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Abstract. A simplified approach of assessing torsionally balanced (TB) and torsionally unbalanced (TU)
low-medium rise buildings of up to 30 m in height is presented in this paper for regions of low-to-moderate
seismicity. The Generalised Force Method of Analysis for TB buildings which is illustrated in the early part
of the paper involves calculation of the deflection profile of the building in a 2D analysis in order that a
capacity diagram can be constructed to intercept with the acceleration-displacement response spectrum
diagram representing seismic actions. This approach of calculation on the planar model of a building which
involves applying lateral forces to the building (waiving away the need of a dynamic analysis and yet
obtaining similar results) has been adapted for determining the deflection behaviour of a TU building in the
later part of the paper. Another key original contribution to knowledge is taking into account the strong
dependence of the torsional response behaviour of the building on the periodic properties of the applied
excitations in relation to the natural periods of vibration of the building. Many of the trends presented are not
reflected in provisions of major codes of practices for the seismic design of buildings. The deflection
behaviour of the building in response to displacement controlled (DC) excitations is in stark contrast to
behaviour in acceleration controlled (AC), or velocity controlled (VC), conditions, and is much easier to
generalise. Although DC conditions are rare with buildings not exceeding 30 m in height displacement
estimates based on such conditions can be taken as upper bound estimates in order that a conservative
prediction of the displacement profile at the edge of a TU building can be obtained conveniently by the use
of a constant amplification factor to scale results from planar analysis.
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Contemporary seismic codes of practice including Eurocode 8 (EN 1998-1 2004) considers
dynamic analysis to be the (default) reference method of assessment of structural response
behaviour given that most commercial structural analyses packages which are widely available
worldwide have a structural dynamics analysis capability. The number of structural engineers who
are involved in designing structures for earthquakes is increasing as more countries are becoming
urbanised and are introducing seismic design codes of practice to manage the risk. However, many
engineers are not knowledgeable with the fundamentals of structural dynamics and do not possess
adequate analytical skills to perform such dynamic analyses.

A traditional method of analysis namely the lateral force method (terminology used by
Eurocode 8 (EN 1998-1 2004)) was originally developed to offer designers an option to simplify
the analysis of the building by the use of prescribed equivalent static forces to emulate seismic
actions. Building structures that may be analysed by such a prescriptive procedure would need to
fulfil very stringent requirements on vertical and horizontal regularity. Consequently, this lateral
force method as stipulated by codes of practices cannot be applied to the great majority of building
structures in practice.

Alternative viable simple techniques of assessment in support of numerically intensive
computations are in demand given that a simplified behavioural model is able to: (i) provide
independent, and reliable, predictions and (ii) foster a better understanding of the fundamentals
and portray behavioural trends to guide preliminary design.

In regions of low-to-moderate seismicity the design and analysis of building structures within
the framework of the current codes of practices are typically based on linear elastic behaviour
when the behaviour factor, or structural modification factor, is used to take into account the
capacity reserve in the structure when excited beyond the yield limit. The simplified methods of
analysis to be introduced in this paper are aimed at approximating results from analyses as
required by the code assuming elastic response behaviour of both torsionally balanced (TB) and
torsionally unbalanced (TU) building structures.

The simplified methods to be introduced herein involves representing earthquake ground
motions in the acceleration, velocity and displacement formats, and the acceleration-displacement
response spectrum (ADRS) diagram (Section 2). The code lateral force method has been extended
to incorporate the use of the ADRS diagram to achieve improved accuracies of the estimated
seismic actions on a TB building structure. The introduced method of analysis is given the name:
Generalised Force Method of analysis. A nine-storey building supported by a frame-wall system is
used as an example for illustration (Section 3). This planar analysis approach has been adapted for
determining the deflection behaviour of a TU building at the critical edge (Section 4) and finally,
the introduced analysis method is verified by the use of a worked example (Section 5).

2. Response spectrum presented in different formats

Response spectrum models which are usually presented by codes of practices for the structural
design of buildings are normally presented in the acceleration format which shows the correlation
of the response spectral acceleration demand (of single-degree-of-freedom systems possessing 5%
critical damping) with their natural period of vibration. The commonly adopted response spectrum
format of the flat-hyperbolic form has since been further developed by many major codes of
practices (AS1170.4 2007, NZS1170.5 2004, EN 1998-1 2004) into three zones as presented
schematically in Fig. 1(a). This three zone response spectrum model can be parameterised in terms
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of the maxima of the response spectral acceleration (RSA.x), response spectral velocity (RSVimax)
and response spectral displacement (RSDy.x) as shown schematically in Fig. 1(b). Values of these
parameters can be obtained from several well publicised attenuation models for shallow
earthquakes that have been developed for worldwide applications (Abrahamson et al. 2014, Boore
and Atkinson 2014, Campbell and Bozorgnia 2014, Chiou and Youngs 2014, PEER 2015). The
transformation of the response spectrum between the acceleration, velocity and displacement
formats are summarised in Fig. 2 whilst the construction of the acceleration-displacement response
spectrum format (which is also known as the ADRS diagram) is illustrated Fig. 3 (refer Wilson
and Lam (2006) and Lam and Wilson (2004) for more detailed descriptions). The ADRS diagram
is employed in the modified lateral force method for obtaining an improved estimate of the
acceleration and displacement demand on the structure in the following section.
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(b) Response spectral maxima parameterisation
Fig. 1 The three zones of a design response spectrum
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3. Assessment of Torsionally Balanced Buildings by The Generalised Force Method

The example problem used for illustrating the extended lateral force method is based on a nine-
storey building which is supported laterally by a frame-wall system (Fig 4(a)) and a design
response spectrum (Fig. 4(b)). The fundamental natural period of vibration of the building in
seconds was estimated from the empirical expression of Eq. (1) as per clause 4.6 of Eurocode 8
(EN 1998-1 2004)

T, = 0.05H/+ =0.05(28)%/4 = 0.6 s where H is height of building in metres (1a)

Base shear Fgz =S, Am, (1b)

where S, = 1.9 m/s?,1 = 0.85 as per clause 4.5 of Eurocode 8.
Assuming that the total seismic mass of the building m = 410 t, then

