 6(6), 611-625. 

Boore, D.M. and Boatwright, J. (1984), “Average body wave 

radiation coefficients”, Bull. Seismol. Soc. Am., 74(5), 1615-

1621. 

Boore, D.M. (1996), “SMSIM-Fortran programs for simulating 

ground motions from earthquakes: Version 1.0”, U.S. 

Geological Survey. - Open-File Report, 96-80-A: 1-73. 

Boore, D.M. (2003), “Simulation of ground motion using the 

stochastic method”, Pure Appl. Geophys., 160, 635-676. 

Brune, J. (1970), “Tectonic stress and the spectra of seismic shear 

waves from earthquakes”, J. Geophys. Res., 75(26), 4997-5009. 

Buratti, N., Ferracuti, B. and Savoia, M. (2010), “Response 

Surface with random factors for seismic fragility of reinforced 

concrete frames”, Struct. Saf., 32(1), 42-51. 

Calvi, G.M., Pinho, R., Magenes, G., Bommer, J.J., Restrepo-

Vélez, L.F. and Crowley, H. (2006), “Development of seismic 

vulnerability assessment methodologies over the past 30 years”, 

J. Earthq. Technol., 43(3), 75-104. 

Chandler, A.K., Lam, N.T.K. and Tsang, H.H. (2006), “Near-

surface attenuation modelling based on rock shear-wave 

velocity profile”, Soil Dyn. Earthq. Eng., 26(11), 1004-1014. 

Dymiotis, C., Kappos, A.J. and Chryssanthopoulos, M.K. (1999), 

“Seismic reliability assessment of RC frames with uncertain 

drift and member capacity”, J. Struct. Eng., ASCE, 125(9), 

1038-1047. 

Eads, L., Miranda, E., Krawinkler, H. and Lignos, D.G. (2013), 

“An efficient method for estimating the collapse risk of 

structures in seismic regions”, Earthq. Eng. Struct. D., 42(1), 

25-41. 

Esra, M.G. and Nazli, D. (2014), “Seismic fragility analysis of 

conventional and viscoelastically damped moment resisting 

frames”, Earthq. Struct., 7(3), 295-315. 

Fang, K.T. (1980), “Experimental design by uniform distribution”, 

Acta Mathematice Applicatae Sinica, 3, 363-372. 

FEMA 350, (2000), Recommended seismic criteria for new steel 

moment frame building, Washington. 

Fragiadakis, M., Vamvatsikos, D., Karlaftis, M.G., Lagaros, N.D. 

and Papadrakakis, M. (2015), “Seismic assessment of structures 

and lifelines”, J. Sound Vib., 334, 29-56. 

Franchin, P., Lupoi, A. and Pinto, P.E. (2003), “Seismic fragility of 

reinforced concrete structures using a response surface 

approach”, J. Earthq. Eng., 7(Sp. Issue 1), 45-77. 

Gasparini, D.A. and Vanmarcke, E.H. (1976), “SIMQKE, a 

program for artificial motion generation, user‟s manual and 

documentation”, Publication R76-4, MIT Press, Cambridge, 

Massachusetts.  

Goswami, S., Ghosh, S. and Chakraborty, S. (2016), “Reliability 

Analysis of structures by iterative improved response surface 

method”, Struct. Saf., 60, 56-66. 

Gerard, J.O. and Timothy, J.S. (2016), “Fragility functions for 

eccentrically braced steel frame structures”, Earthq. Struct., 

10(2), 367-378. 

IS 1893. (2002), Criteria for Earthquake Resistant Design of 

Structures, Part 1: General Provisions and Buildings (Fifth 

Revision). 

Kang, S.C., Koh, H.M. and Choo, J.F. (2010), “An efficient 

response surface method using moving least squares 

approximation for structural reliability analysis”, Prob. Eng. 

Mech., 25(4), 365-371. 

Kaul, M.K. (1978), “Stochastic characterization of earthquakes 

through their response spectrum”, Earthq. Eng. Struct. D., 6, 

497-509. 

Kazantzi, A.K., Righiniotis, T.D. and Chryssanthopoulos, M.K. 

(2008), “Fragility and hazard analysis of a welded steel moment 

resisting frame”, J. Earthq. Eng., 12(4), 596-615. 

Kim, C., Wang, S. and Choi, K.K. (2005), “Efficient response 

surface modeling by using moving least-squares method and 

sensitivity”, AIAA J., 43(1), 2404-2411. 

Konno, K. and Ohmachi, T. (1998), “Ground-motion 

characteristics estimated from spectral ratio between horizontal 

and vertical components of microtremor”, Bull. Seismol. Soc. 

Am., 88(1), 228-241.  

Kwon, O.S. and Elnashai, A.S. (2006), “The effect of material and 

ground motion uncertainty on the seismic vulnerability curves 

of RC structure”, Eng. Struct., 28(2), 289-303. 

Lin, D.K.J. and Tu, W. (1995), “Dual Response Surface 

Optimization”, J. Quality Technol., 21(1), 34-39. 

