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Abstract. In this study, the bending and dynamic behaviors of laminated composite plates is examined by
using a refined shear deformation theory and developed for a bending analysis of orthotropic laminated
composite plates under various boundary conditions. The displacement field of the present theory is chosen
based on nonlinear variations in the in-plane displacements through the thickness of the plate. By dividing
the transverse displacement into the bending and shear parts and making further assumptions, the number of
unknowns and equations of motion of the present theory is reduced and hence makes them simple to use. In
the analysis, the equation of motion for simply supported thick laminated rectangular plates is obtained
through the use of Hamilton’s principle. Numerical results for the bending and dynamic behaviors of
antisymmetric cross-ply laminated plate under various boundary conditions are presented. The validity of
the present solution is demonstrated by comparison with solutions available in the literature. Numerical
results show that the present theory can archive accuracy comparable to the existing higher order shear
deformation theories that contain more number of unknowns.

Keywords: higher-order theories; shear deformation theory of plates; laminated composite plate

1. Introduction

The use of composite material for the structure/component design has grown significantly over
the last few decades because their response characteristics can be tailored to meet specific design
requirements. Furthermore, composite structures possess high specific stiffness and high specific
strength which leads to overall reduction of weight, by increasing the efficiency of the structure.
Currently, laminate composite are widely used in many structural applications. Due to the high
degrees of anisotropy and the low rigidity in transverse shear of the plates, the Kirchhoff
hypothesis as a classical theory is no longer adequate. The hypothesis states that the normal to the
midplane of a plate remains straight and normal after deformation because of the negligible
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transverse shear effects. However, the classical theory under predicts deflections and over predicts
frequencies as well as buckling loads with moderately thick plates. Many shear deformation theories
account for transverse shear effects have been developed to overcome the deficiencies of the CLPT.
The first-order shear deformation theories based on Reissner (1945) and Mindlin (1951) account for
the transverse shear effects by the way of linear variation of in-plane displacements through the
thickness. Since first-order violates equilibrium conditions at the top and bottom faces of the plate,
shear correction factors are required to rectify the unrealistic variation of the shear strain/stress
through the thickness. In order to overcome the limitations of that theory (first-order), higher-order
shear deformation theories, which involve higher-order terms in Taylor’s expansions of the
displacements in the thickness coordinate, were developed by Reddy (1984), Zenkour (2006),
Tounsi et al. (2013), Hassaine Daouadji et al. (2013), Benferhat et al. (2014), Nedri et al. (2014),
Abdelhak et al. (2014), Mabhi et al. (2015) Mantari (2012) and Ren (2014), and Hebali et al. (2014).
A good review of these theories for the analysis of laminated composite plates is available in the
work of Karama (2009), Reddy (1986), Aydogdu (2009), Meiche (2011). A two variable refined
plate theory using only two unknown functions was developed by Shimpi (2002), Bouazza et al.
(2015) and Tlidji (2014) for isotropic plates, and was extended by Shimpi and Patel (2006) for
orthotropic plates. The most interesting feature of this theory is that it does not require shear
correction factor, and has strong similarities with the classical plate theory in some aspects such as
governing equation, boundary conditions and moment expressions.

In this paper, a simple higher order shear order deformation theory of plates is developed and
applied to the investigation of static and dynamic behavior of laminated composite plates. The
present theory is based on the assumption that the in-plane and transverse displacements consist of
bending and shear components where the bending components do not contribute to shear forces, and
likewise, the shear components do not contribute to bending moments. The most interesting feature
of this theory is that it allows for parabolic distributions of transverse shear stresses across the plate
thickness and satisfies zero shear stress conditions at the top and bottom surfaces of the plate without
using shear correction factors. The equations of motion are derived using Hamilton’s principle. The
fundamental frequencies are found by solving an Eigen value equation. The results obtained by the
present method are compared with solutions and results of the first-order and the other higher-order
theories.

2. Theoretical formulations
2.1 Basic assumptions

Consider a rectangular plate of total thickness h composed of n orthotropic layers with the
coordinate system as shown in Fig. 1. Assumptions of the refined plate's theory are as follows:

- The displacements are small in comparison with the plate thickness and, therefore, strains
involved are infinitesimal.

