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Abstract.  The effect of porosity on bending and free vibration behavior of simply supported functionally 

graded plate reposed on the Winkler-Pasternak foundation is investigated analytically in the present paper. 

The modified rule of mixture covering porosity phases is used to describe and approximate material 

properties of the FGM plates with porosity phases.  The effect due to transverse shear is included by using a 

new refined shear deformation theory. The number of unknown functions involved in the present theory is 

only four as against five or more in case of other shear deformation theories. The Poisson ratio is held 

constant. Based on the sinusoidal shear deformation theory, the position of neutral surface is determined and 

the equation of motion for FG rectangular plates resting on elastic foundation based on neutral surface is 

obtained through the minimum total potential energy and Hamilton’s principle. The convergence of the 

method is demonstrated and to validate the results, comparisons are made with the available solutions for 

both isotropic and functionally graded material (FGM). The effect of porosity volume fraction on Al/Al2O3 

and Ti-6Al-4V/Aluminum oxide plates are presented in graphical forms. The roles played by the constituent 

volume fraction index, the foundation stiffness parameters and the geometry of the plate is also studied. 
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1. Introduction 
 

Materials, energy and modern science are three pillars of modern technology. New material 

development and researches are leading the invention of materials, as the cornerstone of the 21st 

century high-tech field. In recent years, materials science has gained rapid development (Pindera et 

al. 1994). Functionally graded materials (FGMs) are a new generation of engineered materials in 

which the microstructural details are spatially varied through non-uniform distribution of the 

reinforcement phase(s), by using reinforcement with different properties, sizes and shapes, as well 

as by interchanging the roles of reinforcement and matrix phases in a continuous manner (Hirai 

1996). 
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The use of functionally graded materials in applications involving severe thermal gradients is 
quickly gaining acceptance in the composite mechanics community and the aerospace and aircraft 
industry. This is particularly true in Japan and Europe, where the concept of FGMs was conceived. 

The components of structures widely used in aircraft, reusable space transportation vehicles 
and civil engineering are usually supported by an elastic foundation (Nguyen et al. 2013). 
Therefore, it is necessary to account for the effects of elastic foundation for a better understanding 
of the bending and free vibration behavior of plates and shells. 

To describe the interaction between plate and foundation, various kinds of foundation models 
have been proposed, the Pasternak model (Pasternak 1954) or the two-parameter model is widely 
adopted to describe the mechanical behavior of foundations, and the well known Winkler model is 
one of its special cases. In fact, the two-parameter of elastic foundation models have been 
developed to overcome the inadequacy of Winkler model in describing the real soil response and 
the mathematical complexity of the three-dimensional continuum. The two-parameter model 
(Pasternak model) considers the shear deformation between the springs over the one-parameter 
model whilst the one-parameter model (Winkler model) can be represented by continuous springs. 
Therefore, Winkler model can be considered as a special case of Pasternak model by setting the 
shear modulus to zero. 

However, in FGM fabrication, micro voids or porosities can occur within the materials during 
the process of sintering. This is because of the large difference in solidification temperatures 
between material constituents (Zhu et al. 2001). Wattanasakulpong et al. (2012) also gave the 
discussion on porosities happening inside FGM samples fabricated by a multi-step sequential 
infiltration technique. Therefore, it is important to take into account the porosity effect when 
designing FGM structures subjected to dynamic loadings (Wattanasakulpong et al. 2014). 