580

http://www.techno-press.com/content/?page=article&journal=eas&volume=6&num=6&ordernum=2
http://www.techno-press.com/content/?page=article&journal=eas&volume=6&num=6&ordernum=2
http://www.techno-press.com/content/?page=article&journal=eas&volume=7&num=3&ordernum=3
http://www.techno-press.com/content/?page=article&journal=eas&volume=7&num=3&ordernum=3
http://www.techno-press.com/content/?page=article&journal=eas&volume=7&num=3&ordernum=3


 

Simulation based improved seismic fragility analysis of structures 

Lu, D., Yu, X., Jia, M. and Wang, G. (2014), “Seismic risk 

assessment for a reinforced concrete frame designed according 

to Chinese codes”, Struct. Infrastruct. Eng., 10(10), 1295-1310. 

Mandal, T.K., Ghosh, S. and Pujari, N.N. (2016), “Seismic 

fragility analysis of a typical Indian PHWR containment: 

comparison of fragility models”, Struct. Saf., 58, 11-19.  

Mander, J.B., Priestley, M.J.N. and Park, R. (1988), “Theoretical 

stress-strain model for confined concrete”, J. Struct. Eng., 

ASCE, 114(8), 1804-1826. 

Mann, N.R., Schafer, R.E. and Singpurwalla, N.D. (1974), 

Methods for statistical analysis of reliability and life data, John 

Wiley & Sons, Inc., New York., NY. 

Marano, G.C., Greco, R. and Mezzina, M. (2008), “Stochastic 

approach for analytical fragility curves”, KSCE J. Civ. Eng., 

12(5), 305-312. 

Möller, O., Ricardo, O.F., Rubinstein, M. and Quiroz, L. (2009), 

“Seismic structural reliability using different nonlinear dynamic 

response surface approximations”, Struct. Saf., 31(5), 432-442. 

Mitra, S., Priestley, K., Bhattacharyya, A.K. and Gaur, V.K. 

(2005), “Crustal structure and earthquake focal depths beneath 

northeastern India and Southern Tibet”, Geophys. J. Int., 

160(1), 227-248. 

Minas, D.S. and Chatzi, E.N. (2015), “Metamodeling of nonlinear 

structural systems with parametric uncertainty subject to 

stochastic dynamic excitation”, Earthq. Struct., 8(4), 915-934. 

Nicholas, K., Sohaib, A., Kypros, P., Kyriacos, N. and Christis, C. 

(2014), “A probabilistic analytical seismic vulnerability 

assessment framework for substandard structures in developing 

countries”, Earthq. Struct., 6(6), 665-687. 

Park, J. and Towashiraporn, P. (2014), “Rapid seismic damage 

assessment of railway bridges using the response-surface 

statistical model”, Struct. Saf., 47, 1-12. 

Raghukanth, S.T.G. and Somala, S.N. (2009), “Modeling of 

strong-motion data in northeastern india: q, stress drop, and site 

amplification”, Bull. Seismol. Soc. Am., 99(2A), 705-725.  

Saha, S.K., Matsagar, V. and Chakraborty, S. (2016), “Uncertainty 

quantification and seismic fragility of base-isolated liquid 

storage tanks using response surface models”, Prob. Eng. 

Mech., 43, 20-35. 

Saragoni, G.R. and Hart, G.C. (1974), “Simulation of artificial 

earthquakes”, Earthq. Eng. Struct. D., 2(3), 249-268. 

Simpson, T.W., Peplinski, J.D., Koch, P.N. and Allen, J.K. (2001), 

“Metamodels for computer-based engineering design: survey 

and recommendations”, Eng. Computers, 17(2), 129-150. 

Singh, S.K., Ordaz, M., Dattatrayam, R.S. and Gupta, H.K. 

(1999), “A spectral analysis of the 21 May 1997, Jabalpur, 

India, earthquake (Mw 5:8) and estimation of ground motion 

from future earthquakes in the Indian shield region”, Bull. 

Seismol. Soc. Am., 89(6), 1620-1630. 

Taflanidis, A.A. and Cheung, S.H. (2012), “Stochastic sampling 

using moving least squares response surface approximations”, 

Prob. Eng. Mech., 28, 216-224. 

Towashiraporn, P. (2004), “Building seismic fragility using 

response surface metamodel”, Ph.D. Thesis, Georgia Inst. of 

Tech. 

Unnikrishnan, U., Prasad, A.M. and Rao, B.N. (2013), 

“Development of fragility curves using high-dimensional model 

representation”, Earthq. Eng. Struct. D., 42(3), 419-430. 

Zeinab, B. and Masoud, S. (2016), “Ground motion selection and 

scaling for seismic design of RC frames against collapse”, 

Earthq. Struct., 11(3), 445-459. 

 

 

KT 

 

581

http://www.techno-press.com/content/?page=article&journal=eas&volume=8&num=4&ordernum=7
http://www.techno-press.com/content/?page=article&journal=eas&volume=8&num=4&ordernum=7
http://www.techno-press.com/content/?page=article&journal=eas&volume=8&num=4&ordernum=7
http://www.techno-press.com/content/?page=article&journal=eas&volume=6&num=6&ordernum=5
http://www.techno-press.com/content/?page=article&journal=eas&volume=6&num=6&ordernum=5
http://www.techno-press.com/content/?page=article&journal=eas&volume=6&num=6&ordernum=5
http://link.springer.com/journal/366
http://www.techno-press.com/content/?page=article&journal=eas&volume=11&num=3&ordernum=5
http://www.techno-press.com/content/?page=article&journal=eas&volume=11&num=3&ordernum=5



