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Abstract.  Environmental and operational benefits of green roofs are manifolds; however, their main 

disadvantages are cost and weight. New technology enabled the use of plastics to reduce the weight of green 

roof systems to promote their installation. To maximize their potential benefits, green roofs can be installed 

on existing structures. This study evaluates the influence of green roofs on the seismic response of 3, 6, and 

8 storey reinforced concrete ductile moment resisting frames, which were designed according to current 

seismic standards, however, not designed for green roofs. For each frame, three different types of roofs are 

considered: gravel flat roof, extensive green roof, and intensive green roof. Nonlinear dynamic time history 

analysis using an ensemble of twenty real earthquake records was performed to determine the inter-storey 

drift demand and roof drift demand for each frame. Eigenvalue analysis was also performed to determine the 

impact of green roofs weight on the elastic and cracked periods of the structure. Results from the analysis 

demonstrated that intensive and extensive green roofs do not affect the seismic performance of reinforced 

concrete frame structures. 
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1. Introduction 
 

Green roof is a sustainable application that partially replaces the natural landscape destroyed 

due to the construction of buildings. Growing vegetation on rooftops has been developed as an 

option to address well-known environmental issues such as: global warming or air pollution 

(Bianchini and Hewage 2012). Environmental benefits during green roofs lifespan can be listed as 

follows: reduction of energy demand for heating and cooling, mitigation of urban heat island, 

reduction and delay of storm water runoff, improvement in air quality, replacement of displaced 

landscape, enhancement of biodiversity, provision of recreational and agricultural spaces, and 

insulation of a building for sound (Clark et al. 2008, Czemiel 2010, Molineux et al. 2009,  
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Santamouris et al. 2007, Yang et al. 2008). 
Green roofs are also known as vegetative roofs due to the growth of vegetation in their surface. 

Moreover, green roofs can be classified by their characteristics and vegetation type in two major 
categories: intensive roofs and extensive roofs (Molineux et al. 2009, Xeroflor 2011). Intensive 
roofs need a reasonable depth of soil and are usually associated with roof gardens (Molineux et al. 
2009, Snodgrass and McIntyre 2010). Extensive roofs have a relatively thin layer of soil, grow 
sedums and moss and are designed to be virtually self-sustaining and require minimum 
maintenance (Molineux et al. 2009).  

Popularity of green roofs is increasing due to their environmental benefits; nevertheless, their 
cost disadvantage has been a challenge to the industry (Nelms et al. 2007). Depending on the type 
of green roof, additional weight can be added to the roof, which may lead to changes in the 
structural design that can result in a more expensive structure (Clark et al. 2008). There is no 
available/published literature that depicts the performance of existing buildings by incorporating 
green roofs. Therefore, this paper evaluates the effects of green roofs on the seismic performance 
of existing frame buildings. 

The demand of using green roofs in new buildings is increasing (City of Portland 2008); 
however, to maximize their positive effects on urban settings, green roofs need be installed on 
existing structures. Installing vegetative roofs on existing structures lead to another challenge 
where it might be critical to determine their influence on the seismic response of the structure in a 
seismic risk zone. Additionally, if required, it might be important to determine proper retrofitting 
methods and their relevant costs. 

The seismic retrofit strategy for an existing reinforced concrete (RC) frame may include partial 
demolition and/or mass reduction, addition of new lateral load resistance system, member 
replacement, and transformation of non-structural into structural components to enhance the 
overall seismic performance of the frame by increasing lateral strength, reducing drift and/or 
increasing ductility (Snodgrass and McIntyre 2010, Niroomandi et al. 2010). The retrofitting 
method should be an applicable, effective, and economic solution; therefore, the selection process 
is a complex procedure. Thus, selecting, designing and applying the best retrofit solution is merely 
based on engineering judgment (Baros and Dristos 2008). 

To have a comparative analysis in this paper, 3 regular reinforced concrete (RC) buildings of 
different storeys, designed according to current seismic standards, have been considered as per 
Alam et al. (2012). These buildings were not designed to support green roof on the top. Here, 
green roof was applied in each building with three different types; thus, nine RC frame buildings 
were analyzed. This paper attempts to illustrate that without much modification or retrofitting, 
green roofs can be potentially installed in existing frame buildings, if they are designed according 
to current seismic standards.  
 
