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Abstract.  Structures with soft story irregularity have been seriously damaged in earthquakes. Therefore, the 

analysis of dynamic behavior of structures with soft story irregularity is of great value and relevance. 

In this study, a certain method will be used to discover the displacements and internal forces and to find 

out results about soft story irregularity. For this study, the multi-story frame-hinged shear wall system has 

been used as a model according to the continuous calculation system. The dynamic characteristics of the 

system have been obtained by analyzing the governing differential equation of the system. The dynamic 

characteristics have been calculated for a practical and quick analysis as indicated in tables. The suggested 

method is wholly based on manual calculation. A spectral analysis can be easily conducted with the help of 

Tables provided by this study.  

A sample has been solved and compared to the finite elements method to study the suitability of the 

method suggested at the end of this study. 
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1. Introduction 
 

Many structures with soft story irregularity have been either seriously damaged, or fully 

collapsed in earthquakes that have taken place throughout history. Large displacements that occur 

on the soft story result in damage or total collapse of these types of structures. Therefore, it is 

important to accurately determine the dynamic behavior of these types of structures.  

A series of studies concerning the soft story is presented in the literature. Two of them are 

summarized below. 

Colunga (2010) conducted a study to determine the soft story irregularity on the first floor.  For 

this purpose, the method presented by the author is investigated by comparing with the equation 

for determining the soft story irregularity in the Mexican Earthquake Code. Abidi et al. (2012) 

studied the soft story irregularity in shear wall structures. 

The continuous system calculation method is a method used in static, dynamic, and stability 

analysis of multi-story structures and buildings. It is really useful and helpful in understanding the  
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behavior of these kinds of structures and in analyzing the stages of preliminary sizing.  
There have been many studies (Rosman 1964, Rosman 1974, Heidebrecht and Stafford 1974, 

Bilyap 1979, Rosman 1981, Baikov and Sigalov 1983, Balendra et al. 1984, Basu et al. 1984, 
Stafford Smith and Crowe 1986, Nollet and Stafford Smith 1993, Toutanji 1997, Wang 1997, 
Mancini and Savassi 1999, Miranda 1999, Quanfeng et al. 1999, Kuang and Ng 2000, Wang et al. 
2000, Ng and Kuang 2000, Zalka 2000, Swaddiwudhipong et al. 2001, Hoenderkamp 2001, Zalka 
2001, Hoenderkamp 2002, Miranda and Reyes 2002, Potzta and Kollar 2003, Savassi and Mancini 
2004, Tarjan and Kollar 2004, Miranda and Taghavi 2005, Taghavi and Miranda 2005, Reinoso 
and Miranda 2005, Georgoussis 2006, Dym and Williams 2007, Rafezy et al. 2007, Kaviani et al. 
2008, Laier 2008, Meftah and Tounsi 2008, Rafezy and Howson 2008, Savassi and Mancini 2009, 
Bozdogan 2009, Zalka 2009, Kuang and Ng 2009, Yang et al. 2010, Kazaz and Gulkan 2012, 
Jahanshahi and Rahgozar 2012, Wdowicki and Wdowicka 2012, Al-Aasam and Mandal 2013, 
Carpinteri et al. 2013, Zalka 2013, Malekinejad and Rahgozar 2013, Georgoussis 2014, Zalka 
2014, Belhadj and Meftah 2015, Rodriguez and Miranda 2015, Tekeli et al. 2015) done in this 
field of academia that have used the continuous system calculation method. Pan et al. (2015) have 
modeled structures according to the continuous system calculation model to examine the impact of 
soft story irregularity. Their results have helped researchers discover a deeper understanding of the 
displacement and internal forces relations for three different static loading situations. They 
compared a five-story sample analyzed by using the method they suggested at the end of this study 
with the SAP2000 program. In consideration of the results, they found a difference between the 
method they suggested and the SAP2000 program by a maximum 12%.  

