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Abstract.  In this study, the bending and dynamic behaviors of laminated composite plates is examined by 

using a refined shear deformation theory and developed for a bending analysis of orthotropic laminated 

composite plates under various boundary conditions. The displacement field of the present theory is chosen 

based on nonlinear variations in the in-plane displacements through the thickness of the plate. By dividing 

the transverse displacement into the bending and shear parts and making further assumptions, the number of 

unknowns and equations of motion of the present theory is reduced and hence makes them simple to use. In 

the analysis, the equation of motion for simply supported thick laminated rectangular plates is obtained 

through the use of Hamilton’s principle. Numerical results for the bending and dynamic behaviors of 

antisymmetric cross-ply laminated plate under various boundary conditions are presented. The validity of 

the present solution is demonstrated by comparison with solutions available in the literature. Numerical 

results show that the present theory can archive accuracy comparable to the existing higher order shear 

deformation theories that contain more number of unknowns. 
 

Keywords:  higher-order theories; shear deformation theory of plates; laminated composite plate 

 

 

1. Introduction 
 

The use of composite material for the structure/component design has grown significantly over 

the last few decades because their response characteristics can be tailored to meet specific design 

requirements. Furthermore, composite structures possess high specific stiffness and high specific 

strength which leads to overall reduction of weight, by increasing the efficiency of the structure. 

Currently, laminate composite are widely used in many structural applications. Due to the high 

degrees of anisotropy and the low rigidity in transverse shear of the plates, the Kirchhoff 

hypothesis as a classical theory is no longer adequate. The hypothesis states that the normal to the 

midplane of a plate remains straight and normal after deformation because of the negligible  
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transverse shear effects. However, the classical theory under predicts deflections and over predicts 
frequencies as well as buckling loads with moderately thick plates. Many shear deformation theories 
account for transverse shear effects have been developed to overcome the deficiencies of the CLPT. 
The first-order shear deformation theories based on Reissner (1945) and Mindlin (1951) account for 
the transverse shear effects by the way of linear variation of in-plane displacements through the 
thickness. Since first-order violates equilibrium conditions at the top and bottom faces of the plate, 
shear correction factors are required to rectify the unrealistic variation of the shear strain/stress 
through the thickness. In order to overcome the limitations of that theory (first-order), higher-order 
shear deformation theories, which involve higher-order terms in Taylor’s expansions of the 
displacements in the thickness coordinate, were developed by Reddy (1984), Zenkour (2006), 
Tounsi et al. (2013), Hassaine Daouadji et al. (2013), Benferhat et al. (2014), Nedri et al. (2014), 
Abdelhak et al. (2014), Mahi et al. (2015) Mantari (2012) and Ren (2014), and Hebali et al. (2014). 
A good review of these theories for the analysis of laminated composite plates is available in the 
work of Karama (2009), Reddy (1986), Aydogdu (2009), Meiche (2011). A two variable refined 
plate theory using only two unknown functions was developed by Shimpi (2002), Bouazza et al. 
(2015) and Tlidji (2014) for isotropic plates, and was extended by Shimpi and Patel (2006) for 
orthotropic plates. The most interesting feature of this theory is that it does not require shear 
correction factor, and has strong similarities with the classical plate theory in some aspects such as 
governing equation, boundary conditions and moment expressions.  

In this paper, a simple higher order shear order deformation theory of plates is developed and 
applied to the investigation of static and dynamic behavior of laminated composite plates. The 
present theory is based on the assumption that the in-plane and transverse displacements consist of 
bending and shear components where the bending components do not contribute to shear forces, and 
likewise, the shear components do not contribute to bending moments. The most interesting feature 
of this theory is that it allows for parabolic distributions of transverse shear stresses across the plate 
thickness and satisfies zero shear stress conditions at the top and bottom surfaces of the plate without 
using shear correction factors. The equations of motion are derived using Hamilton’s principle. The 
fundamental frequencies are found by solving an Eigen value equation. The results obtained by the 
present method are compared with solutions and results of the first-order and the other higher-order 
theories. 