 
2. Properties and modeling of the structures 

 
The typical plan and elevation of the steel RC buildings are shown in Figs. 1(a)-(b). The 

structures were analyzed as per National Building Code of Canada (NBCC 2005) and designed as 
moderately ductile moment resisting frames based on equivalent static force procedure according 
to Canadian Standards Association A23.3-04 (CSA 2004). For concrete the following material 
properties are chosen: the strain at peak stress is 0.2%, the compressive strength (f’c) is 35 MPa, 
and the tensile strength is 3.5 MPa. Steel was modeled with a modulus of elasticity (E) of 2×105 
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2.1 Structures and roof modeling  
 
The seismic behavior of the structures was modeled using SeismoStruct (SeismoSoft 2012). 9 

frame structures were modeled as planar frames. The program was used to determine the structural 
demands in the frame elements due to the application of the combination of loads and earthquake 
accelerations. The material properties, element sections, and loads were input in the software. The 
slabs were modeled as a distributed mass on the beams. Gravel flat roofs and green roofs are 
considered installed on the same roofing assembly. Therefore, to simplify the model, they were 
represented as dead loads. These different types of roofs were modeled as uniformly distributed 
load on the roof beams. The gravel roof and the green roofs were only modeled as dead loads as 
they are not individual structural elements rather they are attached to the roof of the building 
frame; therefore, the behavior of each roof type per se during a seismic event was not analyzed. 

Some additional structural modeling information is as follows. Seismostruct (2012) uses fiber 
modeling approach instead of lumped plasticity model. The fiber modeling can take the spreading 
of nonlinearity along the length of the element into account. The strength of the structural 
materials was chosen by the authors while the frames were designed as per CSA A23.3-04 
standard and using NBCC (2005) code provided loading values. The stiffness and deformation 
capacities of the structural members were determined from the fiber analysis of the elements using 
material hysteresis models available in Seismostruct (2012). For example Mander et al. (1988) 
confined concrete model was used for confined concrete’s constitutive relationship and for cyclic 
behavior Martinez-Rueda and Elnashai (1997) proposed rules were used. Bilinear Kinematic Steel 
model was used for the reinforcement present in the concrete frame elements. The deformation 
capacities of the structural members were also calculated from the material stress-strain curves. 
The fracture strain of the reinforcement steel is assumed 6% and for concrete the ultimate and 
fracture strains were calculated using Mander et al. (1988) model, which calculates these strain 
levels based on amount of confinement steel present in the concrete. Stiffness degradation under 
cyclic loading is automatically taken into consideration using these models in Seismostruct (2012). 
P-delta effect is automatically considered in this software when each structural element is 
subdivided into 2-3 members. The above mentioned calculation is done through the employment 
of total co-rotational formulation developed and implemented by Correia and Virtuoso (2006). 

The following gravitational loads were considered: Self weight of the structural elements such 
as slabs, beams and columns and green roof load. In addition, the NBCC (2005) suggests a live 
load and snow load of 4,8 kPa and 1,6 kPa, respectively. The weight of each type of green roof 
varies with the material and water saturation. Fully saturated green roofs were considered as the  

 
 

Table 1 Weight of the different types of roofs (Based on Xeroflor 2011) 

 Saturated weight (kg/m2) 

Layers Gravel flat roof Extensive green roof Intensive green roof 

Root Barrier - 0.47 0.47 

Drainage and filter - 0.80 0.80 

Water retention - 10.3 2.65 

Growing medium and vegetation - 37 225 

Gravel 30 - - 

Total 30 48.57 228.92 
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Table 2 Weight of the RC frames 

Weight (kN) 

3 storey 6 storey 8 storey 

Gravel Extensive Intensive Gravel Extensive Intensive Gravel Extensive Intensive

Roof 18.39 29.77 140.36 18.39 29.77 140.36 18.39 29.77 140.36

Total* 1886 1897 2008 3911 3922 4033 5315 5327 5437 
Green roof 

weight 
contribution (%) 

- 1.57 7.00 - 0.76 3.48 - 0.56 2.58 

*Note: The total weight is the sum of the weights of slabs, beams, columns and the green roof 
 
 

worst case scenario. Additionally, the thickest intensive green roof and the thinnest extensive 
green roofs available in the market were analyzed. Table 1 shows the materials, layers and weight 
considered in the analysis (Xeroflor 2001). In addition, the weight of each RC frame considering 
the different types of roofs was estimated and is shown in Table 2.  

