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Abstract.  This paper presents He’s Energy Balance Method (EBM) for solving nonlinear oscillatory 

differential equations. Three strong nonlinear cases have been studied analytically. Analytical results of the 

EBM are compared with numerical solutions using Runge-Kutta’s algorithm. The effects of different 

important parameters on the nonlinear response of the systems are studied. The results show the presented 

method is potentially to solve high nonlinear vibration equations. 
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1. Introduction 
 

One of the most important problems in nonlinear vibrations is to have an exact solution for 

them. To have better understanding of the effects of the different parameters on the response of the 

systems, it’s better to try to have analytical response of them. The traditional analytical method has 

lots of shortcoming such as perturbation method. Recently, some approaches have been developed 

such as: Homotopy perturbation method (Bayat et al. 2013a, 2014a),Hamiltonian approach (He 

2010, Xu 2010, Bayat et al. 2014b, c, d, e, f, 2013b, Bayat and Pakar 2013c), Energy balance 

method (He 2002, Jamshidi et al. 2010, Bayat et al. 2014g, Mehdipour 2010), Variational iteration 

method (Dehghan 2008), Amplitude frequency formulation (He 2008), Max-Min approach (Shen 

et al. 2009, Zeng et al. 2009), Variational approach (He 2007, Bayat and Pakar 2012a, Bayat et al. 

2012b, Bayat and Pakar 2013a, Bayat et al. 2013b, Shahidi et al. 2011, Pakar and Bayat 2013a, b), 

and the other analytical and numerical (Bayat and Abdollahzade 2011a, b, Pakar et al. 2014a, b, 

2011, Xu 2009, Bor-Lih et al. 2009, Wu 2011, Odibat et al. 2008, Zhifeng et al. 2013, Rajasekaran 

2013, Akgoz and Civalek 2011, Atmane et al. 2011, Cunedioglu and Beylergil 2014, Radomirovic 

et al. 2015, Filobello-Nino et al. 2015, Xu et al. 2015, Filippov 1999, Evakin 2001, Grigolyuk 

1987, Han 1965, Andrianov 2004, Cveticanin 2015, 2012). Among of the mentioned papers and 

approaches, the Energy Balance Method (EBM) is considered to solve the nonlinear vibration 

equations in this paper. The paper has been collocated as follows: 

In section 2, the basic idea of the He’s Energy Balance Method (EBM) is presented in detail. 
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The basic idea of the Runge- Kutta algorithm is in section 3. Section 4 is the application of the 
energy balance method in three different cases for high nonlinear vibratory systems. The 
validation of the approach and also the discussion on the nonlinear parameters of the systems and 
the comparison with the numerical results are studied in section 5. Finally, it has been 
demonstrated that the energy balance method can be a precise periodic solution for nonlinear 
vibration equations. 

 
 

2. Basic idea of Energy Balance Method (EBM) 
 

In the present paper, we consider a general nonlinear oscillator in the Form (He 2002) 

( ( )) 0u f u t   (1)

In which u and t are generalized dimensionless displacement and time variables, respectively. Its 
variational principle can be easily obtained 

2

0

1
( ) ( ( ))

2

t
J u u F u dt     (2)

Where T=2π/ω is period of the nonlinear oscillator, ( ) ( ) .F u f u du   
Its Hamiltonian, therefore, can be written in the form 

21
( ) ( )

2
H u F u F A    (3)

Or 

21
( ) ( ) ( ) 0

2
R t u F u F A      (4)

Oscillatory systems contain two important physical parameters, i.e., 
The frequency ω and the amplitude of oscillation. A. So let us consider such initial conditions 

(0) , (0) 0u A u   (5)

We use the following trial function to determine the angular frequency ω 

( ) cos ( )u t A t  (6)

Substituting Eq. (6) into u term of (4), yield 

   2 2 21
( ) sin ( ) cos( ) 0

2
R t A t F A t F A       (7)

If, by chance, the exact solution had been chosen as the trial function, then it would be possible to 
make R zero for all values of t by appropriate choice of ω. Since Eq. (6) is only an approximation 
to the exact solution, R cannot be made zero everywhere. Collocation at ωt=π/4 gives 