 
 

2. Theoretical formulations 
 
2.1 Basic assumptions 
 
Consider a rectangular plate of total thickness h composed of n orthotropic layers with the 

coordinate system as shown in Fig. 1. Assumptions of the refined plate's theory are as follows: 
- The displacements are small in comparison with the plate thickness and, therefore, strains 

involved are infinitesimal. 
- The transverse displacement w includes three components of bending wb and shear ws. These 

components are functions of coordinates x, y, and time t only 

),,(),,(),,,( tyxwtyxwtzyxw sb                                 (1) 

- The transverse normal stress z  is negligible in comparison with in-plane stresses x  and y . 
- The displacements U in x-direction and V in y-direction consist of extension, bending, and shear  
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shear strains and stresses along the thickness, This function ensures zero transverse shear stresses at 
the top and bottom surfaces of the plate. The parabolic distributions of transverse shear stresses 
across the plate thickness are taken into account in the analysis by means of present function the 
assumed displacement field, and is given as: 

Present model SSDT: The function f(z) is an sinusoidal shape function (Sinusoidal Shear 
Deformation Theory) (Benferhat et al. 2014) 

)sin()(
h

z
zzf




                    
(5b) 

The strains associated with the displacements in Eq. (5) are 
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And: )(1)( zfzg  , 
dz

zdf
zf
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2.3 Constitutive equations 

 
The stress state in each layer is given by Hooke’s law 
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Where ijQ are the stiffness’s, which are defined in terms of engineering constants in the material 

axes of the layer 
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1266 GQ  ,  2344 GQ  ,  1355 GQ          (7b) 

Since the laminate is made of several orthotropic layers with their material axes oriented 
arbitrarily with respect to laminate coordinates, the constitutive equations of each layer must be 
transformed to the laminate coordinates x, y, and z. The stress-strain relations in the laminate 
coordinates of a kth layer are 
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Where ijQ are the transformed material constants, which a given in (Karama 2003) as 
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In which   is the angle between the global x-axis and the local x-axis of each layer. 
 
2.4 Governing equations 
 
Using Hamilton’s energy principle, we derive the equation of motion of the laminated composite 

plate 

 2

1

0)(
t

t
dtTVU                                   (8a) 

Where U is the strain energy, T is the kinetic energy of the plate, and V is the work of external 
forces. Employing the principle of minimum total energy leads to the general equation of motion and 
boundary conditions. Taking the variation of the above equation and integrating by parts, we obtain 
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Where q  is the transverse load, and two points above a variable means the second derivative 
with respect to time. With account of Eqs. (6), Eq. (8) takes the form 
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The stress resultants N, M and S are defined as 
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Inserting Eq. (7) into Eqs. (10) and integrating across the thickness of the plate, the stress 
resultants are obtained 
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And the stiffness components and inertias are given as 
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Collecting the coefficients of u0, v0, wb and ws in Eq. (9), the equations of motion are obtained 
as 
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(13)

Clearly, when the effect of transverse shear deformation is neglected ( sw =0), Eqs. (13) yield the 
equations of motion of a composite plate based on the classical theory of plates. 
 
 
3. Analytical solution for antisymmetric cross-ply laminates 

 
For antisymmetric cross-ply laminates, the following plate stiffnesses are identically zero 
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ss BB 1122   
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(14)

The exact solution of Eqs. (13) for the antisymmetric cross-ply laminated plate under various 
boundary conditions can be constructed according to (Ait Amar et al. 2014). The boundary 
conditions for an arbitrary edge with simply supported and clamped edge conditionare: 
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The boundary conditions in Eqs. (15) and (16) are satisfied by the following expansions 
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Where Umn, Vmn, Wbmn and Wsmn unknown parameters must be determined,  is the Eigen 
frequency associated with (m, n) the Eigen-mode. The functions )(xX m  and )(yYn  are suggested 
here to satisfy at least the geometric boundary conditions given in Eqs. (15) and (16) and represent 
approximate shapes of the deflected surface of the plate. These functions, for the different cases of 

boundary conditions, are listed in Table 1, with 
a

m   and 
b

n  . 