In this study, the method suggested by Pan et al. for static analysis has been developed for 
dynamic analysis, and the results have been tabulated for easy and quick use. Therefore, the 
analysis can be quickly conducted with the help of the tables provided by this study. In the 
development of the equations and tables obtained during the study, the following have been 
accepted:  

a) Material is linear elastic. 
b) It has been accepted that the displacements are small. Because of this, the geometric non-

linearity is disregarded.  
c) It has been accepted that the material and geometric characteristics are uniform throughout 

the height of the structure. 
d) Shear walls are modeled as bending beams and the shear displacements of the shear walls 

have been disregarded. 
e) Shear wall is considered as hinged supported. 
f) The frame element is modeled as shear beam and the axial displacement is taken into account 

by multiplying the equivalent shear stiffness by a correction coefficient. 
g) Torsion impacts have been disregarded. 
 
 

2. Mathematical model 
 
The multi-story frame-hinged shear wall system can be shown as an equivalent of a bending-

shear beam (Fig. 1). In Fig. 1, the rods with hinges on both ends represent the slabs on the floor 
levels and are continuously rigid within their own planes.  

According to the model, the following governing differential equation is written for the free 
vibration analysis as indicated above  
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Fig. 1 Equivalent model of frame hinged shear wall structures 
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where m represents the mass of the  story, h symbolizes the height of the story, and z indicates the 
vertical axis throughout the height of the structure.  

EI represents the total bending stiffness of the shear walls. It is calculated using the following 
equation. (Zalka 2000) 





f

i
iEIEI
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                               (2) 

where f represents the number of shear walls. 
K indicates the equivalent shear stiffness. It is calculated using the following equation. (Baikov 

and Sigalov 1983) 
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The representation of r is the contribution of beams to the shear stiffness and s indicates the 
contribution of columns to the shear stiffness. These are calculated using the following 
calculations 
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Respectively, p and q indicate the numbers of beams and columns on a floor. When Eq. (1) is 
separated into its variables based on position and time using Eq. (6), the ordinary differential 
equations will be achieved as displayed under Eqs. (7) and (8).  

K EI H

z

y 

47



 
 
 
 
 
 

Kanat Burak Bozdogan and Duygu Öztürk 

)(*)(),( tBzAtzY                              (6) 

0
2

2

2

4

4

 A
h

m

dz

AdK
dz

AdEI


                        (7) 

02

2

2

 B
dt

Bd                                (8) 

A illustrates the mode shape function and ω illustrates the angular frequency.  
In the system displayed in Fig. 1, the displacement and the bending moment at the bottom of 

the structure and the bending moment with the shear force at the top is zero. The boundary 
conditions as specified can be shown using the Eqs. (9), (10), (11) and (12) 

0A       0 z                               (9) 

0EI       0
2

2


dz

Ad
z                            (10) 

0EI       
2

2


dz

Ad
Hz                            (11) 

0EI       
3

3


dz

dA
K

dz

Ad
Hz                         (12) 

If the transformation as indicated in Eq. (13) restores the Eq. (7) dimensionless, the following 
Eq. (14) will be achieved 
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If rearrangements are made in to the Eq. (14), Eq.(15) will be achieved.  
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If the definitions as given under Eqs. (16) and (17) are made to simplify the notation of the Eq. 
(15), Eq. (18) can be created 
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If the boundary conditions as given in Eqs. (9), (10), (11) and (12) are also made 
dimensionless, then the boundary conditions can be expressed as below 
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The solution for the Eq. (18) is given below. 
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If the boundary conditions as given in Eqs. (19) to (22) are applied to the integration constants 
c1, c2, c3, c4 as contained in Eq. (23), the matrix Eq. (26) will be achieved 
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To have a non-zero solution of the Eq. (26), the determinant of the matrix must be zero 
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After α values which offers the Eq. (27) are found, ω values are found with the help of the Eq. 
(17).  

The mode shape is calculated using the Eq. (28) 
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As the Eq. (28) represents the mode shape, the c2 value can be considered 1, and the mode 
shape can be defined using the following equation 
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Using the frequency equation, the i. period value is calculated using the following equation 
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The S values in the equation are calculated for the first three modes, and given in Table 1.  
For the modal participation factor, the following equation can be written down as it is in many 

other similar studies and literature 






1

0

2

1

0

)(

)(





dA
h

m

dA
h

m

i

i

i
                            (31) 

If the mode shape function contained in Eq. (29) is put into its place in Eq. (31), then the 
participation factors for the first three modes shall be calculated as given in Table 2. 