Fg =19 m/s? x 0.85 x 410t = 660 kN

The distribution of seismic forces up the height of the building as shown in Fig. 5 was obtained
by applying clause 4.10 of Eurocode 8 which is typical of most seismic codes around the world.
The deflection value was obtained by the structural analysis of the wall frame system (details of
the computations are not shown as the focus of this article is on how to process the calculated
deflection values).
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(a) 9 storey frame-wall system (b) loading model
Fig. 4 Example for illustration
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Fig. 5 Results of static analysis showing lateral deflection
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The floor displacement values are then processed as shown in Table 1 and then substituted into
Eq. (2) for determination of the effective displacement (&) and into Eq. (3) for determination of
the effective mass (m.5) assuming a uniform distribution of mass up the height of the building. An
introduction to these parameters can be found in Wilson and Lam (2006). Refer Fig. 6 for a
summary of the seismic displacement and base shear demand on the building
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Table 1 Processing of the deflection value of example building
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Floor no. F; 0;(mm) 61-2 (mm?)
1 158 52 2726
2 135 44 2012
3 113 37 1401
4 91 30 900
5 69 23 516
6 48 16 250
7 29 10 93
8 14 5 22
9 4 1 2

SUM 666 217 7780
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Fig. 6 Calculated displacement
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The effective stiffness (k.;) and effective natural period (7,5) of the building are hence obtained
using standard expressions as follows:

Effective Stiffness kg = %:6 = 18350 KN/m

Effective Natural Period T, = 2m /mef L= 2n /ﬂ =0.77s
Keff 18350

The diagram showing the stiffness behaviour of the building in the RSV vs RSA format (also
known as the “capacity diagram™) is then constructed as shown in Fig. 7. Meanwhile, the ADRS
diagram which was constructed using the expressions shown in Fig. 3 is then overlaid on the
capacity diagram to identify the effective displacement (J,5) value of 22 mm (Fig. 8) a roof
deflection value of 32 mm and a base shear value of 400 kN (Fig. 9). These refined estimates are
considerably less than the initial 0,5 estimates of 36 mm, roof displacement of 52 mm and a base
shear of 660 kN from the code lateral force method.. The extended lateral force method as
described in the above, which is given the name The Generalised Force Method, involves
calculation of the imposed seismic force and displacement demand on the building in one analysis.
The Generalised Force Method is distinguished from the existing Code Lateral Force Method in
that the natural period of vibration of the building need not be pre-determined as is calculated from
the analysis procedure based on the given mass and stiffness properties of the building. Both
analysis methods are called “Force Method” as they involve applying an array of lateral forces
from the side of the building forming part of the calculation procedure.
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Fig. 7 Effective stiffness and natural period
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Fig. 9 Comparison of results from the different methods

4. Displacement amplification ratios of torsionally unbalanced buildings

The most comprehensive and detailed literature review by Anagnostopoulos ef al. (2015) ever
undertaken on this topic revealed that some 600 - 700 articles in the past 30 years have been
written on the response behaviour of TU structures but many of the findings are contradictory
making it difficult to agree definitive design recommendations. These differences between studies
stem from different types of models, different definitions of parameters and diversity in the choice
of excitations used for input into the torsional analysis studies. Most of the investigations focused
on ensuring that the horizontal displacement demand of the individual walls and columns, in the
building could be represented by static methods using e, as the critical design parameter to
represent torsional effects. In order to alleviate much of the modelling uncertainties it was
advocated by Lee and Hwang (2015) to abolish the long established practice of modelling e; to
account for the complex behaviour of a TU building given that the real time dependent behaviour
of the offset of the inertia force was found to be totally inconsistent with current assumptions made
in design. An alternative demand model for TU buildings featuring the interaction between shear
and torsional demands was proposed (Lee and Hwang 2015).

Seismic design code of practices typically stipulate two approaches for modelling torsional
actions in a TU building which has not been factored into results presented in the planar (2D)
analysis of the previous section. The first approach is the static method based on the use of
equivalent lateral forces which are applied with a design eccentricity (e,) to calculate the seismic
horizontal displacements of the building and the lateral resisting elements. The second approach is
based on the use of dynamic analysis of the structure wherein the centre of inertial force on the
building floor is offset from the known position of the centre of mass (CM) by what is known as
the accidental eccentricity (e,) to take into account uncertainties in the actual location of the CM,
stiffness properties of the lateral resisting elements and the effects of rotational ground motions.
Both approaches put emphasis on the positioning of the applied seismic actions as defined by the
value of e, (Lee and Hwang 2015).

Contemporary code procedures tend to be aligned with the second approach which requires
dynamic analysis of the building to be undertaken irrespective of its height. This paper is aimed at
developing (an alternative) analysis procedure which waives away the need of a dynamic analysis
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for low-medium rise TB and TU buildings.

The simplified assessment method to be presented later in this paper was guided by an
alternative modelling strategy which essentially is an extension of the analysis procedure presented
for TB buildings in the earlier part of the paper (Section 3). The objective was to capture the trend
of increases in the displacement demand of critical elements in the building with the variation in
values of the design parameters. To achieve this modelling objective the following steps were
undertaken as presented in the later part of this section:

* Justify the adoption of a very simplified form of modelling to be employed for parametric
studies for torsional response behaviour (Section 4.1),

* Analyse the frequency behaviour and ratio of translation and rotation associated with the two
coupled vibration modes (Section 4.2),

» Derive expressions for the displacement time-histories at the stiff and flexible edges of the
floor model in order that the torsional response behaviour can be simulated readily on MATLAB
or EXCEL (Section 4.3),

* Identify the maximum displacement demand trends of the two edges for acceleration, velocity
and displacement controlled conditions and have the results presented in the form of the
displacement ratio (that has been normalised with respect to the displacement of the corresponding
TB building (Sections 4.4).

4.1 Single-storey building model and justifications

The nature of the analyses and the choice of the input parameters were based on the following
considerations:

(1) The torsional response behaviour of regular TU building models as obtained from 3D
analyses were found to be reasonably represented by similar analyses undertaken on suitably
chosen simple single-storey models as commented in the literature review by Anagnostopoulos et
al. (2015). Similar comparative analyses have also been undertaken on a wider form of multi-
storey buildings that were supported jointly by structural walls and moment resisting frames (Lam
et al.1997). It was concluded that the envelope of results obtained from the multi-storey and single
story models were generally consistent provided that higher modes effects in the building could be
neglected. In view of these observations and the fact that this paper is concerned with buildings of
up to 30 m in height (where higher mode effects are less critical) analytical results to be presented
in the later part of the paper were derived from simple models comprising only a single-storey
floor plate.

(i1)) Given that the objective of the analytical investigation was to derive a simplified
assessment method to provide estimates of the displacement demand which matches with results
from elastic modal analyses (as stipulated by most current codes of practices) building models to
be employed for investigations in this study were of linear elastic behaviour. The distinction of a
flexible-base model from a fixed-base model was accordingly not as critical. Excitations were
represented in the form of a design response spectrum consistent with code procedure as opposed
to time-history analyses involving the use of accelerograms.

