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Abstract.  The structural dynamic behavior and yield strength considering both ductility and strain rate 

effects are analyzed in this article. For the single-degree-of-freedom (SDOF) system, the relationship 

between the relative velocity and the strain rate response is deduced and the strain rate spectrum is 

presented. The ductility factor can be incorporated into the strain rate spectrum conveniently based on the 

constant-ductility velocity response spectrum. With the application of strain rate spectrum, it is convenient to 

consider the ductility and strain rate effects in engineering practice. The modal combination method, i.e., 

square root of the sum of the squares (SRSS) method, is employed to calculate the maximum strain rate of 

the elastoplastic multiple-degree-of-freedom (MDOF) system under uniform excitation. Considering the 

spatially varying ground motions, a new response spectrum method is developed by incorporating the 

ductility factor and strain rate into the conventional response spectrum method. In order to further analyze 

the effects of strain rate and ductility on structural dynamic behavior and yield strength, the cantilever beam 

(one-dimensional) and the triangular element (two-dimensional) are taken as numerical examples to 

calculate their seismic responses in time domain. Numerical results show that the permanent displacements 

with and without considering the strain rate effect are significantly different from each other. It is not only 

necessary in theory but also significant in engineering practice to take the ductility and strain rate effects into 

consideration. 
 

Keywords:  strain rate effect; ductility effect; multiple-support earthquake excitations; strain rate 

spectrum; response spectrum method 

 

 

1. Introduction 
 

The yield strength and dynamic behaviors of most materials involved in civil engineering are 

sensitive to strain rate. Currently, much attention is focused on the strain rate sensitivities for many 

kinds of materials. Huh et al. (2009) presented stress-strain curves of steel sheets for an auto-body 

obtained at intermediate strain rates with a servo-hydraulic type high speed tensile testing  
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machine. Li and Li (2010) investigated the dynamic properties of reinforcing steels of various 

strengths using a MTS New 810 electro-hydraulic servo-controlled testing system with a range of 

strain rate between 2.5×10-4/s and 0.1/s, which covers the range that might be experienced during 

earthquakes, and developed a rate-dependent cyclic constitutive model of reinforcing steel through 

improving the Hoehler model. Furthermore, Li and Li (2012) studied the effects of strain rate on 

the reinforced concrete structure under seismic loading. Based on the test results, dynamic 

increasing factors (DIF) which are functions of strain rate and quasi-static yielding strength of 

reinforcing steel are gotten. These results provide a reference for reinforced concrete frame 

structure in seismic design. The effects of strain rate on strength and deformation characteristics of 

soil-lime were investigated by Alzubaidi and Lafta (2013). It is observed that for soil-lime mixture 

at different curing periods, the undrained shear strength, initial modulus of elasticity and the 

cohesion increase to a maximum and then decrease with increasing strain rate. 

In earthquake engineering, the effect of strain rate on the structural dynamic behavior is ignored 

in the early years. With the application of modern computing facilities and methods, more and 

more researchers pay attention to the strain rate effect in engineering practice. Shing and Mahin 

(1988) conducted a series of pseudo-dynamic tests considering the strain rate effects of structures 

concluded that the dynamic strength is approximately 30% higher than the static strength. A 

dynamic constitutive model for the concrete structure in seismic design practice is recommended 

by CEBFIP model code (1990). Cervera et al. (1996) analyzed the Koyna dam considering the 

strain rate effect of concrete. The results show that the strain rate ε̇ is higher than 10−3s−1 and 

the dynamic tensile strength increases by 45%. Chopra (2001, 2004) studied the relationship 

between the peak deformations of inelastic and corresponding elastic SDOF systems and obtained 

the fitting formulae for the relationship. Wang et al. (2013) investigated the effects of ultimate 

strain and strain rate of materials on the collapse mechanism, routine and capacity of transmission 

tower-line system. Results show that the strain rate has a significant influence on the top 

displacement and base shear of tower under certain seismic records. Li and Larry (2013) presented 

research that used single-degree-of-freedom systems to represent low-ductility CBFs, where brace 

fracture causes a sudden loss of strength and stiffness. For the cases considered, the ductility 

capacity of the reserve system was typically a more critical constraint than global drift capacity, 

and reserve capacity is demonstrated to appreciably influence seismic collapse behavior, whereas 

primary system strength has a small influence. 