 
 

Table 1 Si values for the first three modes 

k S1 S2 S3 k S1 S2 S3 k S1 S2 S3 

0.0 - 0.4080 0.1260 8.0 0.4929 0.1484 0.0758 16 0.2490 0.0803 0.0455

1.0 3.6590 0.3861 0.1240 9.0 0.4393 0.1345 0.0703 17 0.2344 0.0759 0.0432

2.0 1.8640 0.3381 0.1192 10.0 0.3961 0.1229 0.0654 18 0.2215 0.0719 0.0411

3.0 1.2653 0.2880 0.1122 11.0 0.3606 0.1131 0.0611 19 0.2099 0.0683 0.0392

4.0 0.9621 0.2458 0.1044 12.0 0.3310 0.1046 0.0573 20 0.1994 0.0651 0.0375

5.0 0.7771 0.2124 0.0964 13.0 0.3058 0.0973 0.0538 30 0.1332 0.0439 0.0259

6.0 0.6519 0.1862 0.0888 14.0 0.2842 0.0909 0.0507

7.0 0.5614 0.1653 0.0820 15.0 0.2654 0.0853 0.0480

 
Table 2 Γi are the values for the first three modes 

Γi 

k Γ1 Γ2 Γ3 k Γ1 Γ2 Γ3 k Γ1 Γ2 Γ3 

0.0  0.5240 0.2826 8.0 1.2625 0.4112 0.2498 16 1.2718 0.4209 0.2509

1.0 1.0458 0.5037 0.2809 9.0 1.2655 0.4131 0.2491 17 1.2720 0.4214 0.2513

2.0 1.1072. 0.4644 0.2762 10.0 1.2675 0.4148 0.2488 18 1.2722 0.4218 0.2516

3.0 1.1746 0.4336 0.2700 11.0 1.2688 0.4164 0.2489 19 1.2723 0.4221 0.2519

4.0 1.2151 0.4168 0.2636 12.0 1.2698 0.4177 0.2492 20 1.2725 0.4224 0.2522

5.0 1.2377 0.4101 0.2581 13.0 1.2705 0.4188 0.2496 30 1.273 0.4238 0.2537

6.0 1.2504 0.4086 0.2541 14.0 1.2710 0.4196 0.2501

7.0 1.2579 0.4095 0.2514 15.0 1.2714 0.4203 0.2505
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The effective modal mass ratios for the first three modes are calculated using the Eq. (32), and 
given in Table 3 
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The effective height value is calculated using the Eq. (33), and given in Table 4 for the first 
three modes 
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Using the spectrum of an earthquake record, the displacement function can be calculated using 
 
 
Table 3 ekoi are values for the first three modes 

ekoi 

k eko1 eko2 eko3 k eko1 eko2 eko3 k eko1 eko2 eko3 

0.0  0.1372 0.0399 8.0 0.81 0.09 0.033 16 0.81 0.09 0.032 

1.0 0.76 0.13 0.040 9.0 0.81 0.09 0.033 17 0.81 0.09 0.032 

2.0 0.77 0.12 0.039 10.0 0.81 0.09 0.033 18 0.81 0.09 0.032 

3.0 0.79 0.10 0.038 11.0 0.81 0.09 0.033 19 0.81 0.090 0.032 

4.0 0.80 0.10 0.036 12.0 0.81 0.09 0.032 20 0.81 0.09 0.032 

5.0 0.80 0.09 0.035 13.0 0.81 0.09 0.032 30 0.81 0.09 0.032 

6.0 0.80 0.09 0.034 14.0 0.81 0.09 0.032

7.0 0.81 0.09 0.034 15.0 0.81 0.09 0.032

 
Table 4 Effective height is for the first three modes 

H*
I 

k H*
1 H*

2 H*
3 k H*

1 H*
2 H*

3 k H*
1 H*

2 H*
3 

0.0  0.0032 0.0099 8.0 0.6386 0.2040 0.0967 16 0.6370 0.2151 0.1180

1.0 0.6631 0.0208 0.0038 9.0 0.6381 0.2070 0.1041 17 0.6369 0.2122 0.1225

2.0 0.6559 0.0686 0.0129 10.0 0.6378 0.2083 0.1120 18 0.6369 0.2135 0.1267

3.0 0.6495 0.1157 0.0316 11.0 0.6375 0.2075 0.1143 19 0.6368 0.2137 0.1290

4.0 0.6450 0.1509 0.0444 12.0 0.6373 0.2110 0.1129 20 0.6368 0.2090 0.1243

5.0 0.6423 0.1749 0.0625 13.0 0.6372 0.2119 0.1210 30 0.6367 0.2173 0.1158

6.0 0.6406 0.1888 0.0799 14.0 0.6370 0.2134 0.1257

7.0 0.6394 0.1981 0.0863 15.0 0.6369 0.2130 0.1185
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the following equation 