 
 

3. Dynamic time history analysis 
 
Twenty real earthquake records were selected to conduct dynamic time-history analyses for 

each frame to predict and compare their seismic performances. The spectrum-compatible real 
accelerograms were randomly selected from the Pacific Earthquake Engineering Research Center 
(PEER 2007) strong motion database. The ground motion data is detailed in Table 3. 

 
 

 
Fig. 2 Response spectra of the matched earthquake records plotted with the first three modal time periods of
the intensive green roof frames calculated using cracked element stiffness’s 
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Table 3 Ground motion records (Source: PEER strong motion database, http://peer.berkeley.edu) 

Record Event Year Station Ma Rb (km) PGA (g) 
1 Northridge 1994 Beverly Hills - 14145 Mulhol 6.7 9.4 0.430 
2 Cape Mendocino 1992 Cape Mendocino 7 7 13.478 
3 Victoria, Mexico 1980 Chihuahua 6.3 19 0.118 
4 Coyote Lake 1979 Halls Valley 5.8 33.8 0.043 
5 Hector Mine 1999 Amboy 7.13 43 0.198 
6 Kobe, Japan 1995 Takarazuka 6.9 19.1 0.670 
7 Loma Prieta 1989 Corralitos 6.9 3.9 0.498 
8 Nahanni, Canada 1985 Site 2 6.7 4.9 0.389 

9 
San Salvador, El 

Salvador 
1985 Geotech. Investig. Center 5.8 6.3 0.556 

10 Sierra Madre 1991 LA-Obregon Park 5.61 27.4 0.203 
11 Managua, Nicaragua 1972 Managua-ESSO 6.2 4.1 0.418 
12 New Zealand 1987 Matahinia Dam 6.6 16.1 0.282 
13 Gilroy 2002 Dublin 4.9 87 0.0069 
14 Gilroy 2002 Foster City - Bowditch School 4.9 86.4 0.007 
15 Parkfiled 1966 Cholame - Shandon Array #12 6.2 17.6 0.0614 
16 Norcia, Italy 1979 Cascia 5.9 4.6 0.171 
17 San Fernando 1971 Borrego Springs Fire Station 6.6 214.3 0.0096 
18 San Fernando 1971 Buena Vista 6.6 112.5 0.0117 
19 Palm Springs 1986 Desert Hot Springs 6.1 6.8 0.309 
20 San Francisco 1957 Golden Gate Park 5.3 9.6 0.111 

aMagnitude 
bClosest distance to fault rupture 
 
Table 4 Modal mass participation percentage for 3, 6 and 8 storied frame with intensive green roof 

Number of Stories Mode number Time Periods (Cracked stiffness) % Mass participation 

3 Storey 
1 0.658 85.48 
2 0.196 11.39 
3 0.112 1.66 

6 Storey 
1 0.959 80.69 
2 0.319 11.34 
3 0.174 4.14 

8 Storey 
1 1.231 79.15 
2 0.404 11.37 
3 0.224 4.09 

 
Table 5 Elastic cracked and un-cracked period of the structures 

Gravel roof Extensive Intensive 
Frame storeys 3 6 8 3 6 8 3 6 8 
T1 from Code 0.390 0.655 0.813 0.390 0.655 0.813 0.390 0.655 0.813
Elastic (sec) 0.452 0.692 0.873 0.454 0.694 0.875 0.478 0.713 0.893

Cracked (sec) 0.622 0.929 1.202 0.625 0.932 1.205 0.658 0.959 1.231
Variation w.r.t. gravel 
roof, elastic period (%)  

0.44 0.29 0.23 5.75 3.03 2.29 

Variation w.r.t. gravel 
roof, cracked period (%)  

0.48 0.32 0.25 5.79 3.34 2.41 
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3.1 Time period 
 
The fundamental periods of the structures were determined by considering both cracked and 

uncracked sections. The elastic cracked period was estimated by reducing the inertia of beams and 
columns. The American Concrete Institute (ACI, 2008) suggests the use of modification factors 
0.3 and 0.7 for rectangular beams and columns, respectively, to decrease the inertia of each 
element and model cracked sections. Table 5 shows the elastic period of the structures for 
uncracked and cracked condition. Additionally, Table 5 provides the code prediction values for 
period (T1) as per the National Building Code of Canada (NBCC) 2005.  