The response spectrum regarded as a basic concept in earthquake engineering provides a 

convenient means to summarize the peak response of all possible elastic SDOF systems subjected 

to a particular component of ground motion (Hao 1991, Kiureghian and Neumnhofer 1992, Hao 

and Xiao 1996, Su et al. 2006, Yu and Zhou 2008, Xu 2010, Guo 2013, Su and Shi 2013, Tian et 

al. 2010, 2014, Carlson et al. 2014). Therefore, the strain rate spectrum is presented in this paper 

and a new response spectrum method based on structural ductility and strain rate spectrum is 

developed for the dynamic analysis of the MDOF multi-support system. 

 
 

2. Review of the earthquake response for the elastoplastic system 
 

The well-known governing equation of the elastic SDOF system is 

𝑚�̈� + 𝑐�̇� + 𝑘𝑢 = −𝑚�̈�𝑔(𝑡)                           (1) 
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(a) The actual structure (b) The ideal SDOF system 

*ut and ug denote the total displacement and the prescribed support displacement, respectively 

Fig. 1 The actual structure and corresponding ideal SDOF system 
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Fig. 2 Force-deformation curves during initial loading 

 

 

where, m, c and k are the mass, damping and stiffness of the SDOF system, respectively; �̈�, �̇� 

and u are the acceleration, velocity and deformation response of the SDOF system, respectively; 

�̈�𝑔(𝑡) is the prescribed support acceleration. As shown in Fig. 1, the deformation of the SDOF 

system is given. 

For the elastoplastic system, the force-deformation relation is no longer single-valued if the 

system is unloading or reloading, and the resisting force 𝑓𝑠 expressed as 𝑘𝑢 in Eq. (1) depends 

on the prior history of the system deformation and whether the deformation is currently increasing 

(�̇� > 0) or decreasing (�̇� < 0). Therefore, the governing equation for elastoplastic SDOF system 

can be expressed as 

𝑚�̈� + 𝑐�̇� + 𝑓𝑠(𝑢, �̇�) = −𝑚�̈�𝑔(𝑡)                       (2) 

The force-deformation relation for a structure during its initial loading is given in Fig. 2, and 

the parameters uy and fy represent the yield deformation and strength. It is convenient to idealize 

the actual curve by a perfect elastoplastic force-deformation relation. The elastoplastic 

approximation to the actual force-deformation curve is shown in Fig. 2, and the areas under the 

two curves are the same at the selected value of the maximum displacement um. As illustrated in 

Fig. 3, the yield forces are the same in the two directions of deformation. Unloading from a point 

 

Simplified as 
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of the maximumtable deformation takes place along a path parallel to the initial elastic branch. 

Similarly, reloading from a point of the minimum deformation takes place along a path parallel to 

the initial elastic branch. The maximum and minimum values of the resisting force (i.e., yield 

strength) for deformations in excess of the yield deformation are fy.  

It is desirable to evaluate the peak deformation of an elastoplastic system due to prescribed 

earthquake ground motion and to compare this deformation to the peak deformation caused by the 

same excitation in the corresponding elastic system. As illustrated in Fig. 4, this elastic system is 

assumpted to have the same stiffness as the stiffness of the elastoplastic system during its initial 

loading. Both mass and damping are the same for the two systems. Therefore, the natural vibration 

period of the corresponding elastic system is the same as the period of the elastoplastic system 

undergoing small (𝑢 ≤ 𝑢𝑦) oscillations. 