diiii SAd  )()(                           (34) 

where Sdi is the displacement spectrum ordinate as calculated for the i.th mode. 
The maximum displacement value will take place at the top. It will be for ε=1  

diidiiii SSAd  )1(max                      (35) 

The ν values are calculated for the first three modes and provided in Table 5. 
For the drift ratio, the Eq. (36) will be written like this below 
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The displacement function derivative will be calculated as provided below 
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To locate the maximum drift ratio, the derivative of the Eq. (37) has been calculated and 
evanished. It has been determined that the maximum drift ratio for the first three modes takes place 
at the bottom of the structure. 

In such cases, the maximum drift ratio will be calculated using the Eq. (38) 
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The ɳ coefficient is calculated and provided for in Table 6 for the first three modes.  
To determine the base shear force, the following Eq. can be used. 

aiiBi SekoMV                             (39) 

M indicates the total mass of the structure and Sai indicates the ordinate value corresponding to 
the period in i. mode in the acceleration spectrum for the earthquake record. Ekoi indicates the 

 
 

Table 5 νi coefficient is for the first three modes 

νi 

k ν1 ν2 ν3 k ν1 ν2 ν3 k ν1 ν2 ν3 

0.0  0.74 -0.40 8.0 -1.31 0.51 -0.35 16 -1.28 0.45 -0.30 

1.0 -1.48 0.72 -0.40 9.0 -1.30 0.50 -0.34 17 -1.28 0.45 -0.29 

2.0 -1.44 0.68 -0.40 10.0 -1.30 0.49 -0.33 18 -1.28 0.45 -0.29 

3.0 -1.40 0.63 -0.39 11.0 -1.29 0.48 -0.32 19 -1.28 0.45 -0.29 

4.0 -1.37 0.60 -0.39 12.0 -1.29 0.47 -0.31 20 -1.28 0.44 -0.29 

5.0 -1.35 0.57 -0.38 13.0 -1.29 0.46 -0.31 30 -1.28 0.43 -0.27 

6.0 -.1.33 0.54 -0.38 14.0 -1.29 0.46 -0.31 

7.0 -1.32 0.52 -0.36 15.0 -1.29 0.46 -0.30 
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Table 6 ɳi coefficient is for the first three modes 

ɳi 

k ɳ1 ɳ2 ɳ3 k ɳ1 ɳ2 ɳ3 k ɳ1 ɳ2 ɳ3 

0.0 - 2.000 2.000 8.0 1.974 1.887 1.884 16 1.997 1.974 1.950

1.0 1.5611 1.951 1.992 9.0 1.982 1.907 1.891 17 1.997 1.978 1.956

2.0 1.6859 1.868 1.970 10.0 1.986 1.924 1.899 18 1.997 1.981 1.960

3.0 1.797 1.813 1.942 11.0 1.989 1.938 1.909 19 1.998 1.983 1.965

4.0 1.872 1.800 1.915 12.0 1.992 1.950 1.918 20 1.998 1.985 1.969

5.0 1.918 1.813 1.895 13.0 1.994 1.957 1.927 30 2.000 1.996 1.988

6.0 1.946 1.837 1.884 14.0 1.995 1.964 1.936

7.0 1.964 1.863 1.881 15.0 1.996 1.969 1.943

 
Table 7 χ coefficient is for the first three modes 

χi 

k χ1 χ 2 χ 3 k χ1 χ 2 χ 3 k χ1 χ 2 χ 3 

0.0  0.00044 0.0004 8.0 0.517 0.018 0.0032 16 0.516 0.019 0.0038

1.0 0.504 0.0027 0.00002 9.0 0.517 0.019 0.0034 17 0.516 0.019 0.0040

2.0 0.505 0.0082 0.0005 10.0 0.517 0.019 0.0037 18 0.516 0.019 0.041 

3.0 0.513 0.012 0.0012 11.0 0.516 0.019 0.0038 19 0.516 0.019 0.0041

4.0 0.516 0.015 0.0016 12.0 0.516 0.019 0.0036 20 0.516 0.019 0.0040

5.0 0.514 0.016 0.0022 13.0 0.516 0.019 0.0039 30 0.516 0.020 0.0037

6.0 0.512 0.017 0.0027 14.0 0.516 0.019 0.0040

7.0 0.518 0.018 0.0029 15.0 0.516 0.019 0.0038

 
 
effective mass ratio in the i. mode. It will be taken from Table 3 for the first three modes.  