Therefore, based on the above discussion, many researchers have paid more attention on 
investigating mechanical response of FGM plates and beams. Talha et al. (2010) studied the free 
vibration and static analysis of functionally graded material (FGM) plates using higher order shear 
deformation theory with a special modification in the transverse displacement in conjunction with 
finite element models. Gan et al. (2015) studied a finite element procedure for dynamic analysis of 
non-uniform Timoshenko beams made of axially Functionally Graded Material (FGM) under 
multiple moving point loads. Brischetto (2013) presented an exact three-dimensional elastic model 
for the free vibration analysis of functionally graded one-layered and sandwich simply-supported 
plates and shells. An exact closed-form solution is presented by Hosseini-Hashemi et al. (2011b) 
for moderately thick Lévy FGM plate. Efraim et al. (2007) presented the vibration analysis of 
thick annular plates with variable thickness made of isotropic material and FGM. Pradhan et al. 
(2015) studied the free vibration of functionally graded thin elliptic plates with various edge 
supports and the Rayleigh-Ritz technique is used to obtain the generalized eigenvalue problem. 
Kitipornchai et al. (2004) investigated the nonlinear vibration of imperfect shear deformable 
laminated rectangular plates comprising a homogeneous substrate and two layers of functionally 
graded materials (FGMs). Dozio (2014) derived first-known exact solutions for free vibration of 
thick and moderately thick functionally graded rectangular plates with at least one pair of opposite 
edges simply-supported on the basis of a family of two-dimensional shear and normal deformation 
theories with variable order. Carrera et al. (2010) investigated the static response problem of 
multilayered plates and shells embedding functionally graded material (FGM) layers. Carrera’s 
unified formulation (CUF) is employed to obtain several hierarchical refined and advanced two-
dimensional models for plates and shells. Bakora et al. (2015) investigated the postbuckling of 
thick plates made of functionally graded material (FGM) subjected to in-plane compressive, 
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thermal and thermomechanical loads. Brischetto et al. studied functionally graded material (FGM) 
plates subjected to a transverse mechanical load and the unified formulation (UF) and the 
Reissner’s mixed variational theorem (RMVT) are extended to FGMs. Fazzolari et al. (2014) 
developed A fully coupled thermoelastic formulation to deal with free vibration analysis of 
anisotropic composite plates and isotropic/sandwich FGM plates. Thai et al. (2012) developed a 
refined shear deformation theory for free vibration of functionally graded plates on elastic 
foundation. Recently, by employing a novel four variables refined plate theory against five in case 
of other shear deformation theories, some studies (Belabed et al. 2014, Tounsi et al. 2013, Hamidi 
et al. 2015, Bennai et al. 2015, Bousahla et al. 2014) investigated the mechanical and 
theromechanical behavior of FG structures. Meksi et al. (2014) developed a novel simple first-
order shear deformation plate theory based on neutral surface position for bending and free 
vibration analysis of functionally graded plates and supported by either Winkler or Pasternak 
elastic foundations. Hasani Baferani et al. (2011) use the third-order plate model to present Lévy-
type solutions of rectangular FGM plates resting on elastic foundation.  Thai et al. (2014) 
presented a zeroth-order shear deformation theory for bending and vibration analyses of 
functionally graded plates resting on elastic foundation. Ait Athmane et al. (2015) studied the 
effect of thickness stretching and porosity on mechanical response of a functionally graded beams 
resting on elastic foundations with the use of an efficient beam theory for bending, free vibration 
and buckling analysis.  

The objective of this investigation is to present a new refined shear deformation theory for 
bending and free vibration response of simply supported functionally graded plate with porosities 
reposed on the elastic foundation. The effect due to porosity is included by using a modified rule 
of mixture covering porosity phases proposed by Wattanasakulpong et al. (2012). The material 
properties of FG plate are assumed to vary according to a power law distribution of the volume 
fraction of the constituents. The equation of motion for FGM plates is obtained through the 
minimum total potential energy and Hamilton’s principle. The effects of varying power law index, 
volume fraction of porosity, aspect and side-to-thickness ratios on the bending and free vibration 
of FG plates are discussed. Some illustrative examples are also presented to verify the present 
formulation and solutions. Good agreement is observed. 

 
 

2. Geometric configuration and material properties 
 
Here we consider an FGM plate of length a, width b and total thickness h made of a mixture of 

metal and ceramics, in which the composition is varied from the top to the bottom surface. The 
material in top surface and in bottom surface is ceramic and metal respectively. To identify the 
location of neutral surface of FG plates, two different plans are taken into account for the 
measurement of z, namely zms and zns measured from the middle surface and the neutral surface of 
the plate, respectively as shown in Fig. 1.  

In this study, we consider an imperfect FGM plate with a porosity volume fraction, α (α<<1), 
distributed uniformly among the metal and ceramic, the modified rule of mixture proposed by 
Wattanasakulpong and Ungbhakorn (2014) is used as 

)
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The power law of volume fraction of the ceramic is assumed as
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The modified rule of mixture becomes 
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It is noted that k is the power law index that takes values greater than or equals to zero. The FG 
plate becomes a fully ceramic plate when k is set to zero and fully metal for large value of k. 