- The transverse displacement W includes three components of bending Wy, and shear w;. These
components are functions of coordinates X, y, and time t only

W(Xa y,Z,t)ZWb(X, y,t)+W5(X, yat) (1)

- The transverse normal stress o, is negligible in comparison with in-plane stresses o, and 0.
- The displacements U in x-direction and V in y-direction consist of extension, bending, and shear
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Fig. 1 Coordinate system and layer numbering used for a typical laminated plate

components
U=u+u, +u,, V=V+v, +V, )

The bending components U, and V, are assumed to be similar to the displacements given by
the classical plate theory. Therefore, the expression for U, and V, can be given as
ow, ow,
u, =-12 Vy, = —12

OX ° oy 3)

The shear components Us and Vs give rise, in conjunction with W, to the parabolic variations

of shear strains y,, %, and hence to shear stresses oy, oy, through the thickness of the plate in such a
way that shear stresses oy, oy, are zero at the top and bottom faces of the plate. Consequently, the
expression for Us and Vs can be given as

u, = f(z)

S

Ws v, = 1)
ox ay

“

2.2 Kinematics

Based on the assumptions made in the preceding section, the displacement field can be obtained
using Eqgs. (1)-(4)

ow ow
ux,y,z,t)y=u,(x,y,t) —z—2— f(z s
(X,y,z,t) =u,(x,y,1) X ()ax
ow, ow
V(XaY;Z,t)ZVo(X: y,t)_z - f(Z) : (53.)
oy oy

W(Xa ya Z:t) = Wb(xa yat) + WS(X, yat)

where U, and VY, are the mid-plane displacements of the plate in the X and Y direction,
respectively; Wy, and W are the bending and shear components of transverse displacement,
respectively, while f(z) represents shape functions determining the distribution of the transverse



66 Belkacem Adim, Tahar Hassaine Daouadji, Benferhat Rabia and Lazreg Hadji

shear strains and stresses along the thickness, This function ensures zero transverse shear stresses at
the top and bottom surfaces of the plate. The parabolic distributions of transverse shear stresses
across the plate thickness are taken into account in the analysis by means of present function the
assumed displacement field, and is given as:

Present model SSDT: The function f(z) is an sinusoidal shape function (Sinusoidal Shear
Deformation Theory) (Benferhat et al. 2014)

. Tl
f(z) = z — sin( h—) (5b)
The strains associated with the displacements in Eq. (5) are
£, gl kP ks s
=&l e ik b+ (D) ks b Tl 9(2) % (6a)
Ey (=18 y (2) y ;- S
0 b Xz
7/xy 7xy kxy k;y
where
ou, _o'w, _ 0w, oW,
£l ox ki ox’ ks ox° Tel_) o 6b
o | v, ’ vl 2w |7 G o’w, |’ = 8v)\; (6b)
3 - k - y 2 Vx s
0 oy . oy’ K oy p
}/xy auo . % kxy 5 aZWb Xy B aZWS X
oy oX OXoy oxoy
df (2)

And: 9(0)=1-1'(2), f'(9)= &

2.3 Constitutive equations

The stress state in each layer is given by Hooke’s law

T« Qi Q. 0 0 0 |fg
Oy Q. Qu 0 0 0 &y (7a)
Tyr=|0 0 Q4 O 0 |37y
Ty, 0 0 0 Qu 0 |7y
T, 0 0 0 0 Qs 7w

Where Q;are the stiffness’s, which are defined in terms of engineering constants in the material

axes of the layer

E
Qn*i’ Qy = 2, Q12:M’ Q=G> Qu=0Gy, Q=G (7b)

L=v,vy l-v,v, 1=vvy

Since the laminate is made of several orthotropic layers with their material axes oriented
arbitrarily with respect to laminate coordinates, the constitutive equations of each layer must be
transformed to the laminate coordinates X, y, and z. The stress-strain relations in the laminate
coordinates of a k" layer are
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(k) (k) *)

Ox _611 Q, Q¢ 0 0 &
Oy C512 622 626 0 0 &y
Ty = 516 626 666 0 0 Yy (70)
Ty, 0 0 0 644 645 Y ya
T, 0 0 0 645 655_ Vxa

Where 6”- are the transformed material constants, which a given in (Karama 2003) as
Q,=Q,cos*@+2(Q, +2Q,)sin*Hhcos> O +Q,,sin*8
Q,=(Q,, +Q,, —4Q,)sin*Acos> @ + Q,,(sin * & + cos * 9)
Q,, =Q, sin*8 +2(Q, +2Q,)sin 2@cos 6 +Q,, cos * 8
Q, =(Q, -Q, —2Q)sin Acos >0 +(Q, —Q,, +2Q, )sin"’ @ cos
Q, =(Q, -Q, —2Q)sin’*Ocos & +(Q,, —Q,, +2Q, )sin &cos’ @ (7d)
Qe =(Q,, +Q,, —2Q, —2Q, )sin > @cos > @ + Q (sin * & + cos * 9)
Q. =Q,cos’0+Q,sin’0
645 =(Qs — Q, )cos Osin O
Q,;=Qycos*0+Q, sin’@

In which @ is the angle between the global x-axis and the local x-axis of each layer.