(iii)) The floor plan of building models employed in the investigation had a uni-axial
asymmetrical arrangement of lateral resisting elements. Horizontal excitations were applied in a
direction which was normal to the axis of symmetry of the building on plan. Building models with
uni-axial asymmetry has been shown to be able to provide conservative estimates for the torsional
response behaviour of buildings with bi-axial asymmetry (Tsicnias 1981, Stathopoulos and
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Anagnostopoulos 2000, 2003).

(iv) Results derived from analyses can be generalised into floor plans of different shapes if
dimensions of the floor have been normalised with respect to the mass radius of gyration (r) as
opposed to the gross dimensions of the floor.

(v) When deriving the equations of dynamic equilibrium of the torsionally coupled system the
origin at which the floor rotates about is considered the CM (as opposed to the centre of rigidity
CR) in order that the mass matrix is an identity matrix.

Research undertaken in recent years into analysis methodologies for seismically induced
torsional response behaviour of buildings have been based upon non-linear quasi-static (pushover)
procedures (e.g., Poursha et al. 2014, Cimellaro et al. 2014, Bosco et al. 2013, Magliulo et al.
2012, D’Ambrisi et al. 2009). In low seismicity regions, designers typically employ static, or
dynamic, analysis procedures assuming linear elastic behaviour of the structural system. Designers
working in those environments would be interested in behavioural trends that are consistent with
the assumption of linear elasticity. The Generalised Force Method of Analysis as presented in this
paper are accordingly based on this assumption in order to be in alignment with current design
practices in lower seismicity environments.

The single-storey building model (illustrated in Fig. 10) is rectangular in plan with width 28
and with the centre of rigidity (CR) offset from the centre of the building by the eccentricity (e).
Although the modelling was based on a regular building the trends observed are generally
applicable to most buildings. Other relevant dynamic and stiffness properties of the building model
are as defined by the following parameters:

M = mass; ] = torsional moment of inertia; ] = Mr?;r = mass radius of gyration

K
K, = horizontal stiffness in the xdirection; K; = torsional stiffness; K

X
B = distance from the edge of the building to the centre of the floor plate
in the direction perpendicular to the direction of excitation.

y e I\\
\“ x X + 6‘!9 \‘
\ I _L ........ \
| CM CR A
C]‘\\l Centre of Mass e
CR', Centre of Resistance I _,’:""
X =
|r — ==
\ o e
[ LA R “—’! B |
[ |
X

l Elastic resisting force
' Inertia Force

Fig. 10 Schematic diagram showing the generic single-storey floor model
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Parameter “b” is used to characterise the torsional stiffness properties of the model. The higher
the b value the higher the torsional stiffness of the lateral supporting elements in relation to their
collective translational stiffness (imagine that the simplified model of the building is supported
only by a pair of frames then 25 is the frame spacing, and b is the perpendicular offset of the frame
from the CR position). Parameter “B” which is not to be confused with “b” has been defined in the
above and in Fig. 10. The value of B (as defined above) is 1.25 (for square plate) and can be up to
1.75 (for rectangular floor plate with a very high aspect ratio) times the mass radius of gyration ().

4.2 Frequency and displacement-rotation behaviour of the coupled modes of vibration

A building model featuring uniaxial asymmetry will have every translational mode of vibration
resolved into two coupled torsional modes of vibration. Thus, the example (asymmetrical) single-
storey building model features two coupled modes of vibration, and not just a single mode, even
though the model is a rectangular floor plate. The two coupled modes are increased to three if the
model features bi-axial asymmetry (i.e., asymmetry in both directions). The dynamic response
behaviour of the structure in natural (free) vibration is not a simple harmonic function (as in the
case of a symmetrical single-storey model) but the sum of two harmonics each of which is
associated with a coupled torsional mode of vibration. The first mode has a natural angular
frequency (£2=;) which is lower than that of the corresponding symmetrical building model ()
whereas the second torsional mode of vibration has angular natural frequency (£2,-) which is
higher than @,. Values of the two frequency ratios A=, as defined by Eq. (4) are summarised in
Fig. 11

Q12 = Aj=12 X Wy (4a)

where

1+ (b2 + e? 1— (b2 + e
PEELIC, ij[ G r)]mz ab)

It is shown that the value of A, is always smaller than unity whereas the value of 4, is always
greater than unity. Frequency values of the two coupled modes can be very close (i.e., A values of
both modes are close to unity) when the value of b, (i.e., b/r) is also close to unity, and more so for
small eccentricity values. The values of both A, and A, were obtained as solution to an eigenvalue
problem forming part of the modal dynamic analysis of the building model the details of which
have been illustrated in Appendix A. It is shown that the value of the eccentricity parameter e,
(i.e., e/r) can have some effects on the dynamic response behaviour on the building system but its
extent of influence depends highly on the value of the other parameter b, (b/r) and the mode of
vibration. Another important outcome of the dynamic modal analysis is the shape of deflection of
the building in natural vibration. With the analysis for torsional behaviour (of a single-storey
building model) the “deflection shape” as obtained from modal analysis is essentially the amount
of rotation of the floor plate in the horizontal plane associated with each of the two vibration
modes. It was found that the amount of rotation of the building floor is dependent on the value of
A* and the offset of the centre of rigidity (CR) of the building from the centre of mass (CM) as
illustrated by the schematic diagrams of Figs. 12(a) and 12(b).

Relationships defining the normalised displacement value at the CM and CR positions for the
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two coupled vibrational modes as illustrated in Figs. 12(a) and 12(b) are as follows
1

(5= “

ér

where, x, = x/r and e, =e/r
The vector equality of Eq. (5a) can be re-written into the algebraic expressions as follows

73-1
XCTleoerM:r; xCR=x6M+9><e=r+(/’e )Xezlfr (5b)

r

It can be shown that when the displacement of the building has been normalised with respect to
the displacement at its CM (i.e., xcp=1) then xCR=12j (as presented diagrammatically in Figs. 12(a)
and 12(b)). The high displacement demand at the “stiff” edge of the building (i.e., edge closer to
the CR) as shown in Fig. 12(b) may appear counter intuitive to those who base their reasoning on
static behaviour. The opposite sense of rotation in the vibrational modes as shown in the figures is
reflective of the reversible, and cyclic, nature of dynamic behaviour. In summary, values of
Acontrol frequency behaviour in the coupled vibration modes (Fig. 11) whereas values of
A*control the amount of rotation in each mode of vibration (Fig. 12).