Substituting Eqs. (17) and (14) into Eq. (13), the exact solution of antisymmetric cross-ply 
laminates can be determined from equations 
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The transverse load q is also given as follows 
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Table 1 The admissible functions )( xX m  and )( yYn  

 
Boundary conditions The functions )(xX m  and )(yYn  

At  x=0, a At  y=0, b )( xX m )( yY n
 

SSSS 
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')(  denotes the derivative with respect to the corresponding coordinates 

 
 

4. Numerical results and discussion 
 
In this study, various numerical examples are described and discussed for verifying the accuracy 

of the present’s models in predicting the bending and free vibration behaviors of an antisymmetric 
cross-ply laminates under different boundary conditions. For the verification purpose, the results 
obtained by present’s models are compared with those of Reddy (1984) and exact solution of three-
dimensional elasticity (1970). In order to investigate the efficiency of the present theory, a simpler 
version of proposed theory (present model) is also developed by omitting the extension component 
of transverse displacement. The following lamina properties are used: 

Material 1[24]:  E1= 40E2,   G12= G13= 0.6E2,    G23= 0.5E2,  12= 0.25  
Material 2[25]: E1= 40E2,   G12= G13= 0.5E2,    G23= 0.6E2,  12= 0.25  
Material 3[23]: E1= 25E2,   G12= G13= 0.5E2,    G23= 0.2E2,  12= 0.25  
For convenience, the following non dimensionalizations are used in presenting the numerical 

results in graphical and tabular forms 
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4.1 Numerical results for bending analysis 
 
The static bending solution obtained by setting the time derivative terms and in-plane forces to 

zero and simplified as 
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Table 2 Dimensionless deflections and stresses in two-layer (0°/90°) simply supported (SSSS) square 
laminated plate under sinusoidal transverse load 

a/h Theory w  x  y  xy  

2 
Model- Elasticity (Pagano, 1970) 4.9362 -0.9070 1.4480 -0.0964 

Model- Reddy (1984) 4.5619 -1.4277 1.4277 -0.0719 
Present model 4.5728 -1.4256 1.4256 -0.0719 

5 
Model- Elasticity (Pagano, 1970) 1.7287 -0.7723 0.8036 -0.0586 

Model- Reddy (1984) 1.6670 -0.8385 0.8385 -0.0558 
Present model 1.6680 -0.8380 0.8380 -0.0558 

10 
Model- Elasticity (Pagano, 1970) 1.2318 -0.7317 0.7353 -0.0540 

Model- Reddy (1984) 1.2161 -0.7468 0.7468 -0.0533 
Present model 1.2164 -0.7467 0.7467 -0.0533 

20 
Model- Elasticity (Pagano, 1970) 1.1060 -0.7200 0.7206 -0.0529 

Model- Reddy (1984) 1.1018 -0.7235 0.7235 -0.0527 
Present model 1.1019 -0.7235 0.7235 -0.0527 

100 
Model- Elasticity (Pagano, 1970) 1.0742 -0.7219 0.7219 -0.0529 

Model- Reddy (1984) 1.0651 -0.7161 0.7161 -0.0525 
Present model 1.0651 -0.7161 0.7161 -0.0525 

 
Table 3 The modulus ratio effect on the variation of dimensionless deflection w  of an antisymmetric cross-
ply 4)90/0( square laminates for different boundary conditions 