The overturning moment that takes place at the base can be calculated using the following 
equation 

aiiaiiot SMSHekoMM
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****                   (40) 

The χ coefficients are given in Table 7 for the first three modes. 
The bending moment equation can be calculated using the Eq. (41) 
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To locate where the bending moment can be used to its maximum capacity throughout the 
structure height, the derivative of the Eq. (40) is calculated and evanished. The ε values are 
calculated and provided in Table 8 for the first three modes.  

Maximum bending moment value will be calculated using the Eq. (42) 
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Table 8 ε coefficient is for the first three modes 

ε i 

k ε1 ε 2 ε 3 k ε1 ε 2 ε 3 k ε1 ε 2 ε 3 

0.0  0.4191 0.2218  8.0 0.7013 0.3432 0.2083 16 0.7864 0.3347 0.2023

1.0 0.5813 0.4134 0.2214 9.0 0.7158 0.3407 0.2069 17 0.7934 0.3347 0.2019

2.0 0.5925 0.3992 0.2201 10.0 0.7289 0.3390 0.2057 18 0.7999 0.3344 0.2015

3.0 0.6092 0.3833 0.2182 11.0 0.7408 0.3379 0.2048 19 0.8060 0.3342 0.2013

4.0 0.6286 0.3696 0.2161 12.0 0.7516 0.3368 0.2042 20 0.8116 0.3344 0.2013

5.0 0.6485 0.3592 0.2139 13.0 0.7615 0.3361 0.2034 30 0.8528 0.3333 0.2007

6.0 0.6676 0.3519 0.2117 14.0 0.7705 0.3355 0.2028

7.0 0.6852 0.3648 0.2100 15.0 0.7787 0.3351 0.2026

 
Table 9 ҡi coefficient is for the first three modes 

ҡi 

k ҡ1 ҡ2 ҡ3 k ҡ1 ҡ2 ҡ3 k ҡ1 ҡ2 ҡ3 

0.0  16.448 49.827 8.0 1.961 21.115 56.869 16 2.247 21.998 60.385 

1.0 0.250 16.761 50.043 9.0 2.025 21.349 57.635 17 2.263 22.030 60.560 

2.0 0.739 17.515 50.657 10.0 2.076 21.527 58.279 18 2.278 22.055 60.705 

3.0 1.146 18.391 51.576 11.0 2.118 21.662 58.813 19 2.291 22.077 60.828 

4.0 1.433 19.198 52.676 12.0 2.152 21.765 59.256 20 2.302 22.094 60.933 

5.0 1.632 19.869 53.835 13.0 2.182 21.845 59.622 30 2.372 22.171 61.431 

6.0 1.775 20.398 54.953 14.0 2.207 21.909 59.926

7.0 1.881 20.737 55.973 15.0 2.228 21.959 60.176

 
 
ҡ values are calculated and given in Table 9 for the first three modes. 

As the structure gets higher, the more important the impact of the axial displacement of the 
columns becomes. In the method suggested in this study, the K shear rigidity coefficient is 
multiplied by a correction factor taken from the literature (Zalka 2000) in order to take these 
effects into consideration by approximation 

KsK s *2                                (43) 

where the s coefficient is calculated using the following equation 

22

2

2

sg

g

ff

f
s


                               (44) 

where fg and fs indicates respectively, the frequencies constituted by only the axial displacements 
and only the shear displacements for the 1st mode. They are calculated using the following 
equation 

mH

hD
f g *

**313.0
4

2                               (45) 
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mH

hK
f s **16

*
2

2                               (46) 

D represents the global flexural rigidity representing the axial displacements. It is calculated 
using the following equation 

2

1
, i

q

i
ic tAED 



                               (47) 

Ai shows the cross-sectional area of the i. column. ti displays the distance of the column to the 
center of gravity. 
 