For those whose mindset are framed by results from static analyses, the offset of the CR from
the CM (i.e., the eccentricity) is the most dominant factor controlling torsional actions. However,
this notion is contradicted by the following observations from results of dynamic modal analysis:

(1) The value of 4 (and 4, in particular) is only weakly dependent on the value of e/r as shown
by Fig. 11;

(i1) In cases of b/r >1 the value of A, for the lower frequency mode of vibration becomes very
insensitive to change in the e/r and b/r values;

1 0.4

Natural Angular Velocity Ratios 0.3

1.60 T I T T T / 0.2
1.40 ; - » : _- et T

1.20

N
I_%

Namda values

1.00

0.80
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3)
—

0.40

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
b'r

Fig. 11 Frequency ratios of the two coupled vibration modes
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Fig. 12 Normalised displacement of the two coupled vibration modes

(iii) For a given value of A the amount of rotation is actually smaller, and not larger, when the
value of the eccentricity is increased (as evident in Fig. 12(a)).

The two vibration modes feature opposite sense of horizontal rotation which is a phenomenon
that cannot be replicated by quasi static actions (Figs. 12(a) and 12(b)).

4.3 Expressions for displacement time-histories at the two edges

The displacement time-history at any selected position on the floor plate is the sum of
contributions by the two coupled modes of vibration. For each contributing mode the displacement
time-history is the product of three factors:

(i) Normalised displacement value at the position of interest;

(i1) Participation factor, PF (given by Eq. 7(d));

(111) Displacement time-history Ug £(t) of a single-degree-of-freedom system which has natural
angular frequency Q equal to that of the respective coupled mode of vibration, where ¢ is the
viscous damping ratio.

In summary, the normalised displacement value is equal to unity at the CM position; A’at the
CR position; and x,p, as defined by Eqs. (6a) and (6b) at the two edges (refer Figs. 12(a) and
12(b))

x.g=1+3-1) (_?B) where 12 —1 < 0 for the 1% mode (6a)

x,g=1+Q5-1) (%B) where 13 —1 > 0 for the 2" mode (6b)

With both expressions a positive value of X_gand *,p will be calculated.
Expressions for determining the time-history of the displacement at the CM, CR and edges +B
and —B are listed in Egs. (7a) and (7b)

At CM xem (t) = X524 1 X PFj X U, () (7a)

At CR xcr(t) = X34 A7 X PF; X Ug, (£ (7b)

Expressions for determining the time-history of the displacement at the at the two edges +B and
—B are accordingly listed in Egs. (7c) and (7d)
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2

B
x45(t) = Z <1 +(22-1) (%)) X PF; X Uq, (t)

=1

2 (7¢)
®) Z 1+/1]2_1(+B) x PF; x Ug,. .(t)
or xiB = T Dy j Q.'
= er 23
where
2%2-11 o1
PF {1 er}[o 1]{0} 1
j = )~ P (7d)
(e el (5
Egs. (7a)-(7c) can be re-written into Egs. 8(a)-8(d)
2
1
Xey(t) = ——x Uq, (1)
M JZl 1+67 i€ (8a)
: 1
xcg(t) = Y 22— xUq. (1) (8b)
CR ; 71467 i%
: 1
xiB(t) = Zl (1 + Hj(iBr)) X TQJZ X Uﬂj.f(t) (8c)
J:
where
2
o - 1 59
J er

A computer program operated on common platforms like EXCEL, or MATLAB, is well
capable of simulating the dynamic torsional response behaviour of an asymmetrical building
model by the use of Egs. (7a)-(7d) or Egs. (8a)-(8d).

4.4 Trends for edge displacements

A response spectrum represents the maximum response of a single-degree-of-freedom system
to an earthquake ground motions from time-history analyses. Results from analyses of the TU
systems are presented in terms of the displacement ratio (A/A,). A is the maximum displacement of
the TU systems at the edges and A, is the maximum displacement of the equivalent TB systems
(TB systems with angular natural frequency equal to the uncoupled angular natural frequency of
the TU systems). A, can be represented by the response spectral displacement RSD(7T, &) where T
is the uncoupled natural period of the TU systems.

The displacement ratio (A/A,) is expressed as functions of dimensionless parameters e,
(representing offset of the CM from the CR) and b, (representing the rigidity of the system in
resisting rotation) for acceleration, velocity, and displacement controlled conditions. The
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Fig. 13 Edge Displacement Ratios according to results from static analyses (B8,=1.8)

behaviour of the displacement ratios is highly dependent on such conditions and hence results are
presented under separate sub-headings for comparison with results based on simply applying a
static force at the CM. The displacement ratio based on applying a static force at the CM is given

by Eq. (9)

8 1+ 9
Ao - bz r ( )
The displacement ratio based on Eq. (9) is presented in Fig. 13 assuming B,=B/# of 1.8 to represent
a rectangular plan with a very high aspect ratio. These behavioural trends with the edge
displacement ratios are shown in Figs. 13, 15, 17 and 19. It is noted that these figures are meant to
provide estimates of the maximum displacement at the edges of a TU system that has B, value
close to 1.8. In situations where the value of B, of the building is different to 1.8 it is recommended

to use Eq. (9) which is generally applicable (whilst Fig. 13 only applies to cases where B,=1.8).

4.4.1 Edge displacement trends in acceleration controlled conditions

The maximum estimated displacement value of a single-degree-of-freedom system (Ug; Amax))
is represented by the response spectral displacement RSD(T}, &) which is function of natural period
of vibration (7}) and damping ratio (£). In the acceleration controlled region of the response
spectrum (Fig. 14), the value of response spectral displacement can be taken to be equal to the
value defined by Eq. (10)

Ti\?
Ug, (max) = RSD(T}, §) = RSAmax X (ﬁ) (10)

where RSA,... is the highest response spectral acceleration demand as defined by the flat part of the
design response spectrum.

Substituting Eq. (10) into Egs. (8a)-(8c) and applying square-root-of-the-sum-of-the-square
(SRSS) combination rule provides an estimate of the maximum displacement demand at
designated positions. Although more rigorous combination rules could be adopted it has been
shown that reasonably accurate estimates of the maximum displacement demand can be obtained
by employing the simpler SRSS combination rule with this form of analysis (Lumantarna et al.
2013). Maximum displacement estimates at CM, CR and at the two edges +B and —B can be
determined using the following relationships for comparison with based on simply applying a
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static force at CM (Fig. 13)

2 2
A xcpy(max) 1 1
R il — _x= 11
A xcg(max) S 17
— =R ] x— 11b
AtCR A, " RSD(T.9) JZ [1 e ajz] (11b)

At the two edges which are offset by the amount +B and —B from the CM

2 2
A xyp(max) 1+6;(£B,) 1
5 RPTEH " | Tirer F (1c)

*4p(max)
RSD(T,§)
A/A, as obtained using Eq. (11c) for the two edges assuming that B, (=B/r) is equal to 1.8. One of
the edges is on the far side of the CR (the “flexible side”) and the other edge is on the near side of
CR (the “stiff side”). It is shown in Figs. 15(a) and 15(b) that the displacement at the stiff and
flexible edges of the TU building is highly dependent on the value of b/r representing the torsional
rigidity of the building which is shown to be much more influential to torsional coupling
behaviour than the eccentricity properties.