Boundary  
conditions 

a/h 
E1/E2 

5 10 20 30 40 50 

SSSS 

5 2.1533 1.6274 1.2342 1.0708 0.9801 0.9217

10 1.6332 1.1075 0.7168 0.5567 0.4695 0.4146

20 1.5025 0.9764 0.5856 0.4257 0.3386 0.2839

50 1.4659 0.9397 0.5488 0.3888 0.3017 0.2470

100 1.4606 0.9344 0.5435 0.3835 0.2965 0.2417

CSCS 

5 0.5372 0.4350 0.3618 0.3307 0.3125 0.2997

10 0.3308 0.2298 0.1599 0.1323 .1174 0.1081

20 0.2786 0.1776 0.1078 0.0804 0.0657 0.0566

50 0.2640 0.1629 0.0930 0.0656 0.0510 0.0419

100 0.2619 0.1608 0.0909 0.0635 0.0489 0.0398

CCSS 

5 1.5298 1.2258 1.0181 0.9314 0.8804 0.8447

10 0.9400 0.6401 4425 0.3666 0.3262 0.3009

20 0.7909 0.4908 0.2936 0.2183 0.1786 0.1540

50 0.7490 0.4488 0.2515 0.1763 0.1365 0.1120

100 0.7430 0.4427 0.2455 0.1702 0.1305 0.1060

CCCC 

5 1.5210 1.2633 1.0839 1.0041 0.9536 0.9159

10 0.8375 0.5875 0.4260 0.3642 0.3311 0.3102

20 0.6637 0.4138 0.2531 0.1925 0.1606 0.1409

50 0.6149 0.3649 0.2041 0.1435 0.1117 0.0920

100 0.6079 0.3578 0.1971 0.1365 0.1046 0.0850
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A simply supported two-layer (0°/90°) antisymmetric square laminate under sinusoidal transverse 
load is considered. The layers have equal thickness and Material set 3 is used. Numerical values of 
dimensionless transverse displacement and inplane stresses are shown in Table 2. Three-dimensional 
elasticity results are obtained using the method given by Pagano (1970). The results clearly indicate 
that the percentage error with respect to three-dimensional elasticity solution in predicting the 
transverse displacement and in-plane stresses is very much lesser in the case of present model and 
the prediction of in-plane normal stresses x , y  is very poor. 
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Fig. 2 The effect of side-to-thickness ratio on 
dimensionless deflection of antisymmetric four-
layer (0°/90°)4 square laminates under sinusoidal 
transverse load for different boundary conditions 

Fig. 3 The effect of modulus ratio on 
dimensionless deflection of antisymmetric four-
layer (0°/90°)4 square laminates under sinusoidal 
transverse load for different boundary conditions 
(a/h=10) 

 
Table 4 The aspect ratio effect on the variation of dimensionless deflection w  of an antisymmetric 
cross-ply n)90/0(  laminates for different boundary conditions 

Number of layers a/b 
Boundary condition 

SSSS CSCS CCSS CCCC 

(0/90)1 

0.5 2.4646 0.4643 0.8784 1.1088 

1 1.2161 0.2427 0.6733 0.6032 

2 0.1987 0.0464 0.2213 0.1260 

3 0.0596 0.0162 0.0757 0.0464 

5 0.0148 0.0045 0.0194 0.0130 

(0/90)2 

0.5 1.2953 0.2790 0.5759 0.7290 

1 0.6865 0.1558 0.4312 0.4189 

2 0.1344 0.0384 0.1558 0.1139 

3 0.0486 0.0157 0.0623 0.0479 

5 0.0146 0.0049 0.0193 0.0145 
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Table 4 Continued 

