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Abstract.  To study seismic performance of steel frame-bent structure, one specimen with one-tenth scale, 

three-bay, and five-story was tested under reversed cyclic lateral load. The entire loading process and failure 

mode were observed, and the seismic performance indexes including hysteretic loops, skeleton curve, 

ductility, load bearing capacity, drift ratio, energy dissipation capacity and stiffness degradation were 

analyzed. The results show that the steel frame-bent structure has good seismic performance. And the 

ductility and the energy dissipation capacity were good, the hysteresis loops were in spindle shape, which 

shape were full and had larger area. The ultimate elastic-plastic drift ratio is larger than the limit value 

specified by seismic code, showing the high capacity of collapse resistance. It can be helpful to design this 

kind of structure in high-risk seismic zone. 
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1. Introduction 
 

In the steel structural system, steel frame-bent structures became a primary lateral load resisting 

systems in the power plant main building. Steel frame-bent consists of multistory frame and 

single-story bent frame system. By far, the seismic behavior and seismic design of steel frames has 

been investigated by a number of researchers.  

Banihashemi et al. (2015) presented the development of performance based plastic design 

(PBPD) method for steel moment frames with considering the gravity loads and P-Δ effects. 

Stamatopoulos (2014) examined the influence of the steel column base plate semi-rigid behaviour 

on the seismic behaviour of steel frames. Kamaris et al. (2015) developed a new method for 

seismic design of plane steel moment resisting framed structures. Grande and Rasulo (2015) 

proposed a simple approach for seismic retrofit of low-rise concentric X-braced steel frames. Hsu 

and Li (2015) found that the strength and energy dissipation capacity of the knee braced moment 

resisting frame was significantly enhanced regardless of whether the knee braces buckled in the in-

place or out-of-plane direction and suggested that br-aces with in- plane frame structure designs. 

Pollino (2015) evaluated the dynamic response of buckling modes be adopted for greater 
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earthquake resistance in knee braced moment resisting rocking steel braced frames, such as inter-
story drift and floor acceleration evaluation, etc. Nguyen and Kim (2014) presented a simple, 
effective numerical procedure based on the beam-column method by using the based-displacement 
finite element method for nonlinear inelastic time-history analysis of three-dimensional semi-rigid 
steel frames. Tenchini et al. (2014) analysed the overall seismic performance of dual-steel moment 
resisting frames through static and dynamic nonlinear analysis method. The results showed that the 
use of high strength steel in Eurocode 8 compliant mild carbon steel was effective to provide 
overall ductile mechanism, but it may lead to inefficient and uneconomical structures characterized 
by limited plastic demand due to the large design over-strength. Grande and Rasulo (2013) 
proposed a simplified approach for the assessment of steel braced frames with X configuration 
according to a procedure developed in the light of the Direct Displacement Based Design method 
(DDBD). Metelli (2013) designed a reduced scale test bench to study X braced steel frames with 
different geometrical characteristics of diagonal members and with restraints as similar as possible 
to the theoretical ones. The results confirmed the theoretical prediction of the effective length 
factor of the diagonal members which exhibited good hysteretic behaviour with large inelastic 
deformation capacity under cyclic loading. Dimopoulos et al. (2012) proposed formulae for the 
estimation of lateral displacements at first yielding of plane moment resisting and x-braced steel 
frames. Lin et al. (2012) studied the design basis earthquake performance of self-centering 
moment-resisting frame and the seismic performance of this structure by using nonlinear pushover 
analysis method. Hosseinzadeh and Mohebi (2016) found the satisfactory brace geometries that 
minimize instability of the core section while maximizing energy dissipation capacity. Hoveidae et 
al. (2015) found that short-core all-steel buckling restrained braces sustain large plastic 
deformations without crossing the low cycle fatigue life borders or instability of the encasing 
system. Piedrafita et al. (2015) proposed a new material constitutive model for predicting the 
hysteretic response and failure of a new all-steel buckling restrained braces. D’Aniello et al. 
(2015) studied the influence of beam stiffness on seismic response of chevron concentric bracings. 
Salawdeh and Goggins (2013) developed a robust numerical model for cold-formed steel square 
and rectangular structural hollow sections for use as axial loaded members in earthquake 
engineering applications. Zahrai and Jalali (2014) presented an experimental investigation on 
cyclic performance of two knee braced single spanone-story frame specimens. Hassanien Serror et 
al. (2014) evaluated the values of both damping and ductility reduction factors for steel moment 
resisting frames with supplemental linear viscous dampers. 

The above research shows the steel frame behaviors stably and performs very well under 
earthquake ground motions. However, the seismic performance of steel frame-bent structure has 
not been reported. This study focuses on the experimental investigating the performance of steel 
frame-bent structure under cyclic lateral load. The failure mode, deformability, ductility, energy 
dissipation capacity, stiffness degradation of steel frame-bent structure was studied. 

 
 

2. The specimen design and test setup 
 
According to the seismic intensity of degree 8, a 1/10 scale models of three-bay and five-story 

steel frame bent was designed in accordance with Chinese Code GB50011 (2010) and its details 
were shown in Fig. 1 and Table 1, in which all the dimensions are in millimeter. The steel frame-
bent was made of Q235B steel (China, GB 500172003).The results of the coupon tests for the steel 
materials used in this test are summarized in Table 2. Fig. 2 showed the partially connections of 
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the structure. And most beam-column connection was welded. There were a few welded-bolted 
connections in this structure. 