TU models with values of b/ lower than unity are shown to have the displacement ratio A/A,
reaching a very high value. Graphs associated with 5/<1.0 are accordingly shown in dotted lines
to indicate that such conditions should be prohibited in the design of a building irrespective of
whether lateral force method or dynamic analysis method has been employed for analysis in view
of high displacement demand, and counter intuitive, behaviour in such conditions as shown in Fig.
15(a). Codes of practices (e.g., Eurocode 8 (EN 1998-1 2004) encourage the use of orthogonal
elements for providing adequate torsional rigidity to the building and classify buildings in which
b/r<1.0 as irregular. Graphs in solid lines which are associated with higher b/r values (b/#>1.0)
show a gradual, monotonic, increase in displacement demand with increasing eccentricity.
However, the trends are still very different to statical behaviour as shown in Fig. 13.

Figs. 15(a) and 15(b) present two sets of estimates of the edge displacement ratio

Fig. 14 Acceleration controlled conditions
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Fig. 15 Displacement ratio of TU buildings in acceleration controlled conditions (B,=1.8)

Figs. 15(a) and 15(b) may be used for finding the value of the displacement ratio A/A, where
value of B, is close to 1.8. In situations where the value of B, is very different to 1.8 it is
recommended to use Eq. (8d) to calculate the value of &, and then Eq. (11c) to calculate the value
of A/A,,.

4.4.2 Trends of edge displacement in velocity controlled conditions
In the velocity controlled region of the response spectrum (Fig. 16), the value of response
spectral displacement may be estimated using Eq. (12)
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T:
Ug, ((max) = RSD(T},§) = RSVnqy X ﬁ (12)

x+p(max)
RSD(T,$)
edges are presented in Figs. 17(a) and 17(b). Graphs in solid lines which are associated with higher
b/r values (i.e., b/r>1.0) show a very gradual increase in the ratio A/A, with increasing eccentricity.
However, with 5/7<1.0 counter intuitive behaviour of displacement at the stiff edge of the building
can be seen as for acceleration controlled behaviour

Estimates of the edge displacement ratio as obtained using Eq. (13c) for the two

2 2
A xcy(max) 1 1
AtCM A, RSD(T,&) ;[1+92 ,1,.] (132)
A xCR(max)
AtCR A, RSD(T,&) Z [1 + 067 ,-] (130)

At the two edges which are offset by the amount +B and —B from the CM

(13¢)

A, RSD(T,&)

A xpp(max) Z L+6;(£6,) 1 ?
C1+67 /1)

In view of the trends displayed it is strongly recommended that the torsional rigidity of the
building should be greater than the limit corresponding to the value of b/r equal to unity to avoid
the erratic behaviour leading to excessive displacement demand of the building that can result as in
the case of acceleration controlled behaviour.

Figs. 17(a) and 17(b) may be used for finding the value of the displacement ratio A/A, where
value of B, is close to 1.8. In situations where the value of B, is very different to 1.8 it is
recommended to use Eq. (8d) to calculate the value of &, and then Eq. (13c) to calculate the value
of A/A,.

Fig. 16 Velocity controlled conditions
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Fig. 17 Displacement ratio of TU buildings in velocity controlled conditions (B,=1.8)

4.4.3 Trends of edge displacement in displacement controlled conditions

Finally, in displacement controlled conditions typical of high rise buildings (Fig. 18) the value
of response spectral displacement may simply be taken as constant, being the highest displacement
demand RSD,,, as represented by the flat part of the displacement spectrum of Fig. 2(c). The
relationship is defined by Eq. (14)

Ug;,(max) = RSDyqx (14)

Buildings up to the height limit of 30 m are expected not to have a natural period of vibration
as high as that to be placed in the displacement controlled zone of the response spectrum.
However, displacement controlled conditions may be applied for the near collapse assessment of
structures as demonstrated in Lumantarna et al. (2010, 2013) and Kafle et al. (2011), and buildings
with a soft-storey in particular (Kafle et al. 2015). This is because of the increase in the effective
period of vibration caused by inelastic softening of the building in such conditions. Egs. (13a)-
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(13c) are accordingly revised into Eqs. (15a)-(15c¢) for displacement controlled conditions.
Maximum displacement estimates at CM, CR and at the two edges +B and —B are accordingly
given by the following expressions

A xey(max)

Z o Caemi e 1
AtCM 3 = RSDT D (15a)
A xcp(max)
o ZeRV 15b
AtCR A, ~ RSD(T, %) (15b)
At the two edges which are offset by the amount +B and —B from the CM
A _ Xyp(max) (max) 1+6; (+Br
— 1
A, RSD(T,&) [ 1+0? (150)

Estimates for the displacement ratio RE)( (Ta;) or A/A,as obtained using Eq. (15¢) for the two

edges are shown in Fig. 19(a) and 19(b). It is shown that the displacement demands of the building
at the edges are acceptable irrespective of the torsional rigidity properties (i.e., b/r values).
Eccentricity is not linearly correlated with the displacement demand, and the displacement ratio
A/A, is shown to asymptote to an upper limit of 1.6 which is a trend not seen from results of
analysis for AC, or VC, conditions. Although it is rare of buildings below 30 m in height to
experience DC conditions, results obtained from the use of Eq. (15¢) along with the conservative
assumption of RSD=RSD,,,, can be taken as upper bound estimates for the edge displacement of
the building irrespective of the conditions of excitations (refer Fig. 2(c)).