The Young’s modulus (E) and density (ρ) of the imperfect FG can be written as a functions of 
thickness coordinate, zns , as follows (Ait Athmane et al. 2015a, b, Ait Yahia et al. 2015, Hadji et 
al. 2015a, b) 
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The parameter C is the distance of neutral surface from the middle surface. However, the 
material properties of a perfect FG plate can be obtained when the volume fraction of porosity α is 
set to zero. Due to the small variations of the Poisson’s ratio ν, it is assumed to be constant 

The position of the neutral surface of the FG plate is determined to satisfy the first moment 
with respect to Young’s modulus being zero as follows (Zhang et al. 2008, Prakash et al. 2009, 
Bodaghi et al. 2011) 
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Consequently, the position of neutral surface can be obtained as (Bodaghi et al. 2011) 
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It can be seen that the physical neutral surface and the geometric middle surface are the same in 
a homogeneous isotropic plate. 

 
 

3. Displacement field and strains 
 
Based on the higher order shear deformation plate theory, the displacement components are
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Fig. 1 Geometry and dimensions of the FGM plate resting on elastic foundation 
 
 

assumed to be 

),(),(),,(

)(),(),,(

)(),(),,(

0

0

yxwyxwzyxw
y

w
zf

y

w
zyxvzyxv

x

w
zf

x

w
zyxuzyxu

sbns

s
ns

b
nsns

s
ns

b
nsns




















 
(7)

The origin of the material coordinates is at the neutral surface of the plate. The linear strain can 
be obtained from kinematic relations as 
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The linear constitutive relations of a FG plate can be written as 
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4. Equations of motion 
 
In order to obtain the equations of motion, the energy method is adopted and the total energy of 

structure is required 
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Also, using the Hamilton’s principle, the governing equations of motion can be obtained as 
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Where U is the strain energy and K is the kinetic energy of the FG plate, UF is the strain energy 
of foundation and W is the work of external forces. Employing the minimum of the total energy 
principle leads to a general equation of motion and boundary conditions. Taking the variation of 
the above equation and integrating by parts 
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Where (··) represents the second derivative with respect to time and fe is the density of reaction 
force of foundation. For the Pasternak foundation model 
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Where K0 and Ks are the transverse and shear stiffness coefficients of the foundation, 
respectively. The stress resultants are given as 
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And stiffness components and inertias are given as 
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For FG plates, the equilibrium equations take the forms 
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where dij, dijl, and dijlm are the following differential operators 
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Following the Navier solution procedure, we assume the following solution form for u0, v0, wb 
and ws that satisfies the boundary conditions 
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where am /   , bn /   and Umn, Vmn, Wbmn,Wsmn being arbitrary parameters and  denotes 
the eigenfrequency associated with (m,n)th eigenmode. One obtains the following operator 
equation 
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(25)

And 

bnam /  ,/    (26)

The natural frequencies of FG plate can be found from the nontrivial solution of Eq. (22). 
 
 

5. Results 
 
The refined shear deformation theory has been used to analyze the bending and free vibration 

of simply supported FG plates with porosities reposed on the elastic foundation for different values 
of gradient index, porosity volume fraction, foundations parameters, aspect and side-to-thickness 
ratios. The Navier solution procedure developed in the previous section is used to evaluate the 
Dimensionless deflections, stresses and natural frequencies. The following material properties are 
used in the analysis:  

Material 
Properties 

E (N/m2) ρ (kg/m3) 

Aluminium (Al) 70×109 2707 
Alumina (Al2O3) 380×109 3800 

Zirconia (ZrO2) 151×109 3000 

Ti-6Al-4V 105.7×109 4429 

Aluminium oxide 320.2×109 3750 

However, Poisson’s ratio (ν) is assumed to be constant. The material properties of a perfect FG 
plate can be obtained when α is set to zero. 

To validate accuracy of the proposed mathematical model for bending and vibration of the 
perfect FG plate (without porosity), the comparisons between the present results and the available 
results obtained by the exact 3-D of Vel et al. (2004), the refined shear deformation plate theory of 
Thai et al. (2011), Hosseini et al. (2011a) based on the Reddy’s third-order shear deformation plate 
theory, A semi-analytical solution using the extended Kantorovich method together with infinite 
power series solution of Fallah et al. (2013), Dozio (2014) based on a family of two-dimensional 
shear and normal deformation theories with variable order, Neves et al. (2013) using a quasi-3D 
higher-order shear deformation theory and others available in literature. Excellent agreement is 
obtained for all cases. 