2.4 Governing equations

Using Hamilton’s energy principle, we derive the equation of motion of the laminated composite
plate

5fz(u ~V -T)dt=0 (8a)

Where U is the strain energy, T is the kinetic energy of the plate, and V is the work of external
forces. Employing the principle of minimum total energy leads to the general equation of motion and
boundary conditions. Taking the variation of the above equation and integrating by parts, we obtain

t

J. J(axégx + 0,06, +7,,07, +7,00, +7,00,)
t, LV (8b)
— p(U,0U, + Vo0V, + (W, + WS (W, + w))dV - [qd(w, + w,)dA |dt =0

A

Where q is the transverse load, and two points above a variable means the second derivative
with respect to time. With account of Egs. (6), Eq. (8) takes the form
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15}

JITEOUN, =0V N | = 8UN =0V N,  — WM P, — SW, M —26W,M °

XY,y X, XX Xy ,Xy
t, LA
WM, —WM}  —26W M} —dWS,  — é'WSS;Z’y)dA —fq&(wb +w,)dA
’ )
- _[ {5u0(|1l]'0 - I2Wb,x - I4Ws,x )+ é‘Vo (|1Vo - I2Wb,y - I4Ws,y)
A
+ §Wb [Il(Wb + Ws) + IZ(U-O,X +vo,y) - |3(Wb,xx + Wb,yy) - IS(Ws,xx + Ws,yy)]
W [0 (W 4+ )+ 1 (U, 40 ) = 1 (W o+ Wy ) = 1 (W o + W, ) [JdA Tt =0
The stress resultants N, M and S are defined as
N Zy 41
(NxaNy’Nxy):J.hh//Z(O-xao-yaz-xy)dZ:ZI (O-xao-yaz-xy)dz (loa)
- k=1 "2k
N Zk41
MEIMEME)=["" (0,.0,.0,)202= [*(0,.0,.7,)2d (10b)
- k=1 "

S s s h/2
(M3,M M5 = |

N Zy 41
(oo Ty f(2)dz = kZ::l j (0,,0,.7,) f(z)dz  (100)
h/2 N 41
(s:z,s;z)=j_h,2<rxz,ryz>g(z>dz=;Lk (747, ) 9(2)dz (10d)

Inserting Eq. (7) into Egs. (10) and integrating across the thickness of the plate, the stress
resultants are obtained

N A B B°® &
b AN A
M®° =] B D D°|{k"},, s (| as s s (11a)
M S BS DS H S kS SXZ A45 A55 }/XZ
Where
t S S S S
N={N N, N f Me=fmememe )l me={MaMaME ) (11b)
e=1el,e0 70 ), kP = o ko, k2 |, ke =k ks ks (e
A, AL A B, By, By D, D, D
A= A12 Azz Aze > B = Bl2 Bzz st > D=|D, D, Dy (11d)
A Ay A Bs By B D Dy Dg
Blsl BISZ Blsé Dlsl DISZ DIS() H lsl H 182 H 156
B® = Blsz stz ste » D* = D152 D252 D286 > H*=|H 132 H 282 H 236 (11e)
By Bx Bg Di Dy Dg Hi Hy Hg

And the stiffness components and inertias are given as
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h/2
(Aij’Bij7Dij5Bijs5Dijs5Hijs): JQ_ij(lazszz:f(Z)a 7t (z), f2(z)dz , (i,])=(1,2,6) (12a)

-h/2

h/2 2
Ac = [Qylocz)]d (i, )= (4.5) (12b)
-h/2
h/2
(L b by b 1) = jp(l,z,zz,f(Z),zf(Z),[f(Z)]z)dz (12¢)
—-h/2

Collecting the coefficients of &y, Ao, dw and dysin Eq. (9), the equations of motion are obtained

as
Suy N, , + N, =10, - 1,W,, - 1,Wg,
Vg N+ N, =1V, - l,w, - 1T,W,
SWy M P +2M D MY g = L (W W)+ (0, + V) 3
= LWy + Wy ) = (W, + W) (13)
WML +2M Y+ MY+ SE  + S = (W, W)+ (U, + V)

- IS(Wb,xx + Wb,yy ) - Ié(ws,xx + Ws,yy)

Clearly, when the effect of transverse shear deformation is neglected ( Ws =0), Egs. (13) yield the
equations of motion of a composite plate based on the classical theory of plates.