 
3. The steps of this method 

 
The steps of the suggested method are outlined below. 
1) K, EI, and Ks values are calculated with the help of the Eqs. (2), (3), and (43). 
2) k value is calculated using the equation no. (16)  
3) Si values are read from Table 1. 
4) The periods of the first three modes are calculated using the Eq. (30). 
5) Depending on the k parameter, ekoi (Table 3), vi (Table 5), ɳi (Table 6), χi (Table 7), ҡi  

(Table 9) values are read from the relevant Tables for the first three modes. 
6) The spectrum for the required earthquake record will be obtained. 
7) With the help of Eq. (35), the top displacement is calculated for the first three modes. 
8) With the help of Eq. (38), the maximum drift is calculated for the first three modes. 
9) With the help of Eq. (39), the base shear forces are calculated for the first three modes. 
10) With the help of Eq. (40), the overturning moments are calculated for the first three modes. 
11) With the help of Eq. (42), the maximum bending moment is calculated for the first three 

modes. 
12) The relevant displacements and internal forces of the system are calculated with the help of 

SRSS rule. 
 
 

4. Numerical example 
 
In this section, the response spectrum analysis of a 15-story building sample as illustrated in the 

Fig. 2 has been conducted in accordance with the Turkish Seismic Design Code using the 
suggested method in this study. The results are compared with the SAP2000 program in order to 
study the suitability. Shear wall is considered as equivalent frame element for the model in 
SAP2000 and the shear displacement is taken into consideration. 

For the sample, the shear wall has been taken as 0.3 m/3 m, the columns as 0.3 m/0.6 m, and 
the beams as 0.25 m/0.50 m. The modulus of elasticity is E=3*107 kN/m2.  

The floor masses have been taken as 10 tons. Masses are acted on the floor levels in the 
analysis in SAP2000.  

Acceleration and the displacement spectrum is based on the Turkish Seismic Design Code 
(2007). Accordingly, the acceleration and displacement spectrum is defined as follows 
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Fig. 2 15 storey wall frame 

 
 

 ܵ௔ሺܶሻ ൌ
஺బ∗ூ∗ௌሺ்ሻ

ோೌ
∗ ݃                                                      (48) 

 ܵௗሺܶሻ ൌ
ௌೌሺ்ሻ	

ସ௽మ ∗ ܶଶ	                           (49) 

  ܵሺܶሻ ൌ 1 ൅ 1.5 ∗
்

்ಲ
																								0 ൑ ܶ ൑ ஺ܶ                                  (50) 

  		ܵሺܶሻ ൌ 2.5																										 ஺ܶ ൏ ܶ ൑ ஻ܶ                                        (51) 

  ܵሺܶሻ ൌ 2.5 ∗ ቀ
்ಳ
்
ቁ
଴.଼
																															 ஻ܶ ൏ ܶ                                  (52) 

  ܴ௔ ൌ 1.5 ൅ ሺܴ െ 1.5ሻ ∗
்

	்ಲ
															0 ൑ ܶ ൑ ஺ܶ		                              (53) 

  																		ܴ௔ ൌ ܴ																																						 ஺ܶ ൏ ܶ	                                        (54) 

For this example, the values has been considered as, seismic zone is one and the site class Z4, 
importance factor is 1.0, seismic load reduction function has been taken as 8 in accordance with 
the Turkish Seismic Design Code. Thus 

଴ܣ ൌ ܫ								0.4 ൌ 1 

																ସܼ		ݎ݋ܨ ஺ܶ ൌ 0.2							 ஻ܶ ൌ 0.9 

ܴ ൌ 8 

The acceleration spectrum used in the example is given in Fig. 3 
The example has been analyzed by both taking into consideration the axial displacements and 

ignoring the axial displacements to show the contribution of the axial displacements. 