Number of layers a/b 
Boundary condition 

SSSS CSCS CCSS CCCC 

(0/90)3 

0.5 1.1967 0.2613 0.5434 0.6879 

1 0.6382 0.1466 0.4060 0.3969 

2 0.1271 0.0368 0.1478 0.1096 

3 0.0465 0.0151 0.0596 0.0462 

5 0.0141 0.0047 0.0186 0.0139 

(0/90)4 

0.5 1.1657 0.2555 0.5326 0.6743 

1 0.6229 0.1436 0.3977 0.3895 

2 0.1247 0.0362 0.1451 0.1079 

3 0.0458 0.0149 0.0587 0.0454 

5 0.0139 0.0046 0.0183 0.0135 

(0/90)8 

0.5 1.1372 0.2502 0.5224 0.6614 

1 0.6087 0.1408 0.3899 0.3825 

2 0.1224 0.0356 0.1425 0.1062 

3 0.0450 0.0146 0.0577 0.0446 

5 0.0137 0.0045 0.0180 0.0132 

(0/90)16 

0.5 1.1303 0.2489 0.5199 0.6582 

1 0.6053 0.1402 0.3880 0.3807 

2 0.1218 0.0355 0.1419 0.1058 

3 0.0449 0.0146 0.0575 0.0444 

5 0.0136 0.0045 0.0179 0.0131 

(0/90)32 

0.5 1.1683 0.2544 0.5292 0.6687 

1 0.6046 0.1400 0.3934 0.3801 

2 0.1198 0.0352 0.1406 0.1054 

3 0.0445 0.0146 0.0571 0.0444 

5 0.0136 0.0045 0.0179 0.0131 

 
 
The logic of the conditions has been met, where we confirm this logic by presenting the results 

obtained (Tables 3 and 4) by this method model on the variation of dimensionless deflection of an 
antisymmetric cross-ply laminates square for different boundary conditions. 

To further illustrate the accuracy of present theory for wide range of thickness ratio a/h, material 
anisotropy E1/E2 and aspect ratio, the variations of dimensionless deflection with respect to 
thickness ratio, material anisotropy and aspect ratio are illustrated in Figs. 2, 3 and 4, respectively. 
Again, the present models and existing FSDT give almost identical solutions, whereas CPT 
underestimates deflections of thick laminates with a/h<20 due to ignoring shear deformation effects 
(Table 2). The through thickness variations and corresponding values of the in-plane displacement, 
normal stresses ( x , y ), and shear stresses ( xy , xz ) are also given in Figs. 5,6,7 and 8, 
respectively, for a moderately thick laminate with a/h=5. 
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Fig. 4 The effect of aspect ratio on dimensionless deflection of antisymmetric four-layer (0°/90°)4 square 
laminates under sinusoidal transverse load for different boundary conditions 
 

-0,5

-0,4

-0,3

-0,2

-0,1

0,0

0,1

0,2

0,3

0,4

0,5

-2,0 -1,5 -1,0 -0,5 0,0 0,5 1,0 1,5

z/
h

 a/b=0,5
 a/b=1
 a/b=2

         a/h=5

Normal stress xx

-0,5

-0,4

-0,3

-0,2

-0,1

0,0

0,1

0,2

0,3

0,4

0,5

-0,7 -0,5 -0,3 -0,1 0,1 0,3 0,5 0,7 0,9

Normal stress yy

z/
h

 a/b=0,5
 a/b=1
 a/b=2

    a/h=5

 
Fig. 5 Variation of normal stress x  through the 

thickness of simply supported (SSSS) two-layer 
(0°/90°) square plate for different values of the 
aspect ratio 

Fig. 6 Variation of normal stress y  through the 

thickness of simply supported (SSSS) antisymmetric 
two-layer (0°/90°) square plate for different values of 
the aspect ratio 
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xy  through the thickness of simply supported 

(SSSS) two-layer (0°/90°) square plate for 
different values of the aspect ratio 

Fig. 8 Variation of tangential stress xz  through the 

thickness of simply supported (SSSS) two-layer 
(0°/90°) square plate for different values of the aspect 
ratio 
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4.2 Numerical results for dynamic analysis 
 
In the case of free vibration, the natural frequencies of the laminates can be obtained by setting to 

zero the determinant of the coefficient matrix of Eq. (23) 
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In Tables 5 and 6, the nondimensional fundamental frequencies of antisymmetrically laminated 
cross-ply plates obtained by using different shear deformation theories are shown for various values 

 
 

Table 5 Nondimensional fundamental frequencies of antisymmetric (SSSS) square plates for various values of 
orthotropy ratio with a/h=5 