3. Analytical solution for antisymmetric cross-ply laminates

For antisymmetric cross-ply laminates, the following plate stiffnesses are identically zero
Ag = Ay =Dy =Dy = Dls6 = Dzss = Hlse = H256 =0, By, =-By>
B, = -B} (14)
B, =By =B =Bg = Blsz = Bls(y = st(y = B:{> = A435 =0
The exact solution of Egs. (13) for the antisymmetric cross-ply laminated plate under various
boundary conditions can be constructed according to (Ait Amar et al. 2014). The boundary

conditions for an arbitrary edge with simply supported and clamped edge conditionare:
* Clamped (C)

u:V:Wb:WszaWbIavvaaWSIaVVSIO at X:())a and y:07b (15)
oXx oy oX
* Simply supported (S)
v:wb=w5=%:8WS=0 at x=0,a (16a)
a oy
u=wb=w5=%=awszo at y=0,b (16b)
OX OX

The boundary conditions in Egs. (15) and (16) are satisfied by the following expansions
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u =U_ XX Y, (ye'"
v =V, X,X)Y, (y)e““’” (17)
Wy =Wy, X (%) Y, (y)et™
Wy =W, X, (X) Y, (y)e'™
Where Upn, Vin, Wpmn and Wy, unknown parameters must be determined, @ is the Eigen
frequency associated with (m, n) the Eigen-mode. The functions X, (x) and Y, (y) are suggested

here to satisfy at least the geometric boundary conditions given in Egs. (15) and (16) and represent
approximate shapes of the deflected surface of the plate. These functions, for the different cases of
boundary conditions, are listed in Table 1, with A = % and u = anr .

Substituting Eqs. (17) and (14) into Eq. (13), the exact solution of antisymmetric cross-ply
laminates can be determined from equations

a‘ll a’lZ a’l3 a'14 ml] O m]3 m]4 U 0
a, ap Ay Ay | 0 m,, m, m, \Y% _J0 (18)
a13 a23 a33 a34 m3l m32 m33 m34 Wbmn q
a, Ay  ay Ay my, my, my, ms, Wsmn q
Where
ab
= [T (A XY, + Ag XY, X LY, dxdy
0 Oa .
= J-J.(Alz + Ag )X rlnYn”X r'nYndXdy
00
ab
a, =~ [ [[B. XY, + (B, + 2By )XY, XY, dxdy
00
ab
a, =-[[[Bix,Y, +(BS +2B5 )X ,v, K.Y, dxdy
00
ab
ay = [ [(As + Ag X 1Y, XY, dxdy (19)
00
ab
8, = | [ (An XY, + A XY, X Y, dxdy
b 00 | |
8y, = [ [[Bn X Y0 + (B, + 2B, )XY, X Y dxdy
00
ab
a, =-[[[B5 X,y +(BS + 2B X, v, KV, dxdy
00
ay = jl_li [Bll X oY, + (B, +2Bg )X %anv]x m Y, dxdy
00
ay = TT[Bzzx Y +(BIZ +2Bg )X rvr'1Yn"]X mY o dxdy
00 (19)

ab
a33 = JJ._ [Dll X ;]”Yn + 2(D12 + 2 D66 )X lirlen” + D22 X man]x mYn dXdy
00
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St

T DXy, +2(Dg + 2D XY, + D5 X, Y, K.Y, dxdy
0
=“b’ [Bex .y, +(BS + 2B )Xoy, K.Y, dxdy
00
]
0

a, = ﬁ_ DXy, +2(Dg + 2D X LY, + D5 XY, XY, dxdy
00

By x .Y, +(BS +2B5 )Xoy, X,v, dxdy

Sy —C

Y

m

a44zﬁ—[Hflx;;'Yn F2(HS +2H S XY 4 HEX Y = AL X )
00
1:jli—IIX'mYnXAHYndxdy
00
1, X Y, XY, dxdy

I, XY, XY, dxdy

St Ot

-
=

= Jéji— I, X, Y, XY, dxdy
00

b
My = [ [1X .Y, XY, dxdy
0
b
ma, = [ [1,X Y, X Y, dxdy
0
my = [[-1,X,Y, XY, dxdy
0
a
ms, :I
0

m33 Ja.jhlillmenmen dXdy + j!lsmenmen”dXdy Jrjlj’.lsmean;Yn dXdy
00 0 00
m,, =Ja'JQ—IIXmYnXmYndxdy + j'ISXmYnXmYn"dxdy +TTI5XmYnX,'n'Yndxdy
00 0 0 0
m, = T 1,X,Y, XY, dxdy
ab ’
= [[= 1 XY, XY, dxdy » Ma = My
00
m ., =TT—I]XmYnXmYndxdy +TJ§I6XmYnXmYn"dxdy +J§J.J.I6XmYnXI;Yndxdy
00 00 00