Dimensionless deflections and stresses of simply supported Al/Al2O3 plates for different 
values of thickness ratio h/a, power law index k are listed in Tables 1 and 2. The calculated 
dimensionless deflections and stresses are compared with those reported by Neves et al. (2013), 
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Carrera et al. (2011), Thai et al. (2014), Zenkour et al. (2009) and Thai et al. (2014). Close 
agreements between the results are obtained for moderately thick plates and converge in the case 
of thick plates. 

The results of nondimensional deflection of simply supported isotropic thin square plate under 
uniformly distributed load are presented in Table 3 for different values of foundation parameters 
K0 and K1. It can be seen that the present results converge with those given by Huang et al. (2008) 
and Thai et al. (2011). 

Tables 4 and 5 present the comparisons of the fundamental frequency obtained from the present 
new plate theory with other plates theories results of Vel et al. (2004), Srinivas et al. (1970) and 
Thai et al. (2011) for different values of thickness-to-length ratio and foundation parameters K0 

 
 

Table 1 Dimensionless deflection and stress of square plates under sinusoidal loads (K0=K1=0) 

P Method x w
a/h=4 a/h=10 a/h=100 a/h=4 a/h=10 a/h=100 

1 

Neves (2013) 0.5911 1.4917 14.9450 0.7020 0.5868 0.5647 

Carrera (2011) 0.6221 1.5064 14.9690 0.7171 0.5875 0.5625 

Thai (2014) 0.5812 1.4898 14.9676 0.7284 0.5890 0.5625 

present 0.5803 1.4894 14.9675 0.7280 0.5889 0.5625 

4 

Neves (2013) 0.4330 1.1588 11.7370 1.1108 0.8700 0.8240 

Carrera (2011) 0.4877 1.1971 11.9230 1.1585 0.8821 0.8286 

Thai (2014) 0.4449 1.1794 11.9209 1.1599 0.8815 0.8287 

present 0.4423 1.1783 11.9208 1.1619 0.8818 0.8286 

10 

Neves (2013) 0.3097 0.8462 8.6010 1.3334 0.9888 0.9227 
Carrera (2011) 0.3695 0.8965 8.6077 1.3745 1.0072 0.9361 

Thai (2014) 0.3259 0.8785 8.9060 1.3909 1.0087 0.9362 

present 0.3234 0.8775 8.9058 1.3917 1.0089 0.9361 

  
Table 2 Dimensionless deflections and stresses of rectangular plates under uniform loads (K0=K1=0) 

P Method *w  *
x  

*
y  *

xy  

0 

Zenkour (2009) 1.2583 0.7162 0.2448 0.2893 

Thai (2014) 1.2583 0.7160 0.2447 0.2890 

present 1.2582 0.7161 0.2494 0.2892 

1 

Zenkour (2009) 2.5133 0.3250 0.1111 0.1307 

Thai (2014) 2.5134 0.3250 0.1111 0.1306 

present 2.5133 0.3250 0.1125 0.1307 

2 

Zenkour (2009) 3.2267 0.4396 0.1502 0.1766 

Thai (2014) 3.2266 0.4395 0.1502 0.1766 

present 3.2267 0.4396 0.1522 0.1766 

5 

Zenkour (2009) 3.8517 0.5224 0.1785 0.2104 

Thai (2014) 3.8506 0.5223 0.1785 0.2103 

present 3.8517 0.5223 0.1818 0.2104 

1438



 
 
 
 
 
 

Effect of porosity on the bending and free vibration response of … 

Table 3 Comparison of nondimensional deflection of simply supported isotropic thin square plate under 
uniformly distributed load 

K0 K1 Huang (2008) Thai (2011) present 

1 

1 3.8546 3.855 4.0401 

34 0.763 0.763 0.7662 

54 0.1153 0.1153 0.1153 

34 

1 3.2105 3.2108 3.3327 

34 0.7317 0.7317 0.7344 

54 0.1145 0.1145 0.1145 

54 

1 1.4765 1.4765 1.4887 

34 0.5704 0.5704 0.5705 

54 0.1095 0.1095 0.1094 

 
Table 4 Comparison study of fundamental frequency parameter for SSSS square plate (a/b=1) 

hEa //ˆ 2  
 

h/a 
Theory % Diff 

Exact 3-D 
Vel (2004) 