Lamination Theory 
E1/E2 

3 10 20 30 40 

(0°/90°)1 

Model- Exact (Noor, 1973) 6.2578 6.9845 7.6745 8.1763 8.5625 

Present Model 6.2168 6.9881 7.8198 8.5028 9.0841 

Model- Reddy (1986) 6.2169 6.9887 7.8210 8.5050 9.0871 

(0°/90°)2 

Model- Exact (Noor, 1973) 6.5455 8.1445 9.4055 10.1650 10.6790 

Present Model 6.5009 8.1958 9.6273 10.5359 11.1728 

Model- Reddy (1986) 6.5008 8.1954 9.6265 10.5348 11.1716 

(0°/90°)3 

Model- Exact (Noor, 1973) 6.6100 8.4143 9.8398 10.6950 11.2720 

Present Model 6.5558 8.4053 9.9182 10.8546 11.5009 

Model- Reddy (1986) 6.5558 8.4052 9.9181 10.8547 11.5012 

(0°/90°)5 

Model- Exact (Noor, 1973) 6.6458 8.5625 10.0843 11.0027 11.6245 

Present Model 6.5842 8.5126 10.0671 11.0191 11.6721 

Model- Reddy (1986) 6.5842 8.5126 10.0674 11.0197 11.6730 

 
Table 6 Nondimensional fundamental frequencies of antisymmetric (SSSS) square plates for various values of 
a/h with E1/E2=40 

Lamination Theory 
a/h 

2 4 10 20 50 100 

(0°/90°)1 
Present Model 5.7100 8.3507 10.5669 11.1048 11.2750 11.3001

Model- Reddy (1986) 5.7170 8.3546 10.5680 11.1052 11.2751 11.3002

(0°/90°)2 
Present Model 5.7528 9.7366 14.8474 16.5737 17.1850 17.2784

Model- Reddy (1986) 5.7546 9.7357 14.8463 16.5733 17.1849 17.2784

(0°/90°)3 
Present Model 5.8702 9.9870 15.4635 17.3774 18.0644 18.1699

Model- Reddy (1986) 5.8741 9.9878 15.4632 17.3772 18.0644 18.1698

(0°/90°)5 
Present Model 5.9476 10.1226 15.7700 17.7743 18.4984 18.6097

Model- Reddy (1986) 5.9524 10.1241 15.7700 17.7743 18.4984 18.6097
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of a/h and Young’s modulus ratios. We can see that, in general, this model gives similar results as the 
Reddy (1986) and the three-dimensional elasticity solution given in (Noor 1973), in order to predict 
the natural frequencies.. It should be noted that unknown functions in present model are four; while 
the unknown functions in the higher-order shear deformation theories (Reddy 1986) is five. It can be 
concluded that the present model is not only accurate, but also simple in predicting the natural 
frequencies of laminated plates. 

Can be seen in Table 7 that the dimensionless frequencies predicted by this model on the 
variation of dimensionless deflection of an antisymmetric cross-ply laminates square for different 
boundary conditions. 
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Fig. 9 Variation of dimensionless fundamental 
frequency of antisymmetric cross- ply (0/90)n 
square laminates versus degree of orthotropic 
(SSSS) 

Fig. 10 Variation of dimensionless fundamental 
frequency of antisymmetric cross-ply (0/90)n square 
laminates versus thickness ratio (SSSS) 
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Fig. 11 Variation of dimensionless fundamental frequency of antisymmetric cross- ply (0/90)4 square laminates 
for different boundary conditions: (a) degree of orthotropie, (b) thickness ratio 
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Table 7 Dimensionless fundamental Frequencies   of antisymmetric cross-ply square plates for different 
boundary conditions 

N° of layers a/h 
Boundary conditions

SSSS CSCS CCSS CCCC 

(0°/90°)1 

5 9.0871 14.9166 12.9658 15.1351 
10 10.5680 19.1522 16.7080 20.5334 
20 11.1052 21.1120 18.4273 23.3691 
50 11.2751 21.8054 19.0320 24.4398 
100 11.3002 21.9114 19.1242 24.6070 