The transverse load q is also given as follows

a b
Q(X,y) = Qu | [sinC Ax)sin( py)sin( 2x)sin( uy)dxdy

n A:4 X mYn”]>< mY

, dxdy

71

(20)
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Table 1 The admissible functions X, (X) and Y,(Y)

Boundary conditions The functions X (X) and Y,(Y)
At x=0,a At y=0,b X n(X) Y. (y)

SSSS Xp(0)=X7(0)=0 Y, (0)=Y,"0)=0 sin( 4 X) sin( 4 y)

X (a)y=Xg(a)=0 Y, (b)=Y/"(b)=0

X,(0)=X3(0)=0 Y (0)=Y/(0)=0 sin(Ax)cos( 4 x)~1] sin( u y)[cos( 2 y) —1]
CSCS Xp(@)=Xg(@)=0 Y (b)=Y/"(b)=0
CCSS Xn(0)= X7 (0)=0 Y (0)=Y/"(0)=0 sin * (A X) sin( 1 y)

Xnp(@a)y=Xp(a)y=0 Y, (b)y=Y/"(b)=0

X (0)=X'"(0)=0 Y (0)=Y'(0)=0 i 2 i 2
ceee m (0) m (0) n(0) =Y.(0) sin * (4 x) sin“(uy)

Xnp(a)y= X, (a)=0 Y,(b)=Y/(b)=0

() denotes the derivative with respect to the corresponding coordinates

4. Numerical results and discussion

In this study, various numerical examples are described and discussed for verifying the accuracy
of the present’s models in predicting the bending and free vibration behaviors of an antisymmetric
cross-ply laminates under different boundary conditions. For the verification purpose, the results
obtained by present’s models are compared with those of Reddy (1984) and exact solution of three-
dimensional elasticity (1970). In order to investigate the efficiency of the present theory, a simpler
version of proposed theory (present model) is also developed by omitting the extension component
of transverse displacement. The following lamina properties are used:

Material 1[24] E1: 40E2, Glzz Glg,: 0.6E2, 623: 0.5E2, Vo= 0.25

Material 2[25] E1: 40E2, G12: Glgz 0.5E2, Gg3: 0.6E2, Vo= 0.25

Material 3[23] E]_: 25E2, G12= G]_3= 0.5E2, Gz3= 0.2E2, Vio— 0.25

For convenience, the following non dimensionalizations are used in presenting the numerical
results in graphical and tabular forms

3 . h? 2
WZIOSZ“EZ w(a/2,b/2)> o-xzq?ax(a/Z,b/Z)’ OTy:qhaz o,(al2,b/2)°
0 0 0
21)
h? h 2 (
7, =——1,(00)> T, =—71,(0,b/2)> T=0d |[£
y quZ y( ) qoa ( ) [9) [0 h Ez

4.1 Numerical results for bending analysis

The static bending solution obtained by setting the time derivative terms and in-plane forces to
zero and simplified as
mn (22)

u

\
A Ay Ay Ay | |Wyy

w

o O o O

smn
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Table 2 Dimensionless deflections and stresses in two-layer (0°/90°) simply supported (SSSS) square
laminated plate under sinusoidal transverse load

a/h Theory W o, o, Ty
Model- Elasticity (Pagano, 1970) 4.9362 -0.9070 1.4480 -0.0964
2 Model- Reddy (1984) 4.5619 -1.4277 1.4277 -0.0719
Present model 4.5728 -1.4256 1.4256 -0.0719
Model- Elasticity (Pagano, 1970) 1.7287 -0.7723 0.8036 -0.0586
5 Model- Reddy (1984) 1.6670 -0.8385 0.8385 -0.0558
Present model 1.6680 -0.8380 0.8380 -0.0558
Model- Elasticity (Pagano, 1970) 1.2318 -0.7317 0.7353 -0.0540
10 Model- Reddy (1984) 1.2161 -0.7468 0.7468 -0.0533
Present model 1.2164 -0.7467 0.7467 -0.0533
Model- Elasticity (Pagano, 1970) 1.1060 -0.7200 0.7206 -0.0529
20 Model- Reddy (1984) 1.1018 -0.7235 0.7235 -0.0527
Present model 1.1019 -0.7235 0.7235 -0.0527
Model- Elasticity (Pagano, 1970) 1.0742 -0.7219 0.7219 -0.0529
100 Model- Reddy (1984) 1.0651 -0.7161 0.7161 -0.0525
Present model 1.0651 -0.7161 0.7161 -0.0525

Table 3 The modulus ratio effect on the variation of dimensionless deflection W of an antisymmetric cross-
ply (0/90), square laminates for different boundary conditions