Fig. 19(a) and 19(b) may be used for finding the value of the displacement ratio A/A, where
value of B, is close to 1.8. In situations where the value of B, is very different to 1.8 it is
recommended to use Eq. (8d) to calculate the value of @, and then Eq. (15¢) to calculate the value
of A/A,.
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Fig. 18 Displacement controlled conditions
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Fig. 19 Displacement ratio of TU buildings in displacement controlled condition (B,=1.8)

4.5 Bi-directional excitations

Results presented in the foregoing were based on the response of the building to uni-lateral
excitations. It is noted that codes of practices require analyses to be undertaken along the two
orthogonal axes and their resultant displacement demand values be combined using the standard
(SRSS) combination rule provided that the natural period of vibration in the orthogonal directions
are well separated. Alternatively, the element displacement demand resulted from full intensity
(100%) excitations applied in one direction is to be combined (by arithmetic summation) to that
resulted from 30% excitations applied in the orthogonal direction. Thus, the combined maximum
displacement demand of elements in the building in DC conditions would be within 2.1 (i.e.,
1.6+0.3x1.6) times the maximum displacement demand calculated from one of the two orthogonal
planar models of the building, whichever is the larger.
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5. Verification of results from Generalised Force Method by comparison with results
from dynamic analyses

5.1 Introduction to the case study example building used for the verification study

Three-dimensional dynamic analyses have been performed on a number of multi-storey
building models by the authors to verify predictions based on the recommended methodologies
presented in Sections 3 and 4. Results of dynamic analyses of an example eight-storey tall
reinforced concrete building using program ETABS (Computer & Structures Inc. 2013) are
presented in the following. The building was laterally supported by moment resisting frames and
reinforced concrete shear walls. Some of the columns in the moment resisting frames were
discontinuous at the 1 to 4™ level, resulting in vertical irregularities in the building. The plan view
at various levels of the building and the 3-D model of the building are presented in Figs. 20 and
21, respectively. The geometric and material properties of the elements of the building are
summarised in Table 2. The building model chosen for the verification analysis was derived from a
real building that has been analysed and validated by comparison with field measurements by Sofi
et al. (2013). The height of the building was 28 m and the mass radius of gyration (r) was 18 m.
The mass, storey eccentricity and b values of the individual floors have been identified and the
normalised values are listed in Table 3 (the normalisation was with respect to the value of 7).

604 m

column D standard beams

column C

810m

[ | -

| lumn
i column A SoNma B ]
ol ' H | . ' 1 ' . Vo core

Shear 457m 190 m

G6A0Mm GADm

Ground Level
transfer beams

Levels1to 4

Levels 5to roof
Fig. 20 Plan views of building
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5.2 Dynamic modal analyses

Dynamic modal analyses of the building were conducted by employing the design response
spectrum of Fig. 4(b). Only the response of the building in the y-direction of motion is presented
herein given the lower eccentricity values in the orthogonal direction. The fundamental
translational natural period of vibration of the planar model of the building in the y-direction was
0.7 s and the corresponding torsional coupled periods of the building in the y-direction were 0.80
and 0.55 s. Velocity controlled conditions apply in view of the natural period value of the building.

The translational displacement profile of the building from planar (translational only) analysis
can be compared with profiles at the flexible and stiff edges as obtained from 3D analyses of the
TU model (Fig. 22). The displacement profile at the two critical edges is shown to be similar in
shape to that from translational only analysis in spite of irregularities in the building.

Fig. 21 3-D model of the building

Table 2 Dimensions of principal structural elements and material properties (mm)

Element Slab Walls Beams Columns
Type Core Shear Standard Transfer A B C D
Material RC* RC RC RC RC RC RC RC RC
Width (mm) - 200 200 280 280 375 280 400 300
Depth (mm) 250 - - 620 1000 810 610 400 300
Length (mm) - - -

*RC - reinforced concrete with modulus of elasticity of 24.5 GPa and density of 2500 k g/m®
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Table 3 Storey mass, eccentricity and torsional stiffness of the building

Eccentricity Torsional stiff
Level Storey mass (t) € orsionat stiiness
. X . . b,
x-direction y-direction
1 755 -0.07 0.14 1.50
2 738 -0.02 0.31 1.45
3 738 0.02 0.44 1.40
4 751 0.06 0.53 1.35
5 719 0.08 0.60 1.40
6 719 0.10 0.64 1.50
7 728 0.11 0.67 1.70
8 684 0.12 0.70 1.90
30
25 el
20 it
i -
£ 15
2
10 translational
- -~ flexible edge
5
-- - stiff edge
0
0 10 20 30 40 50

displacement (mm)

Fig. 22 Displacement profiles from dynamic analyses

5.3 Application of Generalised Force Method as recommended in this paper

The Generalised Force Method as outlined in Sections 3 and 4 was applied to obtain estimates
of the displacement demand of the example torsionally unbalanced building. The planar analysis
method as presented in Section 3 was first performed ignoring on-plan asymmetry of the building.
The fundamental natural period of vibration of the building obtained from Eq. (1) was found to be
0.6 s approximately, and the base shear was 9730 kN. The displacement walues obtained by
applying the base shear distributed up the height of the building in accordance with clause 4.10 of
Eurocode 8 (EN 1998-1, 2004) have been digitised and listed in Table 4.

The effective displacement 8.5 = 31 mm; effective mass mesr = 4244 t;

Effective stiffness K.rr = 355824 MN/m; Effective natural period Terp = 0.7 s

Calculation of these parameter values assuming Torsionally Balanced (TB) conditions based on the
storey mass (as listed in Table 3) and the 2D displacement profile (as listed in Table 4) is shown in



Simplified elastic design checks for torsionally balanced and... 765

Table 4 Displacement values of TB estimated using the Code Lateral Force Method

Ao
(mm)
45
39
327
26.1
19.6
13.3
7.7
3.2

Level

— N W A N3 X

Table 5 Displacement values of TB estimated by the Generalised Force Method

Ao
(mm)
34
29
24
20
15
10
6
2

Level

— N W A WO 3 X

Table 6 Displacement values estimated using the Generalised Force Method

Ao (mm) A (mm)
Level by Generalised Force method by Generalised Force Method (TU)
(TB) Flexible edge (x1.73) Stiff edge (%0.55)
8 34 59 19
7 29 51 16
6 24 43 13
5 20 34 11
4 15 26 8
3 10 17 5
2 6 10 3
1 4 1

details in Appendix B. The displacement demand estimated by the Generalised Force Method (as
outlined in Section 3) is 24 mm based on planar analysis of the building ignoring plan asymmetry.
The building displacement profile is represented by the listed values in Table 5.
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The displacement demand values of the torsionally unbalanced building were estimated by
applying the respective displacement amplification ratios. In summary, the calculation involves the
use of Eq. (4b) or Fig. 11 for finding the value of A; and 4,, Eq. (8d) for finding the value of 6, and
6, and Eq. (13c¢) for finding the value of A/A,. Given the values of A, that are listed in Table 5 the
displacement A at the two edges of the TU building can be calculated (Table 6). In this case study
to illustrate the method ¢,=0.65 and b,=1.35 (refer Appendix B for details of how those values can
be obtained for a building with different floor plans up the height. Applying the method as
described the displacement ratio (A/A,) is accordingly 1.73 at the flexible edge and 0.55 at the stiff
edge of the building. These displacement values of the individual floor are listed in Table 6.
Results so obtained are then compared with results from dynamic analyses for verification
purposes (Figs. 23(a) and 23(b)). All the steps of the method is summarised in Table 7.