    
2 2

2 cos( )

sin ( )

F A F A t

A t







  (8)
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3. Basic idea of Runge-Kutta’s Method (RKM) 
 

The Runge-Kutta method is an important iterative method for the approximation solutions of 
ordinary differential equations. These methods were developed by the German mathematician 
Runge and Kutta around 1900. For simplicity, we explain one of the important methods of Runge-
Kutta methods, called forth-order Runge-Kutta method.  

Consider an initial value problem be specified as follows 

   0 0, ,u f t u u t u   (9)

u is an unknown function of time t which we would like to approximate. Then RK4 method is 
given for this problem as below 

 1 1 2 3 4

1

1
2 2 ,

6
.

n n

n n

u u h k k k k

t t h





    

 
 (10)

for n=0, 1, 2, 3,..., using 

 

 

1

2 1

3 3

4 3

, ,

1 1
, ,

2 2

1 1
, ,

2 2

, .

n n

n n

n n

n n

k f t u

k f t h u hk

k f t h u hk

k f t h u hk



    
 
    
 

  

 (11)

Where un+1 is the RK4 approximation of u(tn+1). The fourth-order Runge-Kutta method requires 
four evaluations of the right hand side per step h. 

 
 
4. Applications of energy balance method 

 
In order to achieve the accuracy and the applicability of Energy Balance Method for solving 

nonlinear vibration equations, we will consider the following examples. 
 

4.1 Example 1 
 

For the first example we considered governing equation of the oscillation as follow 

       21
cos 2 sin sin 0u u u u g u


 

    
 

   (12)

With the boundary condition of 

   0 , 0 0.u A u   (13)

Variational of the Eq. (12) can be readily obtained as 
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2 2

0

1
( ) cos( ) cos( ) .

t
J u u g u dtu u 


 

  
 

    (14)

Its Hamiltonian, therefore, can be written in the form 

2 21
cos( ) cos( )H u g uu u 


 

  
 

   (15)

And 

0 cos( ),tH g A    (16)

 2 2
0

1
cos( ) cos( ) cos( ) ,t tH H u g u g Au u  



 
     

 
   (17)

We will use the trial function to determine the angular frequency ω, i.e. 

( ) cos( )u t A t  (18)

If we substitute (18) into (17), it results the following residual equation 

        

 

2 2 2 2 2 21
sin ( ) sin ( ) cos cos( ) cos cos( )

cos( ) 0

A t A t A t g A t

g A

      




  
 
  


 (19)

If we collocate at 4t   we obtain 

2 2
2 21 1 2 2

cos ( ) cos ( ) cos ( ) 0
2 2 2 2

A
A A g A g A

   


     (20)

This leads to the following result 

22 2
2 2cos( ) cos ( ) cos ( )

2 2

2
1 cos ( )

2

A g A A

A A

 




   
    

   
 
 

 

 (21)

According to Eqs. (18) and (21), we can obtain the following approximate solution 

22 2
2 2cos( ) cos( ) cos( )

2 2
( ) cos( )

2
1 cos( )

2

A g A A

u t A t

A A

 



   
    

   
 
 

 

 (22)

 
4.2 Example 2 
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For the second example the following governing equation of the oscillation is considered 
(Nayfeh 1973) 

 
2 2 2

2 2
1 222 2 2 22 2

0
m u m l u u u

m u k u m g
l u l ul u

 
        


  (23)

With the boundary condition of 

(0) (0) 0u A u   (24)

Variational and Hamiltonian formulations of the Eq. (23) can be readily obtained as 

   
2 2 4 2 2

2 2 2 22 2
1 22 20 2 2 2 2

1 1
( )

2 2

t m l u u m u u
J u m u k u m g l u dt

l u l u

  
                


 


 

(25)