Boundary E/E,
.. a/h
conditions 5 10 20 30 40 50
5 2.1533 1.6274 1.2342 1.0708 0.9801 0.9217
10 1.6332 1.1075 0.7168 0.5567 0.4695 0.4146
SSSS 20 1.5025 0.9764 0.5856 0.4257 0.3386 0.2839
50 1.4659 0.9397 0.5488 0.3888 0.3017 0.2470
100 1.4606 0.9344 0.5435 0.3835 0.2965 0.2417
5 0.5372 0.4350 0.3618 0.3307 0.3125 0.2997
10 0.3308 0.2298 0.1599 0.1323 1174 0.1081
CSCS 20 0.2786 0.1776 0.1078 0.0804 0.0657 0.0566
50 0.2640 0.1629 0.0930 0.0656 0.0510 0.0419
100 0.2619 0.1608 0.0909 0.0635 0.0489 0.0398
5 1.5298 1.2258 1.0181 0.9314 0.8804 0.8447
10 0.9400 0.6401 4425 0.3666 0.3262 0.3009
CCSS 20 0.7909 0.4908 0.2936 0.2183 0.1786 0.1540
50 0.7490 0.4488 0.2515 0.1763 0.1365 0.1120
100 0.7430 0.4427 0.2455 0.1702 0.1305 0.1060
5 1.5210 1.2633 1.0839 1.0041 0.9536 0.9159
10 0.8375 0.5875 0.4260 0.3642 0.3311 0.3102
ccce 20 0.6637 0.4138 0.2531 0.1925 0.1606 0.1409
50 0.6149 0.3649 0.2041 0.1435 0.1117 0.0920

100 0.6079 0.3578 0.1971 0.1365 0.1046 0.0850
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A simply supported two-layer (0°/90°) antisymmetric square laminate under sinusoidal transverse
load is considered. The layers have equal thickness and Material set 3 is used. Numerical values of
dimensionless transverse displacement and inplane stresses are shown in Table 2. Three-dimensional
elasticity results are obtained using the method given by Pagano (1970). The results clearly indicate
that the percentage error with respect to three-dimensional elasticity solution in predicting the
transverse displacement and in-plane stresses is very much lesser in the case of present model and
the prediction of in-plane normal stresses Oy, O, is very poor.
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Fig. 3 The effect of modulus ratio on
dimensionless deflection of antisymmetric four-
layer (0°/90°), square laminates under sinusoidal
transverse load for different boundary conditions
(a/h=10)

Fig. 2 The effect of side-to-thickness ratio on
dimensionless deflection of antisymmetric four-
layer (0°/90°)4 square laminates under sinusoidal
transverse load for different boundary conditions

Table 4 The aspect ratio effect on the variation of dimensionless deflection W of an antisymmetric
cross-ply (0/90), laminates for different boundary conditions

Boundary condition

Number of layers a/b

SSSS CSCS CCSS CCCC

0.5 2.4646 0.4643 0.8784 1.1088

1 1.2161 0.2427 0.6733 0.6032

(0/90), 2 0.1987 0.0464 0.2213 0.1260
3 0.0596 0.0162 0.0757 0.0464

5 0.0148 0.0045 0.0194 0.0130

0.5 1.2953 0.2790 0.5759 0.7290

1 0.6865 0.1558 0.4312 0.4189

(0/90), 2 0.1344 0.0384 0.1558 0.1139
3 0.0486 0.0157 0.0623 0.0479

5 0.0146 0.0049 0.0193 0.0145
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Table 4 Continued
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Boundary condition

Number of layers a/b
SSSS CSCS CCSS Ccccc
0.5 1.1967 0.2613 0.5434 0.6879
1 0.6382 0.1466 0.4060 0.3969
(0/90)5 2 0.1271 0.0368 0.1478 0.1096
3 0.0465 0.0151 0.0596 0.0462
5 0.0141 0.0047 0.0186 0.0139
0.5 1.1657 0.2555 0.5326 0.6743
1 0.6229 0.1436 0.3977 0.3895
(0/90)4 2 0.1247 0.0362 0.1451 0.1079
3 0.0458 0.0149 0.0587 0.0454
5 0.0139 0.0046 0.0183 0.0135
0.5 1.1372 0.2502 0.5224 0.6614
1 0.6087 0.1408 0.3899 0.3825
(0/90)5 2 0.1224 0.0356 0.1425 0.1062
3 0.0450 0.0146 0.0577 0.0446
5 0.0137 0.0045 0.0180 0.0132
0.5 1.1303 0.2489 0.5199 0.6582
1 0.6053 0.1402 0.3880 0.3807
(0/90),6 2 0.1218 0.0355 0.1419 0.1058
3 0.0449 0.0146 0.0575 0.0444
5 0.0136 0.0045 0.0179 0.0131
0.5 1.1683 0.2544 0.5292 0.6687
1 0.6046 0.1400 0.3934 0.3801
(0/90)s, 2 0.1198 0.0352 0.1406 0.1054
3 0.0445 0.0146 0.0571 0.0444
5 0.0136 0.0045 0.0179 0.0131

The logic of the conditions has been met, where we confirm this logic by presenting the results
obtained (Tables 3 and 4) by this method model on the variation of dimensionless deflection of an
antisymmetric cross-ply laminates square for different boundary conditions.