 
 

f s

u
umuy

f y

1
k

1
k

1
k

-f y

 
Fig. 3 Hysteretic curve for ideal elastoplastic system 
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*𝑓0 and 𝑢0 are the peak values of the earthquake-induced resisting force and deformation in the 

corresponding elastic system 

Fig. 4 Force-deformation relations of the elastoplastic and elastic systems 
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The normalized yield strength 𝑓�̅� of an elastoplastic system is defined as 

𝑓�̅� =
𝑓𝑦

𝑓0
=

𝑢𝑦

𝑢0
                                (3) 

It is noted that 𝑓0 can also be regarded as the minimum strength required for the structure to 

remain within its linearly elastic limit during the ground motion. If the normalized yield strength 

𝑓�̅� < 1, the deformation of system will exceed its linearly elastic limit; and if 𝑓�̅� ≥ 1, plastic 

deformation won’t occur under seismic excitation. 

The peak deformation of the elastoplastic system due to the prescribed ground motion is 

denoted by um. It is meaningful to normalize um relative to the yield deformation of the system 

𝜇 =
𝑢𝑚

𝑢𝑦
                                 (4) 

where the dimensionless rate 𝜇 is called the ductility factor.  

According to Eq. (2), the following equation can be obtained 

�̈� + 2𝜉𝜔𝑛�̇� + 𝜔𝑛
2𝑢𝑦𝑓𝑠(𝑢, �̇�) = −�̈�𝑔(𝑡)                  (5) 

where 

𝜔𝑛 = √
𝑘

𝑚
                               (6) 

𝜉 =
𝑐

2𝑚𝜔𝑛
                               (7) 

𝑓𝑦 = 𝑘𝑢𝑦                               (8) 

𝑓𝑠(𝑢, �̇�) =
𝑓𝑠(𝑢,�̇�)

𝑓𝑦
                            (9) 

in which the quantity 𝜔𝑛 is the natural frequency of the elastoplastic system vibrating within its 

linearly elastic range (i.e., 𝑢 ≤ 𝑢𝑦 ). Obviously, 𝜔𝑛  is also the natural frequency of the 

corresponding elastic system. Similarly, 𝜉 is the damping rate of the system based on the critical 

damping 2𝑚𝜔𝑛 of the elastoplastic system vibrating within its linearly elastic range, and 𝜉 also 

represents the damping ratio of the corresponding elastic system. Moreover, the function 𝑓𝑠(𝑢, �̇�) 

describes the force-deformation relation in a partially dimensionless form.  

The relationship between the ductility factor 𝜇 and the deformation response 𝑢(𝑡) can be 

expressed as follows 

𝑢(𝑡) = 𝑢𝑦𝜇(𝑡)                           (10) 

�̇�(𝑡) = 𝑢𝑦�̇�(𝑡)                           (11) 

�̈�(𝑡) = 𝑢𝑦�̈�(𝑡)                           (12) 

Substituting Eqs. (10)-(12) into Eq. (5) yields 

�̈� + 2𝜉𝜔𝑛�̇� + 𝜔𝑛
2𝑓𝑠(𝜇, �̇�) = −𝜔𝑛

2 �̈�𝑔(𝑡)

𝑎𝑦
                  (13) 
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where  

𝑎𝑦 =
𝑓𝑦

𝑚
                                (14) 

𝑓𝑠(𝜇, �̇�) =
𝑓𝑠(𝜇,�̇�)

𝑓𝑦
                            (15) 

in which the quantity 𝑎𝑦 can be interpreted as the acceleration of the mass necessary to produce 

the yield force 𝑓𝑦, and 𝑓𝑠(𝜇, �̇�) is the force-deformation relation in normalized form. 