   
2 2 4 2 2

2 2 2 22 2
1 22 22 2 2 2

2 2 2
2

1 1

2 2

1

2

m l u u m u u
H m u k u m g l u

l u l u

k A m g l A

 
      
     

  

 


 (26)

Or 

   
2 2 4 2 2

2 2 2 22 2
1 22 22 2 2 2

2 2 2
2

( )

0

1 1

2 2

1

2

R t
m l u u m u u

m u k u m g l u
l u l u

k A m g l A



 

 
     
     

 

 


 (27)

Choosing the trial function ( ) cos( )u t A t , we obtain the following residual equation. 
Which trigger the following results 

   
4 2 2 2 6 2 2 4

2 2 2 2 2
1 2 22 2 2 2 2 2

2 2 2 2 2 2 2 2
2 2

sin ( )cos ( ) sin ( )cos ( )1
sin ( )

2 cos ( ) cos ( )

1 1
cos ( ) cos ( ) 0

2 2

m A t t m A t t
m A t

l A t l A t

k A t m g l A t k A m g l A

      
 

  

 
  
   

     

 (28)

If we collocate at 4  , we obtain the following result 

   
 

2 2 2 2 2 2 2 2 2
1 2 1 2 2

2 2
1 1 2

2 ( ) 2 2 4 2 4

2 ( )

A l m m A m l kA l A g m l A g m

m l m m A A


      



 (29)
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We can obtain the following approximate solution 

   
 

2 2 2 2 2 2 2 2 2
1 2 1 2 2

2 2
1 1 2

2 ( ) 2 2 4 2 4
( ) cos( )

2 ( )

A l m m A m l kA l A g m l A g m
u t A t

m l m m A A

   



  
  (30)

 
4.3 Example 3 

 
For the third example we have considered the following governing equation 

2 3 5 0,u uu uu u u u            (31)

with the boundary condition of 

(0) ,    (0) 0,u A u   (32)

Variational and Hamiltonian formulations of the Eq. (31) can be readily obtained as 

2 2 2 2 4 6

2 2 2 2 4 6

2 4 6

0

1 1 1 1 1
 

2 2 2 4 6

1 1 1 1 1

( )

2 2 2 4 6
1 1 1

   
2 64

t
u u u uJ u dtu u

u u u u u u

A A A

H

   

   

  

     
 

  

  

 



  

   (33)

Or 

2 2 2 2 4 6

2 4 6

1 1 1 1 1

2 2 2 4 6
1 1 1

   
2 4 6

( ) u u u u ut u

A

R

A A

   

  

   

  

  
 (34)

The first guess for trial function is ( ) cos ( )u t A t  and substituting to the Eq. (33) 

2 2 2 4 2 2 2 2 2

4 4 6 6 2 4 6

1 1 1
sin ( ) cos ( )sin ( ) cos ( )

2 2 2
1 1 1 1 1

          cos ( ) cos ( )
4 6 2

)

4 6

( AR t A t t A t

A t A t A A A

t        

      

 

   





 (35)

If we collocate at 4t  , we have 

  2 2 4

2

 2 12 9 7 6
,

6 2

A A A

A

   




 



 (36)

We can obtain the following approximate solution 

  2 2 4

2

 2 12
( ) cos(  ),

9 7 6

6 2
u t A

A

A
t

A A   







 (37)
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5. Results and discussions 
 

In this section, for better understanding the full comparison of the presented approach and 
numerical solutions are presented in detail to validate the results of the energy balance method.  