To further illustrate the accuracy of present theory for wide range of thickness ratio a/h, material
anisotropy E1/E2 and aspect ratio, the variations of dimensionless deflection with respect to
thickness ratio, material anisotropy and aspect ratio are illustrated in Figs. 2, 3 and 4, respectively.
Again, the present models and existing FSDT give almost identical solutions, whereas CPT
underestimates deflections of thick laminates with a/h<20 due to ignoring shear deformation effects
(Table 2). The through thickness variations and corresponding values of the in-plane displacement,
normal stresses (Ox, Oy), and shear stresses (Oy, O,,) are also given in Figs. 5,6,7 and 8,

respectively, for a moderately thick laminate with a/h=5.
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4.2 Numerical results for dynamic analysis

In the case of free vibration, the natural frequencies of the laminates can be obtained by setting to
zero the determinant of the coefficient matrix of Eq. (23)

a, 2, a5 a; m, 0 m; m, U 0
ap, a8y Ay Ay —w? 0 My My My, Vin _ 0 (23)
a;; Ay A8p Ay My My My m, Wi, 0
&y 8y Ay Ay My My My, MSy, W gy 0

In Tables 5 and 6, the nondimensional fundamental frequencies of antisymmetrically laminated
cross-ply plates obtained by using different shear deformation theories are shown for various values

Table 5 Nondimensional fundamental frequencies of antisymmetric (SSSS) square plates for various values of
orthotropy ratio with a/h=5

o E\/E,
Lamination Theory
3 10 20 30 40

Model- Exact (Noor, 1973)  6.2578 6.9845 7.6745 8.1763 8.5625

(0°/90°), Present Model 6.2168 6.9881 7.8198 8.5028 9.0841
Model- Reddy (1986) 6.2169 6.9887 7.8210 8.5050 9.0871
Model- Exact (Noor, 1973)  6.5455 8.1445 9.4055 10.1650 10.6790

(0°/90°), Present Model 6.5009 8.1958 9.6273 10.5359 11.1728
Model- Reddy (1986) 6.5008 8.1954 9.6265 10.5348 11.1716
Model- Exact (Noor, 1973)  6.6100 8.4143 9.8398 10.6950 11.2720

(0°/90°), Present Model 6.5558 8.4053 9.9182 10.8546 11.5009
Model- Reddy (1986) 6.5558 8.4052 9.9181 10.8547 11.5012

Model- Exact (Noor, 1973)  6.6458 8.5625 10.0843 11.0027 11.6245

(0°/90°)s Present Model 6.5842 8.5126 10.0671 11.0191 11.6721
Model- Reddy (1986) 6.5842 8.5126 10.0674 11.0197 11.6730

Table 6 Nondimensional fundamental frequencies of antisymmetric (SSSS) square plates for various values of
a/h with El/E2:40

Lamination Theory a/h
2 4 10 20 50 100
(0°/90°), Present Model 57100 83507 10.5669 11.1048 11.2750 11.3001
Model- Reddy (1986) 57170 83546  10.5680 11.1052 11.2751 11.3002
(0°/90°), Present Model 57528  9.7366  14.8474 16.5737 17.1850 17.2784
Model- Reddy (1986) 5.7546  9.7357  14.8463 16.5733 17.1849 17.2784
(0°/90°) Present Model 58702 99870 154635 173774 18.0644 18.1699
Model- Reddy (1986) 5.8741 99878 154632 173772 18.0644 18.1698
(0°/90°)s Present Model 5.9476 10.1226 15.7700 17.7743  18.4984 18.6097

Model- Reddy (1986) 59524 10.1241 15.7700 17.7743  18.4984 18.6097
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of a/h and Young’s modulus ratios. We can see that, in general, this model gives similar results as the
Reddy (1986) and the three-dimensional elasticity solution given in (Noor 1973), in order to predict
the natural frequencies.. It should be noted that unknown functions in present model are four; while
the unknown functions in the higher-order shear deformation theories (Reddy 1986) is five. It can be
concluded that the present model is not only accurate, but also simple in predicting the natural
frequencies of laminated plates.