Exact 3-D 
Srinivas (1970) 

Present  

10/1a/ h  5.7769 5.7769 5.7695 0,1281 

10/1a/ h  4.6582 4.6582 4.6246 0,7213 

 
Table 5 Dimensionless fundamental frequency 2222 /ˆ Eh   of square plates. P=0 

K0 K1 h/a 
Method 

Thai (2011) Present 

0 0 

0.05 0.0291 0.0291 

0.1 0.1134 0.1133 

0.15 0.2452 0.2452 

0.2 0.4150 0.4150 

0 100 

0.05 0.0406 0.0405 

0.1 0.1597 0.1595 

0.15 0.3512 0.3499 

0.2 0.6075 0.6028 

100 0 

0.05 0.0298 0.0297 

0.1 0.1161 0.1161 

0.15 0.2516 0.2515 

0.2 0.4269 0.4266 

100 100 

0.05 0.0411 0.0410 

0.1 0.1617 0.1615 

0.15 0.3557 0.3544 

0.2 0.6156 0.6108 
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and K1. As it can be seen, the new results are in good agreement with previous ones for moderately 
thick plates and converge in the case of thick plates. The shear (Pasternak) parameter has more 
effect on increasing the fundamental frequency than the Winkler parameter. 

As another verification attempt, Tables 6 and 7 present respectively the comparisons of the 
lowest eight frequency parameters without elastic foundation (k0=k1=0) and fundamental natural 
frequency reposed on the Winkler foundation with Hosseini et al. (2011a), Lam et al. (2002) and 
Fallah et al. (2013). Close correlation is achieved for moderately thick plates and converge in the  

 
 

Table 6 Lowest eight frequency parameters Gha /0
2    rectangular plates 

b/a h/a Method 
Frequency parameters 

(1,1) (2,1) (3,1) (1,2) (2,2) (4,1) (3,2) (5,1) 