Figs. 1 to 3 show the comparison of time history response of the EBM solution with the 
numerical solution for two different cases 

Example 1: (I): 3, 0.5, 10A g      (II): 2, 1, 10A g     

Example 2: (I): 1 21.5, 2, 10, 5,  2, 10 A l k m m g       

                   (II): 1 22.5, 3, 5, 10,  2, 10 A l k m m g       

Example 3: (I): 0.5, 0.5, 1,  1, 1 A         (II): 0.5, 0.5, 1,  1, 1 A          
 
 

EBM RKM

time
0 1 2 3 4 5 6 7 8 9

u(t)

1

0.5

0

0.5

1

 
(I) 

EBM RKM

time
0 0.5 1 1.5 2 2.5

u(t)

1.5

1

0.5

0

0.5

1

1.5

 
(II) 

Fig. 1 (Ex1) Comparison of time history response of the EBM solution with the numerical solution for
(I): 3, 0.5, 10A g     (II): 2, 1, 10A g     


EMB RKM

time
0 1 2 3 4 5 6

u(t)

1.5

1

0.5

0

0.5

1

1.5

 
(I) 

EBM RKM

time
0 1 2 3 4 5

u(t)

2

1

0

1

2

 
(II) 

Fig. 2 (Ex2) Comparison of time history response of the EBM solution with the numerical solution for
(I): 1 21.5, 2, 10, 5,  2, 10 A l k m m g      (II): 1 22.5, 3, 5, 10,  2, 10 A l k m m g       

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EBM RKM

time
0 2 4 6 8 10

u(t)

0.4

0.2

0

0.2

0.4

EBM RKM

time
0 1 2 3

u(t)

2

1

0

1

2

 
Fig. 3 (Ex3)Comparison of time history response of the EBM solution with the numerical solution for
(I): 0.5, 0.5, 1,  1, 1 A         (II): 0.5, 0.5, 1,  1, 1 A          



A
0 1 2 3



1

2

3

4


0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0



1

2

3

4

5

 
Fig. 4 (Ex1) Effect of amplitude and parameter ξ on nonlinear frequency of oscillation 

 

A
1 2 3 4 5



1.66

1.68

1.70

1.72

1.74

1.76

1.78

 l
2 3 4 5 6 7 8 9 10



1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

Fig. 5 (Ex2) Effect of amplitude and parameter l on nonlinear frequency of oscillation 
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A
1 2 3 4 5



2

2.5

3

3.5


0 1 2 3 4 5



1.5

2

2.5

3

3.5

4

Fig. 6 (Ex3) Effect of amplitude and parameter α on nonlinear frequency of oscillation 
 


0 1 2 3 4 5



2.3

2.4

2.5

2.6


0 1 2 3 4 5



1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

Fig. 7 (Ex3) Effect of parameters β and λ on nonlinear frequency of oscillation 
 


0 1 2 3 4 5



1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

Fig. 8 ( Ex3) Effect of parameter ε on nonlinear frequency of oscillation 
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It’s obvious for the results that the motions of the systems are periodic and the results show an 
excellent agreement between the analytical and numerical solution. 

Two different parameters of the example one has been studied in Fig. 4. The effects of 
amplitude and parameter ξ on nonlinear frequency of oscillation shows the by increasing the 
amplitude we have decrease on the nonlinear frequency and with parameter ξ, an increase has been 
occurred on the nonlinear frequency of the system. The effects of amplitude and parameter l on 
nonlinear frequency of oscillation for example 2 are studied in Fig. 5. 

For example 3, more parameters are studied to show the sensitivity of the response to them, in 
Fig. 6 the effect of amplitude and parameter α on nonlinear frequency of oscillation are shown. 

Fig. 7 is the effect of parameters β and λ on nonlinear frequency of oscillation and the final 
sensitive analysis is for the effect of parameter ε on nonlinear frequency of oscillation in Fig. 8. 
The results demonstrate the accuracy of the presented approach and also the high capability of it to 
see the effects of different important parameters on the nonlinear frequency of the system. 
 
 
6. Conclusions 

 
In this study the main objective is to present a new analytical solution, Energy Balance Method 
(EBM), for high nonlinear vibration equations. Three different nonlinear cases were studied 
completely to show the accuracy and application of the presented approach. The effects of the 
different important parameters on the nonlinear response of the systems were studied. The results 
compared with Runge-Kutta algorithm. The first iteration of the solution leads us to a reasonable 
solution.  
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