Can be seen in Table 7 that the dimensionless frequencies predicted by this model on the
variation of dimensionless deflection of an antisymmetric cross-ply laminates square for different
boundary conditions.
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Table 7 Dimensionless fundamental Frequencies @ of antisymmetric cross-ply square plates for different
boundary conditions

Boundary conditions

N° of layers a/h

SSSS CSCS CCSS CCCC

5 9.0871 14.9166 12.9658 15.1351

10 10.5680 19.1522 16.7080 20.5334

(0°/90°), 20 11.1052 21.1120 18.4273 23.3691
50 11.2751 21.8054 19.0320 24.4398

100 11.3002 219114 19.1242 24.6070

5 11.1716 16.4812 14.2097 15.8826

10 14.8463 25.0846 21.8298 25.6243

(0°/90°), 20 16.5733 30.9551 27.1671 33.7361
50 17.1849 33.5615 29.5762 37.9431

100 17.2784 33.9935 29.9779 38.6877

5 11.5012 16.8603 14.5312 16.2173

10 15.4632 25.9454 22.5695 26.3983

(0°/90°); 20 17.3772 32.3675 28.4105 35.1953
50 18.0644 35.2912 31.1191 39.9079

100 18.1698 35.7805 31.5756 40.7546

5 11.6184 17.0059 14.6557 16.3537

10 15.6735 26.2441 22.8265 26.6721

(0°/90°), 20 17.6496 32.8466 28.8321 35.6913
50 18.3622 35.8764 31.6408 40.5723

100 18.4717 36.3852 32.1160 41.4534

5 11.6730 17.0758 14.7156 16.4204

10 15.7700 26.3821 22.9454 26.7996

(0°/90°)5 20 17.7743 33.0661 29.0252 35.9187
50 18.4984 36.1440 31.8794 40.8761

100 18.6097 36.6616 32.3630 41.7728

5 11.7326 17.1532 14.7821 16.4951

10 15.8741 26.5316 23.0742 26.9384

(0°/90°)s 20 17.9084 33.3023 29.2330 36.1636
50 18.6448 36.4317 32.1359 41.2026

100 18.7581 36.9588 32.6285 42.1161

5 11.7614 17.1910 14.8146 16.5320

10 15.9239 26.6035 23.1362 27.0053

(0°/90°)6 20 17.9725 33.4152 29.3324 36.2808
50 18.7148 36.5693 32.2584 41.3587

100 18.8291 37.1008 32.7553 42.2802

5 11.7693 17.2048 14.8006 16.5441

10 15.9277 26.6177 22.9629 27.0237

(0°/90°)5, 20 17.9719 33.4193 28.9131 36.2897
50 18.7122 36.5653 31.6775 41.3554

100 18.8261 37.0952 32.1439 42.2742

Finally, Figs. 9, 10 and 11 show the variation of dimensionless fundamental frequency of
antisymmetric cross- ply (0/90), square laminates versus degree of orthotropic and thickness ratio



80 Belkacem Adim, Tahar Hassaine Daouadji, Benferhat Rabia and Lazreg Hadji

for different boundary conditions.

5. Conclusions

A refined higher-order shear deformation theory of plates has been successfully developed for the
static, buckling and free vibration of simply supported laminated plates. The theory allows for a
square-law variation in the transverse shear strains across the plate thickness and satisfies the zero-
traction boundary conditions on the top and bottom surfaces of the plate without using shear
correction factors. The equations of motion were derived from Hamilton’s principle. The accuracy
and efficiency of the present’s models have been demonstrated for static and free vibration behaviors
of anti-symmetric cross-ply and angle-ply laminates. The conclusions of this theory are as follows:

- The deflection load obtained using present’s models (a simpler version of present theory with
four unknowns) and other higher-order theories found in the literature (five unknowns) are almost
identical.

- Compared to the three-dimensional elasticity solution, the present’s models give more accurate
results of static and dynamic load than other higher order shear deformation theory.

- Compared to the three-dimensional elasticity solution, the present’s theories give more accurate
results of deflection and dynamic load than other higher order shear deformation theory found in the
literature.

- The natural frequencies obtained by the proposed model with four unknowns are almost
identical to those predicted by the shear deformation theories containing five unknowns.

It can be concluded that the proposed present’s models are accurate in solving the static and
dynamic behaviors of anti-symmetric cross-ply and angle-ply laminated composite plates and
efficient in predicting the vibration responses of composite plates. In perspective we aim a numerical
study using the finite element analysis of composite plates Carrera (2002) and Carrera et al. (2012).
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