(0°/90°)2 

5 11.1716 16.4812 14.2097 15.8826 
10 14.8463 25.0846 21.8298 25.6243 
20 16.5733 30.9551 27.1671 33.7361 
50 17.1849 33.5615 29.5762 37.9431 
100 17.2784 33.9935 29.9779 38.6877 

(0°/90°)3 

5 11.5012 16.8603 14.5312 16.2173 
10 15.4632 25.9454 22.5695 26.3983 
20 17.3772 32.3675 28.4105 35.1953 
50 18.0644 35.2912 31.1191 39.9079 
100 18.1698 35.7805 31.5756 40.7546 

(0°/90°)4 

5 11.6184 17.0059 14.6557 16.3537 
10 15.6735 26.2441 22.8265 26.6721 
20 17.6496 32.8466 28.8321 35.6913 
50 18.3622 35.8764 31.6408 40.5723 
100 18.4717 36.3852 32.1160 41.4534 

(0°/90°)5 

5 11.6730 17.0758 14.7156 16.4204 
10 15.7700 26.3821 22.9454 26.7996 
20 17.7743 33.0661 29.0252 35.9187 
50 18.4984 36.1440 31.8794 40.8761 
100 18.6097 36.6616 32.3630 41.7728 

(0°/90°)8 

5 11.7326 17.1532 14.7821 16.4951 
10 15.8741 26.5316 23.0742 26.9384 
20 17.9084 33.3023 29.2330 36.1636 
50 18.6448 36.4317 32.1359 41.2026 
100 18.7581 36.9588 32.6285 42.1161 

(0°/90°)16 

5 11.7614 17.1910 14.8146 16.5320 
10 15.9239 26.6035 23.1362 27.0053 
20 17.9725 33.4152 29.3324 36.2808 
50 18.7148 36.5693 32.2584 41.3587 
100 18.8291 37.1008 32.7553 42.2802 

(0°/90°)32 

5 11.7693 17.2048 14.8006 16.5441 
10 15.9277 26.6177 22.9629 27.0237 
20 17.9719 33.4193 28.9131 36.2897 
50 18.7122 36.5653 31.6775 41.3554 
100 18.8261 37.0952 32.1439 42.2742 

 
 
 
Finally, Figs. 9, 10 and 11 show the variation of dimensionless fundamental frequency of  

antisymmetric cross- ply (0/90)n square laminates versus degree of orthotropic and thickness ratio 

79



 
 
 
 
 
 

Belkacem Adim, Tahar Hassaine Daouadji, Benferhat Rabia and Lazreg Hadji 

for different boundary conditions. 
 
 

5. Conclusions 
 
A refined higher-order shear deformation theory of plates has been successfully developed for the 

static, buckling and free vibration of simply supported laminated plates. The theory allows for a 
square-law variation in the transverse shear strains across the plate thickness and satisfies the zero-
traction boundary conditions on the top and bottom surfaces of the plate without using shear 
correction factors. The equations of motion were derived from Hamilton’s principle. The accuracy 
and efficiency of the present’s models have been demonstrated for static and free vibration behaviors 
of anti-symmetric cross-ply and angle-ply laminates. The conclusions of this theory are as follows: 

- The deflection load obtained using present’s models (a simpler version of present theory with 
four unknowns) and other higher-order theories found in the literature (five unknowns) are almost 
identical. 

- Compared to the three-dimensional elasticity solution, the present’s models give more accurate 
results of static and dynamic load than other higher order shear deformation theory. 

- Compared to the three-dimensional elasticity solution, the present’s theories give more accurate 
results of deflection and dynamic load than other higher order shear deformation theory found in the 
literature. 

- The natural frequencies obtained by the proposed model with four unknowns are almost 
identical to those predicted by the shear deformation theories containing five unknowns. 

It can be concluded that the proposed present’s models are accurate in solving the static  and 
dynamic behaviors of anti-symmetric cross-ply and angle-ply laminated composite plates and 
efficient in predicting the vibration responses of composite plates. In perspective we aim a numerical 
study using the finite element analysis of composite plates Carrera (2002) and Carrera et al. (2012). 
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