The elastic periods of the structures were close to the code prediction. However, the 6 storey 
frame with gravel roof was the closest to the code prediction. Additionally, for all the frames, the 
cracked period compared to the corresponding elastic period, is significantly higher. 

The analyses results show that the installation of green roofs increases the fundamental period 
of the structure in comparison to the structures with gravel roof. As the mass increases, the period 
of the structure increases.  Furthermore, results show that the differences between the fundamental 
periods of the buildings with gravel flat roofs, extensive and intensive green roofs decrease with 
the increase in number of stories. For instance, the 3, 6 and 8 storey structures with intensive green 
roofs have 5.75%, 3.03% and 2.29% higher elastic period, respectively compared to those of 
gravel roofs. Cracked periods were found to follow a similar trend.  
 

3.2 Inter-storey drift ratio demand  
 
The inter-storey drift ratio (ISDR) demand was computed from the dynamic time history 

analysis output. Results are shown in Figs. 4-6. The results show that for all roof types, the 
maximum demand is in the same floor level. For the 3 storey frame, on average, the maximum 
inter-storey drift is experienced in the first and second floor, while for the 6 storied it is fourth and 
fifth floor and for the 8 storey frame the maximum drift takes place, on average, in the fifth floor. 
For the 3 storey frames, the average maximum ISDR is 0.0099, 0.0099 and 0.0102 for gravel, 
extensive and intensive roof respectively; while for the 6 storey frames, these values are as 
follows: 0.0076, 0.0077 and 0.0079. (Figs. 4 and 5). In the case of 8 storey, the average maximum 
ISDR was found to be 0.0081, 0.0081 and 0.0083 for gravel, extensive and intensive roof 
respectively (Fig. 6). In general, extensive and intensive green roof types increase the maximum  

 
 

 
Fig. 4 Inter-storey drift demand of 3 storey (a) gravel roof, (b) extensive and (c) intensive green roofs 
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Fig. 4 Continued 

 

 

 
Fig. 5 Inter-storey drift demand of 6 storey (a) gravel roof, (b) extensive and (c) intensive green roofs 
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Fig. 5 Continued 

 

 

 

 
Fig. 6 Inter-storey drift demand of 8 storey (a) gravel roof, (b) extensive and (c) intensive green roofs
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ISDR compared to that of gravel flat roof type by a very insignificant amount. For instance, 
intensive green roof of the eight storied frame increased the average maximum ISDR demand by 
2.4% compared to the gravel roof. 

None of the inter-storey drifts exceeded the NBCC (2005) limit of 0.025. The low inter-storey 
drift values indicate that the installation of green roofs do not pose any detrimental effect on the 
seismic behavior of the structural system.  

 
 

Fig. 7 Inter-storey drift ratio demand at roof and at critical storey level of 3 storey frames for (a) gravel roof 
(b) extensive green and (c) intensive green roof 
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3.3 ISDR demand at the roof and critical storey 
 
Figs. 7-9 compare the ISDR demand of the roof storey and critical storey (the storey with the 

maximum ISDR) obtained for all the frames with different roof types under the selected 
earthquake motions. In the case of 3 storey frame (Fig. 7), on an average, intensive green roof 
caused the highest roof and critical storey drift compared to those with other roof types, but the 
difference between them was found to be insignificant. Similar trend was observed for the 6 and 8 
storey frames (Figs. 7(b)-(c)). 

 
 

 

 

 
Fig. 8 Inter-storey drift ratio demand at roof and at critical storey level of 6 storey frames for (a) gravel roof 
(b) extensive green and (c) intensive green roof 
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Fig. 9 Inter-storey drift ratio demand at roof and at critical storey level of 8 storey frames for (a) gravel roof
(b) extensive green and (c) intensive green roof 

 
 
From Figs. 7-9 it can be observed that in the case of 3 storey frame, the demand ISDR at roof 

of extensive and intensive green roof is 0.9% and 10.3% higher than the gravel roof. In the case of 
the 6 storey frame, extensive and intensive green roofs increase the roof storey drift by 1.10% and 
12.13% respectively. The 8 storey frame follows the same trend as that of the 6 storey frame. 
Compared to gravel flat roofs, extensive and intensive green roofs increase the roof storey drift by 
1.37% and 13.9%, respectively. In general, as shown in Figs. 4-6, as the frame height increases the 
roof storey drift demand decreases. Additionally, the difference between roof storey drift demands 
of the same storey frame with different roof types is also significant. 