Table 7 Listing of the steps in the Generalised Force Method of Analysis

Steps Descriptions

| Undertake planar analysis of the building assuming TB conditions to
determine the values of A,
Identify the eccentric and torsional stiffness properties of the lateral resisting elements,

) and the mass radius of gyration of the floors. In situations where those
lateral resisting elements vary significantly from floor to floor employ the techniques
presented in Appendix C to determine those properties.

3 Use Eq. (4b) or Fig. 11 to determine the values of A; and 4,
Use Eq. 8(d) to  determine the values of &, and 6,

Use the following equations to determine the value of A/A,:
Eq. (11c¢) for acceleration controlled conditions (or Figs. 15(a) and 15(b) if the
value of B, is close to 1.8)

5 Eq. (13c¢) for velocity controlled conditions (or Figs. 17(a) and 17(b) if the
value of B, is close to 1.8)
Eq. (15¢) for displacement controlled conditions (or Figs. 19(a) and 19(b)
if thevalue of B, is close to 1.8)

6 Combine the results from step (1) and Step (5) to determine the value of A at both edges of
the building.

30 7 30 -

,. | Flexible edge Stiff edge
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01 Generalised force 10 + ) _
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Fig. 23 Comparison with displacement estimates using the simplified assessment methods
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6. Conclusions

The Generalised Force Method of Analysis for undertaking design checks for both TB and TU
low and medium rise buildings has been derived, and verified, in this paper.

In the proposed procedure a TB building is first subject to the code lateral force analysis
method for obtaining an initial estimate of the seismic inertia forces. The code procedure has been
extended by the analysis of the deflection profile of the building and in identifying the effective
displacement, effective stiffness and effective mass in order that a relationship representing the
behaviour of the building can be constructed in the form of a capacity diagram. The response
spectrum of the earthquake actions was then presented in the format of an acceleration-
displacement response spectrum (ADRS) diagram which was overlaid onto the capacity diagram.
The displacement and acceleration demand of the building was then taken as the intercept of the
capacity diagram with the ADRS diagram. It is shown that the (more accurate) estimate of the
seismic demand as indicated by the intercept of the two diagrams was much less conservative than
the initial estimate as stipulated by the code lateral force method. The method of analysis as
introduced herein is called the Generalised Force Method.

For a TU building the torsional rigidity parameter (b/r) and eccentricity parameter (e/r) are to
be identified. TU buildings with weak torsional rigidity (i.e., 5/r<1.0) should be prohibited from
design irrespective of results from dynamic analyses unless performance is satisfactory under DC
conditions. The displacement demand of a medium rise 7U building in which 5/7>1.0 may be
derived from planar analysis as per the procedure introduced in Section 3. The displacement
profile so obtained from the translational only analysis has to be amplified by a factor which is
defined by:

(1) Eq. (11c¢) or Figs. 15(a) and 15(b) for acceleration controlled conditions

(i1) Eq. (13c¢) or Figs. 17(a) and 17(b) for velocity controlled conditions

(ii1) Eq. (15c¢) or Figs. 19(a) and 19(b) for displacement controlled conditions

Refer Table 7 for a summary of all the steps involved in the analysis method.

The effects of bi-directional excitations would also need to be taken into account by the use of
the 100%/30% rule or SRSS combination rule.

The recommended Generalised Force Method for estimating the displacement profile of a TU
building has been verified by comparison with results from the dynamic analyses of irregular
building models. Such verification analysis undertaken for an example building is presented.
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Appendix A
Dynamic equations of equilibrium and eigenvalue analysis
For completeness this section presents details of how the eigenvalues (4;) and eigenvectors

(normalised displacement x, and ) as presented in the earlier sections of the paper were derived.
Equation of translational equilibrium

M+ K(x+ef)=0 (Ala)
Equation of rotational equilibrium (taking moment about CM)
JO+K(x+ef)e+KB=0 (Alb)
Equation of translational equilibrium
Mi + K,(x+e6) =0 (A2a)
Divide both sides of equation by M and r
X wz(P480) =
(- +-6)=0 (A2D)
Given that %, = f;xr = ’T—C; e, =§
X + wZ(x, +e.0) =0 (A2c)
Equation of rotational equilibrium (taking moment about CM)
J0+ K, (x +ef)e+ K6 =0 (A3a)
.. K;
Mr?6 + K, [(x + ef)e + K—O] =0 (A3b)
X
Divide both sides of equation by M and 7* and given that w? = %
b+ w? (f+39)3+b—29 ~0 (A3c)
N T T2
Given that b, = g
0 + w2[(x, + e,0)e, + b20] = 0 (A3d)
6 + w2[(e;)x, + (b? +e2)8] =0 (A3e)
Recall the reduced equations of dynamic equilibrium
109&}} 2[1 er]xr=0
[O {é T e, b?+e? {9} {O} (Ada)

oty Tall5)-2l NG=0) (A%)
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Where £ j=1,2 are the natural angular velocities of the coupled modes of vibration (i.e., the
eigenvalues)

02 1 —/1]2 e,
Let A7 =— = Det s ,|=0=>
wj er (b7 +e7) — 4
Q-2 +ep) -] -et=0 (Adc)

Solution for values of ﬂ? can be obtained by solving the roots of a quadratic equation.