0.5 

0.01 
Hosseini (2011a) 49.3032 78.8421 128.002 167.267 196.678 196.678 245.626 284.722

present 49.3032 78.8422 128.0027 167.2673 196.6787 196.6787 245.6274 284.7232

0.1 
Hosseini (2011a) 45.4869 69.8093 106.735 133.720 152.753 152.753 182.565 204.956

present 45.4917 69.8212 106.7652 133.7698 152.8208 152.8208 182.6670 205.0894

0.2 
Hosseini (2011a) 38.1883 55.2543 78.9865 95.2602 106.363 106.363 123.292 135.725

present 38.2052 55.2943 79.0812 95.4108 106.5619 106.5619 123.5813 136.0940

0.3 
Hosseini (2011a) 31.6413 44.0236 60.6549 71.8663 79.4754 79.4754 83.4663 86.1806

present 31.6739 44.0974 60.8216 72.1239 79.8093 79.8093 83.5322 86.1679

0.4 
Hosseini (2011a) 26.5910 36.1319 48.8370 57.4119 63.2548 63.2548 72.1987 77.6250

present 26.6404 36.2404 49.0728 57.7687 63.7108 63.7108 72.8328 78.6020

1 

0.01 
Hosseini (2011a) 19.7320 49.3032 49.3032 78.8421 98.5169 98.5169 128.002 128.002

present 19.7320 49.3032 49.3032 78.8422 98.5171 98.5171 128.0027 128.0027

0.1 
Hosseini (2011a) 19.0653 45.4869 45.4869 69.8093 85.0646 85.0646 106.735 106.735

present 19.0660 45.4917 45.4917 69.8212 85.0829 85.0829 106.7652 106.7652

0.2 
Hosseini (2011a) 17.4523 38.1883 38.1883 55.2543 65.3135 65.3135 78.9865 78.9865

present 17.4553 38.2052 38.2052 55.2943 65.3731 65.3731 79.0812 79.0812

0.3 
Hosseini (2011a) 15.5745 31.6413 31.6413 44.0236 51.1314 51.1314 60.6549 60.6549

present 15.5806 31.6739 31.6739 44.0974 51.2391 51.2391 60.8216 60.8216

0.4 
Hosseini (2011a) 13.8136 26.5910 26.5910 36.1319 41.5668 41.5668 48.8370 48.8370

present 13.8235 26.6404 26.6404 36.2404 41.7220 41.7220 49.0728 60.8216

2 

0.01 
Hosseini (2011a) 12.3342 19.7320 32.0572 41.9134 49.3032 49.3032 61.6149 71.4604

present 12.3342 19.7320 32.0572 41.9134 49.3032 49.3032 61.6150 71.4604

0.1 
Hosseini (2011a) 12.0675 19.0653 30.3623 39.0977 45.4869 45.4869 55.8497 63.9008

present 12.0677 19.0660 30.3643 39.1011 45.4917 45.4917 55.8571 63.9107

0.2 
Hosseini (2011a) 11.3717 17.4523 26.6838 33.4301 38.1883 38.1883 45.6412 51.2389

present 11.3729 17.4553 26.6913 33.4424 38.2052 38.2052 45.6667 51.2723

0.3 
Hosseini (2011a) 10.4733 15.5744 22.924 28.0832 31.6413 31.6413 37.1114 41.1530

present 10.4758 15.5806 22.9391 28.1071 31.6739 31.6739 37.1596 41.2153

0.4 
Hosseini (2011a) 9.54718 13.8136 19.7466 23.8151 26.5908 26.5908 30.8231 33.9311

present 9.5513 13.8235 19.7703 23.8527 26.6404 26.6404 30.8953 34.0235
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Table 7 Fundamental natural frequency of square isotropic plate Gha /0

2   ; h/a=0.05  
K0 Lam (2002) Fallah (2013) present 
0 19.74 19.56 19.5626 

100 22.13 21.96 21.9600 

1000 37.28 37.13 37.1232 
 

Table 8 Comparison of fundamental frequency mm Eh /   for square simply-supported Al/ZrO2 
plates. a/h=5 

P 
model 

Vel (2004) 
Exact 3D 

Dozio (2014) 
HOSNT-15 

Dozio (2014) 
HOSNT-12 

Dozio (2014) 
HOSNT-9 

Neves 
(2013)

Qian 
(2004)

Hosseini 
(2011a) 

present

2 0.2197 0.2196 0.2198 0.2225 0.2200 0.2153 0.2264 0.2187

3 0.2211 0.2211 0.2211 0.2245 0.2215 0.2172 0.2276 0.2183

5 0.2225 0.2225 0.2226 0.2263 0.2230 0.2194 0.2291 0.2174
 

Table 9 First 10 natural frequencies mm Eh /   of square simply-supported Al/ZrO2 plates with p=1 
and various thickness ratios 

a/h model 
mode 

1 2 3 4 5 6 7 8 9 10 

20 

Dozio (2014) 
HOSNT-15 

0.0154 0.0377 0.0377 0.0596 0.0740 0.0740 0.0950 0.0950 0.1030 0.1030

Dozio (2014) 
HOSNT-12 

0.0154 0.0377 0.0377 0.0596 0.0740 0.0740 0.0950 0.0950 0.1030 0.1030

Dozio (2014) 
HOSNT-9 

0.0154 0.0379 0.0379 0.0597 0.0742 0.0742 0.0955 0.0955 0.1030 0.1030

Qian (2004) 0.0149 0.0377 0.0377 0.0593 0.0747 0.0747 0.0769 0.0912 0.0913 0.1029

Neves (2013) 0.0153 0.0377 0.0377 0.0596 0.0739 0.0739 0.0950 0.0950 0.1030 0.1030

present 0.0151 0.0373 0.0373 0.0591 0.0733 0.0733 0.0943 0.0943 0.1030 0.1030

10 

Dozio (2014) 
HOSNT-15 

0.0596 0.1425 0.1425 0.2059 0.2059 0.2191 0.2674 0.2674 0.2911 0.3359

Dozio (2014) 
HOSNT-12 

0.0596 0.1425 0.1425 0.2059 0.2059 0.2193 0.2674 0.2674 0.2911 0.3360

Dozio (2014) 
HOSNT-9 

0.0597 0.1435 0.1435 0.2059 0.2059 0.2213 0.2704 0.2704 0.2911 0.3405

Qian (2004) 0.0584 0.1410 0.1410 0.2058 0.2058 0.2164 0.2646 0.2677 0.2913 0.3264