The seismic performance should be evaluated by comparing the capacity of the RC frames with  
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Fig. 10 Roof drift capacity/demand ratio 
 
 

that of the demand that those frames experience under a seismic event. The roof drift capacity is 
determined from a pushover analysis, while the demand is estimated by a dynamic time history 
analysis. From pushover analysis the roof drift capacities of the three, six and eight storied frames 
used in this study are 0.169 m, 0.207 m and 0.393 m respectively (Alam et al. 2012). 

Fig. 10 shows the roof drift capacity/demand ratio for all the frames with different roof types. 
Results show that the capacity/demand ratios remain fixed for a selected frame height for all the 
roof types. But it is clearly seen that the eight storey frame has approximately 40% higher roof 
drift capacity/demand ratio compared to both four and six storied frame. In conclusion, the results 
show that all the frames have a higher than 1.7 roof drift capacity demand ratio for all the 
earthquakes considered in this study. 

 
 

4. Conclusions 
 
RC frames with three different heights (e.g., 3, 6 and 8 storey) and roof types (e.g., gravel, 

extensive and intensive) have been analyzed. Dynamic time history analyses were conducted on all 
the frames to determine the capacity/demand ratio in terms of roof drift ratios. Results demonstrate 
the impact of green roofs on the seismic performance of the frame structures in terms of change in 
fundamental time period, maximum inter-storey drift ratio, top storey drift demand and roof drift 
demand/capacity ratio. In the case of 3 storey frames:  

• On average, the maximum inter-storey drift is experienced in the first and second floor. The 
average maximum ISDR demand is around 0.0102 for all roof types. 

• The roof storey drift caused by intensive and extensive green roof is 10.32% and 0.923% 
higher than that of gravel flat roof, respectively. 

In the case of 6 storey frames: 
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• On average the maximum inter-storey drift takes place on the fourth floor. Intensive green 
roof causes the average maximum ISDR demand (0.0079). 

• The roof drift caused by intensive and extensive green roof is 12.13% and 1.10% higher than 
that of gravel flat roof, respectively. 

In the case of 8 storey frames: 
• The average maximum inter-storey drift experienced is 0.0083 in the fifth floor for the 

intensive green roof. 
• The roof drift caused by intensive and extensive green roof is 13.88% and 1.37% higher than 

that of gravel flat roof, respectively. 
The dynamic time history analyses reveal that green roofs have some impact on the dynamic 

behavior of frame structures especially at the top storey; however, the impact is not very 
significant. Based on the findings, no retrofitting technique is required to increase the lateral 
strength or deformation capacity.  

For the range of extra added load considered in this study this research found out that the 
regular frames under investigation performed satisfactorily against seismic loading. This 
performance might be attributed to the fact that these structures were properly designed according 
to current seismic design code. However, for different geometries and green roof load ranges (not 
considered in this study) one must carry out extensive analysis prior to the installation of green 
roofs.  Furthermore, prior to the implementation of green roofs, analysis must be carried out to 
determine the capacity of the structural elements to resist the increase in gravitational loads due to 
the extra weight coming from the green roof.  Nevertheless, it is difficult to opine that a green roof 
will not pose a risk to the frame structure that has a top story which can develop significant 
nonlinear behavior during the design ground motion. Previous studies have shown that the effect 
of higher modes can lead to excessive damage in the top stories. Under these circumstances, the 
addition of a green roof may be a problem and needs careful investigation before implementation. 
Further research is required to determine the seismic performance of structures in the case of 
partial green roofs on plan dimensions and arrangements. 

There is a greater need to implement clean technologies that enhance quality of life and save 
energy. Green roofs represent an engineering effort that contributes towards environment friendly 
practices. Facilitating and expanding their installation on new and existing buildings is an 
imperative step in green design and construction. 
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