It can be shown using the elementary expression: %ﬂj_m that
2 2 (12 2712
/1]2 =1+(b;+€r i\/[1 (b;-f-er)] 4 o2 (A4d)

Solution for the eigenvector is accordingly obtained as follows

1-— /12 e x,. =1 0
) r r A
— > 5

e, (bE+ef) - /'ljz] { 0 } {0} e

, -1 -1
(1—/1j)+er9j=0:>9j=— orf; =——75— (ASb)

e, <

Appendix B

Calculation of effective displacement, mass, stiffness and natural period of the TB model

Fyp = Sq(T)Am

Mass, m = 5,816 tonnes
F, = 0.23g(0.85)5816 = 11153 kN
A is taken as 0.85

Distribution of base shear

zim;
Fi= byizm
_ (ZmS7) _ 4191047785
Oesf = (Zmi&-) = I3aEr0s ~ Slmm
X mis)?
meff = (Zm—l&f> = 4244 tonnes
_( Fp \ _ 11153 _ — Meff\ —
keff = (5eff) =31 354924 kN/m Teff =2r (keff) =0.7s
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Level  m;(kg)  z (m) m; z; F; (kN) S; m; & m; §;
8 675359 26.2 17694406 2293.627 45 1367601975 30391155
7 719185.4 23 16541264 2144.151 39 1093880993 28048231
6 719185.4 19.8 14239871 1845.835 327  769017756.4 23517363
5 719185.4 16.6 11938478 1547.518  26.1 489916286.3 18770739
4 751277.5 13.4 10067119 1304944 19.6  288610764.4 14725039
3 737925 10.2 7526835 975.6614 133 130531553.3 9814403
2 737925 7 5165475 669.5715 7.7 43751573.25 5682023
1 755555 3.8 2871109 372.1658 32 7736883.2 2417776
sum 5815598 86044556 11153.47 4191047785 1.33E+08
0.8
c
=
£ 06
34
>
D
g 04 EC 8 code
=02 T=05s
& 0.2
3
f%' 2T i
0 “55 £9.14
0o 2* 50 100 150 200
Spectral Displacement (mm)
Level J; (mm) by Code lateral force o; (mm) by Generalised Force method
method (=24/32xd;)
8 45 34
7 39 29
6 32.7 24
5 26.1 20
4 19.6 15
3 13.3 10
2 7.7 6
1 3.2 2
Appendix C

Determination of eccentricity, torsional stiffness and edge displacement ratio of the TU
model
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Step 1: Finding the location of the CR of torsionally unbalanced building

Apply lateral load at the location of centre of mass of the building.
Find values of dand ¢ based on results of static analysis by the computer model of the building

Xem=31.04 m

Flexible edge_

tiff edge

773

Flexible edge Stiff edge

Level m; (kg) (i;) mz  Fi(kN) §(mm)  m;§’ m & S(mm)  m; m; §;

8 684387 26.2 17930951 2320 76 3932243793 51876567 33 727339585 22311030
7 728214 23 16748923 2166 65 3067244903 47261092 29 591491870 20754101
6 719185 19.8 14239871 1842 54 2066190887 38548337 24 417710072 17332368
5 719185 16.6 11938478 1544 42 1280754128 30349624 20 273470248 14024115
4 751278 13.4 10067119 1302 31 726643111 23364730 15 164559824 11118907
3 737925 10.2 7526835 974 21 313145853 15201255 10 78286463 7600628
2 737925 7 5165475 668 12 97590581 8486138 6 27458189 4501343
1 755555 3.8 2871109 371 4 14627545 3324442 3 5107552 1964443
sum 5833655 8688760 11498440801 218412186 2285423804 99606934

Flexible edge

Beff =

»m;8; | 11498440801

ZmiSi

218412186

~ 52.6 mm



774 Nelson T.K. Lam, John L. Wilson and Elisa Lumantarna

Stiff edge

=m;5; _ 2285423804

Sof = = ~ 229
of =\ Tm;8; | 99606934 mm

zm;8] | (52.6 — 22.9)

~ 0.00049

*m;8; | (60.44 x 1000)

Step 1: Finding the location of the CR of torsionally unbalanced building continued

Apply a second lateral load at an arbitrary location which is further away from the centre of

mass of the building (here the load is applied 0.05L from the CM).

Find values of & and ¢, based on results of static analysis by the computer model of the

building

Xeym + 0.05L = 34.04 m
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Flexible edge Stiff edge
Level ) Z; o Fi 6i ]2 s 6i 2 Y
ml (kg) (m) ml Zl (kN) (mm 1’Ill 6l 1’Ill 6l (mm) ml 8l 1’Ill 6l
8 684387 26.2 17930951 2320 83 4737494043 56941034 29 583536098 19984113
7 728214 23 16748923 2166 71 3702014535 51921662 26 477242366 18642280
6 719185 19.8 14239871 1842 58 2495005182 42360020 22 335543140 15534405
5 719185 16.6 11938478 1544 46 1541710550 33298284 17 217740572 12513826
4 751278 13.4 10067119 1302 34 873592990 25618563 13 132893477 9991991
3 737925 10.2 7526835 974 22 376902573 16677105 9.2 62457972 6788910
2 737925 7 5165475 668 12 117152973 9297855 5.5 22322231 4058588
1 755555 3.8 2871109 371 4 17407987 3626664 2.4 4351997 1813332
sum 5833655 8688760 0 13861280833 239741188 1836087854 89327444
Flexible edge
*m;87\ 13861280833 -
= = = .0 IMm
off =\ Tm;5; 239741188
Stiff edge
5 Tm;8; _ 1836087854
— = = .0 mm
eff = | Tm;§; 89327444
Tm;8’ (57.8 —20.6)
= = ~ 0.00062

*m;8; | (60.44 x 1000)

EL 1
Applied @™ ~~_ _
Load o A

Xy <

Step 2: Finding eccentricity (e,) and torsional stiffness (b,)

Given the value of ¢ and ¢, the value of eccentricity e can be found by extrapolation
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0.0007

0.0006
0.0005
AN 0.0004
‘\\\ .
\ 0.0003
\ 0.0002
/ Location-of CR 0.0001
b 0

40 30 20 10 0
X (m)

e = 34.04 —-19.3
=11.8m

,60.442+12.22
r=0"105 =17.8m

e, = 0.65

Given the value of §, §; and e find the value of A, which corresponds to the displacement
demand when the lateral load is applied at the centre of stiffness of the building.

70

_____________________________________________ 57.8_ 60

S/ e 50

CR 40

- 30

20

edge displacement (mm)

10

ot EEE TR R PR

34.04
40 ' 30 20 10 0

A =525mm,A, =32 mm

A
E_lb
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Step 2: Finding eccentricity (e,) and torsional stiffness (b,) continued

Take A= when the load is positioned at e/r(e;)=0.65
Result is A/A,=1.6, B,(=B/r)=1.68
Find value of b, (= b/r) using Eq. (9)

Result is b/r =1.35
Find A; using Eq. (4b)

7 2
1, =085 1, =159

2
/12_1+(b3+e3)+\/[1—(b5+e,%)
- 2

Find 6; using Eq. (8d)

er
6, =-043, 6,=234
Find the displacement ratio using Eq. 13(c)

A x+B(max) 1+6;(B,) 1 2
A,  RSD(T,%) Z[ 1+(92 /1_,-]

For the flexible edge AA = 1.73, for the stiff edge A— =0.55

0 0
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