The axial load was applied by the hydraulic jacks on the top columns, which is determined by 
the design axial compression of the real structure. 86 kN force was loaded at the middle column, 
and no force was loaded at the side column due to the load value was too small, which no effect on 
the experiment results. Lateral load was applied by a servo controlled hydraulic actuator. During 
the test process, each story displacement and base slip were measured by eight linear variable 
displacement transducers (LVDT). In addition, strain gages ware placed on the critical positions of 
beam flanges and webs, column flanges and webs, connections to measure the strain history during 
the test process. All data was collected by TDS-602 static data acquisition instrument. The test 
setup is shown in Fig. 3. And lateral braces were provided at the end of loading beam to prevent its 
out-of-plane movement. 

The cyclic load history was adopted according to a procedure as recommenced in Chinese 
specification JGJ101-96. Fig. 4 shows the loading procedure of the test specimen. The loading 
procedure involved two load steps, namely, a load-controlled step and a displacement-controlled 
step. Load-displacement hybrid control program was applied, in which the lateral loading 
sequence was controlled by force for the initial loading cycles till the test specimen was observed 
starting to yield. At the initial loading phase, every load level was applied for one cycle in an 
increment of 2 kN.When the test specimen started yielding, the loading sequence was controlled 
by displacement. On the basis of the yield displacement, the target displacements for the cyclic 
loading were set as the multiple of the yield displacement, the cyclic loadings were repeated three 
times at each target displacement. When the lateral strength of test specimen dropped to 85% of 
ultimate strength, the loading was terminated. 

 
 

 
Fig. 1 Dimensions of specimen 
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Table 2 Material properties of steel 

Thickness(mm) Yield stress (MPa) Ultimate stress (MPa) Modulus of elasticity (GPa) 

6 340.6 463.2 194 

8 325.6 441.7 208 

10 321.8 450.8 195 

 
 

3. Experimental results 
 
3.1 Failure pattern 
 
During the 120 kN cycle of the middle horizontal actuator, the test specimen appeared to be 

elastic. During the 40 mm cycle, the weld cracks appeared at the bottom flange of Beam L-6 right 
end connected to the column (Fig. 5(a)), the top flange of Beam L-6 left end connected to the 
column, the top flange of Beam L-7 right end connected to the column, the bottom flange of Beam 
L-7 left end connected to the column, respectively. The web buckling of Beam L-12 was observed. 
During the 65 mm cycle, the weld cracks appeared at the bottom flange of Beam L-8 right end 
connected to the column and the top flange of Beam L-8 left end connected to the column. The 
second brace fractured from left to right at the second story (Fig. 5(b)).The bottom flange of right 
Beam L-6 and top flange of left Beam L-6 were snapped. The steel brace C-4 buckling was 
appeared (Fig. 5(c)). During the 80 mm cycle, the weld cracked at the Beam L-10 left end 
connected to the column, Beam L-11 broken (Fig. 5(d)). During the 90 mm cycle, the third brace 
fractured from left to right at the second story. During the 100 mm cycle, the fourth brace fractured 
from left to right at the second story. Beam L-12 broken, and the failure patterns of test specimen 
was shown in Fig. 5(e). 

 
3.2 Hysteresis loop and skeleton curves 
 
The lateral load- displacement hysteresis loop of the specimen is shown in Fig. 6. The figure 

shows that the hysteresis loop has the following features:  
(1) In the early stage of horizontal loading, the lateral load- displacement relationship was 

approximately linear, which explained that the structure was in the elastic state. And there was 
basically no residual deformation.  

(2) With the load increasing, the area of the hysteresis loops continued to grow. And there is a 
large residual deformation, showed that the structure has entered the nonlinear stage. 

(3) After the specimen yielded, with the increasing of the lateral displacement, the lateral load 
of the specimen gradually increased. Hysteresis loop were even more fullness. Due to the 
influence of the cumulative damage, the bearing capacity and stiffness of the specimens 
degenerated. After reaching to the peak load, the residual deformation was obvious, and the 
stiffness and strength of the structure degraded obviously. 

(4) The hysteresis loops were in spindle shape, which shape were full and had larger area. It 
showed that the structure has good seismic performance. 

The skeleton curve of the specimen is shown Fig. 7. It shows that the skeleton curve can be 
divided into 3 stages or elastic stage, elastic-plastic stage and failure stage. In the elastic stage, the 
stiffness of the specimens basicily remains the same. When the load reached the yield point, the 
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Fig. 6 Hysteretic loops of test specimen 
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Fig. 7 Skeleton curves of test specimen 
 
 

beam end and column end yielded, and the stiffness gradually reduced. The skeleton curve of the 
specimen decreased slowly after the load reached the peak value. It was shown that the test 
specimen had good late deformability and ductility. 

 
3.3 Inter-story drift ratio 
 
Tables 3, 4 shows the inter-story drift ratio of test specimen. Py stands for the yield load, which 

was confirmed with the method of universal yield moment that the process of which is showed in 
Fig. 8 (Lubliner 2006). Pm stands for the peak load. And Pu stands for the failure load, which 
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capacity. 
(4) With the displacement increasing, the positive and negative stiffness absolute value of 

specimen is nearly equal. Early the speed of stiffness degradation was fast. After the test specimen 
yielded, the speed of degradation was from fast to slow. 

(5) The multilayer frame is responsible of the energy dissipation of the whole system. And the 
frame lateral resistance is depended on the mechanical property of the bracing. 
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