Neves (2013) 0.0596 0.1426 0.1426 0.2059 0.2059 0.2193 0.2676 0.2676 0.2912 0.3364

present 0.0591 0.1418 0.1418 0.2058 0.2058 0.2186 0.2671 0.2671 0.2911 0.3359

5 

Dozio (2014) 
HOSNT-15 

0.2191 0.4116 0.4116 0.4820 0.4820 0.5820 0.6996 0.8228 0.8281 0.8281

Dozio (2014) 
HOSNT-12 

0.2193 0.4116 0.4116 0.4824 0.4824 0.5820 0.7004 0.8228 0.8293 0.8293

Dozio (2014) 
HOSNT-9 

0.2213 0.4116 0.4116 0.4906 0.4906 0.5820 0.7159 0.8229 0.8496 0.8496

Qian (2004) 0.2152 0.4114 0.4114 0.4761 0.4761 0.5820 0.6914 0.8192 0.8217 0.8242

present 0.2186 0.4116 0.4116 0.4840 0.4840 0.5820 0.7046 0.8228 0.8349 0.8349
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Table 10 Fundamental natural frequency 1111 /h E   of Al/Al2O3 FG plate (a/b=0.5)  

h/a K0 K1 
P 

0 1 2 5 10 

0.1 

0 0 0.0365 0.0246 0.0234 0.0213 0.0199 
0 100 0.1117 0.1168 0.1197 0.1211 0.1141 

100 0 0.0473 0.0408 0.0408 0.0405 0.0402 

100 100 0.1157 0.1212 0.1243 0.1211 0.1141 

0.2 

0 0 0.1376 0.0943 0.0888 0.0799 0.0747 

0 100 0.4356 0.3325 0.2879 0.2423 0.2283 

100 0 0.1813 0.1586 0.1582 0.1564 0.1556 

100 100 0.4356 0.3325 0.2879 0.2423 0.2283 

0.3 

0 0 0.2853 0.1987 0.1855 0.1644 0.1535 

0 100 0.6534 0.4988 0.4319 0.3634 0.3424 

100 0 0.3844 0.3420 0.3397 0.3339 0.3329 

100 100 0.6534 0.4988 0.4319 0.3634 0.3424 

 
Table 11 Fundamental natural frequency Gha /0

2    of Al/Al2O3 FG plate (a/b=0.5, h/a=0.1) 

P K0 K1 
Modes 

(1,1) (1,2) (2,1) (1,3) (3,1) 

0 

0 0 0.0717 0.1133 0.2324 0.1805 0.4723 

0 100 0.2195 0.2851 0.4438 0.3777 0.7250 

100 0 0.0929 0.1277 0.2396 0.1898 0.4758 

100 100 0.2273 0.2911 0.4477 0.3823 0.7273 

1 

0 0 0.0485 0.0768 0.1589 0.1230 0.3274 
0 100 0.2295 0.2930 0.4381 0.3790 0.6766 

100 0 0.0802 0.0998 0.1710 0.1383 0.3332 

100 100 0.2382 0.2998 0.4427 0.3842 0.6794 

5 

0 0 0.0418 0.0660 0.1351 0.1050 0.2727 

0 100 0.2380 0.3011 0.4389 0.3838 0.6475 

100 0 0.0796 0.0944 0.1506 0.1246 0.2804 

100 100 0.2380 0.3011 0.4389 0.3838 0.6475 

10 

0 0 0.0392 0.0618 0.1264 0.0983 0.2547 

0 100 0.2242 0.2836 0.4135 0.3616 0.6100 

100 0 0.0791 0.0922 0.1433 0.1195 0.2632 

100 100 0.2242 0.2836 0.4135 0.3616 0.6100 

  
case of thick plates. As it can be seen, with increases of aspect and thickness-to-length ratio, the 
natural frequency of vibration decreases and increases with increasing of the Winkler foundation. 

In Tables 8 and 9, the comparison of the natural frequencies mm Eh /   for square 
simply-supported Al/ZrO2 plates with those reported by Vel et al. (2004), Dozio (2014), Neves et 
al. (2013), Qian et al. (2004) and Hosseini et al. (2011a) are presented versus power law index and 
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thickness-to-length ratio. The results show that the effect of power law index on the natural 
frequency of vibration is very interesting. 

From Tables 10 and 11 it is noticeable that the effect of the shear (Pasternak) parameter has 
more effect on increasing the natural frequency than the Winkler parameter. As it can be observed 
in the table, increasing the power law index increases the effect of the elastic foundation on the 
natural frequency. Increasing the power law index has a negligible effect on plate rested on 
Winkler elastic foundation. 