4 m 4 m4 m

H=15*3=45 m

z

y 
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Fig. 3 The acceleration spectrum 

 
Table 10 Parameters for the numerical example 

 a b 

K 184353.9823 kN 157223.0014 kN 

EI 20250000 kNm2 20250000 kNm2 

D - 432000000 kNm2 

k 4.29 3.965 

 
Table 11 Necessary coefficients are required for the dynamic calculation of the case a (disregarding the axial 
displacements) 

 1st mode 2nd mode 3rd mode 

Si 0.908 0.236 0.102 

ekoi 0.80 0.106 0.036 

vi 1.36 0.59 0.39 

ɳi 1.885 1.804 1.909 

χi 0.515 0.015 0.00178 

ҡi 1.491 19.393 53.012 

 
 
In the example given, the EI, K, D and k coefficients have been calculated first. They are 

shown in Table 10. The case a indicates the situation where the axial displacement is disregarded. 
Case b displays the situation where the axial displacement is taken into consideration.  

The coefficients required for the dynamic analysis are given in Table 11 and Table 12 for the 
cases a and b.  

Comparison of the periods calculated for the cases a and b to the SAP2000 are given in Table 
13.  
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Table 12 Necessary coefficients are required for the dynamic calculation of the case b (taking the axial 
displacements into consideration) 

 1st mode 2nd mode 3rd mode 

Si 0.973 0.247 0.105 

ekoi 0.80 0.10 0.036 

vi 1.371 0.601 0.39 

ɳi 1.869 1.800 1.916 

χi 0.516 0.0149 0.001586 

ҡi 1.423 19.170 52.638 

 
Table 13 Comparison of the periods 

Mode Case a Case b SAP2000 

1 0.746 s 0.799 s 0.826 s 

2 0.194 s 0.203 s 0.212 s 

3 0.084 s 0.086 s 0.089 s 

 
Table 14 Comparison between the top displacement and maximum drift ratio  

 Case a Case b SAP2000 

Peak displacement 0.024 m 0.027 m 0.0296 m 

Maximum drift ratio 7.263*10-4 8.323*10-4 7.667*10-4 

 
Table 15 The comparison of the base shear force, overturning moment, and maximum bending moment 
values 

 Case a Case b SAP2000 

Base Shear Force 148.504 kN 148.88 kN 146.9 kN 

Overturning Moment 4263.795 kNm 4285.894 kNm 4443.407 kNm 

Max. Bending Moment 372.913 kNm 361.724 kNm 350.439 kNm 

 
 
Considering the results provided in Table 13, it can be seen that the maximum error is -9.7% 

for the case where the axial displacements are not taken into consideration in the periods. While 
the maximum error is -4.25% for the case b, the axial displacements are taken into consideration.  

The comparison of the top displacements and maximum drift ratio values are calculated for the 
cases a and b to the SAP2000 are given in Table 14.  

Considering the results from Table 14, it can be understood that the maximum error is -18.92% 
for the case where the axial displacements are not taken into consideration for the top displacement 
compared to SAP2000. While the maximum error is -8.78% for the case b is where the axial 
displacements are taken into consideration. 

As for the maximum drift ratio, this error -5.27% for the case a, and 8.56% for the case b. 
The comparison of the base shear force, the overturning moment, and the maximum bending 

moment values as calculated for the cases a and b to the SAP2000 are given in Table 15.  
As seen in Table 15, the maximum error is 1.1% for the case where the axial displacements are 

not taken into consideration for the base shear force compared to SAP2000. While the maximum 
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error is 1.35% for the case b where the axial displacements are taken into consideration. 
As for the overturning moment, the error is -4.04% for the case a and -3.54% for the case b. 
As for the maximum bending moment, the error for the case a is 6.41% and for the case b is 

3.22%. 
 
 

5. Conclusions 
 
In this study, a method has been evaluated and suggested for the dynamic analysis of the frame-

hinged shear wall structures. Structures have been analyzed in accordance with the continuous 
system calculation model and the parameters required for the dynamic analysis have been provided 
in each table of measurement. With the suggested method, the solution can be achieved practically 
and quickly by manual calculation. The compatibility of the method to the finite elements method 
has been studied on an example solved at the end of the study. With the results obtained, it has 
been observed that the method leads to certain results that are satisfactorily suitable for the finite 
elements method. In the analysis conducted, it has been considered that the axial displacements 
must be necessarily taken into consideration, particularly in high-rise buildings. It can be 
concluded that the suggested method can be used in understanding the dynamic behavior of 
structures with soft story irregularity using a few number of parameters and at the stage of 
preliminary design. The presented method can be applied to the analysis of the structures of 
variable cross section. In this case, the governing differential equation can be written with variable 
coefficients to get the solution. 
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