Fig. 2 shows the effect of porosity on the Dimensionless center deflection versus side-to-
thickness ratio a/h of an FGM plate. As it can be seen, the effect of porosity on the Dimensionless 
center deflection increases with the increase of the thickness ratio. Increasing value of porosity 
coefficient causes an increase in the Dimensionless center deflection. 
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Fig. 2 Effect of the porosity on the Dimensionless center deflection through side-to-
thickness ratio thickness of an FGM plate 
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Fig. 4 Effect of the porosity on the natural frequencies mm Eh /   through the gradient index of an 
FGM plate 

 
 
The effect of porosity on the in-plane longitudinal stress, the transversal shear stress and the 

longitudinal tangential stress through the thickness of an FGM plate is shown in Fig. 3. It can be 
seen that increasing value of porosity coefficient causes to decrease in the transversal shear stress. 
In Figs. 4(a) and (b), the fundamental natural frequency with three different types of porosity 
distribution are plotted according to the volume fraction index (P) for an Al/al2O3 and Ti-6Al-
4V/Aluminum oxide FGM plate reposed on the elastic foundations. It is seen from these figures 
that, increasing values of porosity coefficient causes a decrease in the fundamental natural 
frequency. 

Figs. 5(a) and (b), 6(a) and (b) represent variations of the fundamental natural frequency with 
several values of porosity coefficient versus the thickness-to-length ratio (h/a) and aspect ratio 
respectively. The FGM plates are reposed on the Winkler-Pasternak foundation. The figures show 
that increasing in the thickness-to-length ratio increases the effect of the porosity on the natural  
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Fig. 5 Effect of the porosity on the natural frequencies mm Eh /   through the side-to-thickness ratio of 
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Fig. 7 Effect of the porosity on the fundamental natural frequencies Gha /0
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Fig. 8 Effect of the porosity on the fundamental natural frequencies Gha /0
2    reposed on the 

Pasternak foundation of an FGM plate 
 
 
frequency. Increasing in the aspect ratio leads to a decrease in the natural frequency. 

The effect of the Winkler K0 and Pasternak K1 parameters with three different types of porosity 
coefficient on the fundamental natural frequency of two FGM plate types (Al2O3, Ti-6Al-
4V/Aluminum oxide) are shown in Figs. 7(a) and (b), 8(a) and (b). As it can be seen, the shear 
(Pasternak) parameter has more effect on increasing the fundamental frequency than the Winkler 
parameter. The effect of the porosity coefficient of the plate reposed on the Winkler foundation is 
higher than the plate reposed on the Pasternak foundation. 

 
 

6. Conclusions 
 
An extensive study of the bending and free vibration analysis of functionally graded perfect and 

imperfect plates resting on two-parameter elastic foundation with shear effect is presented. It is 
based on the neutral surface position and the use of a new refined shear deformation theory. The 
material properties are assumed to vary according to the thickness direction of the plate and the 
rule of mixture which was reformulated to assess the material characteristics with the porosity 
phases. The Navier method is used for the analytical solutions of the functionally graded plate with 
simply supported boundary conditions. Convergence and validation studies have been carried out 
to prove the accuracy of the present theory. The obtained results show a good agreement with 
those available in the literature for moderately thick plates. The following conclusions were 
noticed from the typical results obtained for different volume fraction indices, the aspect ratios, the 
thickness ratios, the foundation stiffness parameters and three values of the porosity coefficient. 

• The shear (Pasternak) parameter has more effect on increasing the fundamental frequency 
than the Winkler parameter. 

• The natural frequency of vibration decreases with increase of the aspect and the thickness-to-
length ratios. 

• The effect of power law index on the natural frequency of vibration is very interesting. 
• Increasing the power law index increases the effect of the elastic foundation on the natural 

frequency. 
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• Increasing the power law index has a negligible effect on plate rested on Winkler elastic 
foundation. 

• Increasing the value of porosity coefficient causes an increase in Dimensionless center 
deflection and a decrease in the transversal shear stress and the fundamental natural frequency. 

• Increasing in the thickness-to-length ratio increases the effect of the porosity on the 
Dimensionless center deflection and natural frequency. 

• The effect of the porosity coefficient of the plate reposed on the Winkler foundation is higher 
than plate reposed on the Pasternak foundation. 
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