 

 

3. Deduction of the strain rate spectrum for the elastoplastic system 
 

It is clear that for a given �̈�𝑔(𝑡), the deformation response 𝑢(𝑡) of the system depends only 

on the natural frequency 𝜔𝑛 or natural period 𝑇𝑛 = 2𝜋 𝜔𝑛⁄ , damping ratio 𝜉 and the yield 

deformation 𝑢𝑦. Thus, the deformation calculated by Eq. (5) can be written as 

𝑢 ≡ 𝑢(𝑡, 𝑇𝑛, 𝜉, 𝑢𝑦)                           (16) 

Furthermore, the velocity and acceleration response calculated by Eq. (5) can be expressed as 

follows 

�̇� ≡ �̇�(𝑡, 𝑇𝑛, 𝜉, 𝑢𝑦)                           (17) 

�̈� ≡ �̈�(𝑡, 𝑇𝑛, 𝜉, 𝑢𝑦)                           (18) 

Considering the maximum values of the displacement, velocity and acceleration responses 

within the time domain, the following response spectrums are obtained 

𝑢𝑠(𝑇𝑛, 𝜉, 𝑢𝑦) = max𝑡|𝑢(𝑡, 𝑇𝑛, 𝜉, 𝑢𝑦)|                   (19) 

�̇�𝑠(𝑇𝑛, 𝜉, 𝑢𝑦) = max𝑡|�̇�(𝑡, 𝑇𝑛, 𝜉, 𝑢𝑦)|                   (20) 

�̈�𝑠(𝑇𝑛, 𝜉, 𝑢𝑦) = max𝑡|�̈�(𝑡, 𝑇𝑛, 𝜉, 𝑢𝑦)|                   (21) 

where 𝑢𝑠 , �̇�𝑠  and �̈�𝑠  denote the deformation, relative velocity and acceleration response 

spectrum, respectively. 

The deformation of an arbitrary point within the system can be calculated by the product of the 

nodal deformation and the shape function as shown in the following equation 

𝑧(𝑥, 𝑡) = 𝜓(𝑥)𝑢(𝑡, 𝑇𝑛, 𝜉, 𝑢𝑦)                       (22) 

where 𝑧(𝑥, 𝑡) denotes the deformation of a certain point; 𝜓(𝑥) represents the shape function of 

the system. Note that the strain is the spatial derivative of the deformation function, the following 

equations can be obtained 

𝜀 = 𝐸(𝑧) = 𝐸(𝜓)𝑢(𝑡, 𝑇𝑛, 𝜉, 𝑢𝑦)                     (23) 

𝐸 =
𝜕

𝜕𝑥
                                (24) 
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where 𝜀 and E denote the normal strain and strain operator in the x direction, respectively. It is 

noted that the present paper is mainly focus on displacement-based element formulations. Further 

researches are needed if the force-based element formulations are adopted. 

The time derivative of Eq. (23) is expressed as 

𝜀̇ = 𝐸(𝜓)�̇�(𝑡, 𝑇𝑛, 𝜉, 𝑢𝑦)                          (25) 

where �̇� and 𝜀̇ are the relative velocity and the strain rate response, respectively. 

Considering the maximum value of 𝜀 and 𝜀̇ within the time domain, the following formulae 

are obtained 

|𝜀|𝑚𝑎𝑥 = |𝐸(𝜓)||𝑢(𝑡, 𝑇𝑛, 𝜉, 𝑢𝑦)|
𝑚𝑎𝑥

= |𝐸(𝜓)|𝑢𝑠(𝑇𝑛, 𝜉, 𝑢𝑦)         (26) 

|𝜀̇|𝑚𝑎𝑥 = |𝐸(𝜓)||�̇�(𝑡, 𝑇𝑛, 𝜉, 𝑢𝑦)|
𝑚𝑎𝑥

= |𝐸(𝜓)|�̇�𝑠(𝑇𝑛, 𝜉, 𝑢𝑦)         (27) 

According to Eq. (27), the relationship between the maximum strain rate |𝜀̇|𝑚𝑎𝑥 and the 

velocity response spectrum �̇�𝑠(𝑇𝑛, 𝜉, 𝑢𝑦) can be calculated by 

�̇�𝑠(𝑇𝑛, 𝜉, 𝑢𝑦) =
|�̇�|𝑚𝑎𝑥

|𝐸(𝜓)|
                           (28) 

Due to the lack of velocity response spectrum for elastoplastic system, the pseudo-velocity 

response spectrum can be used instead. Over the medium-period range (i.e., 0.1 s < 𝑇𝑛 < 5 𝑠) the 

value of pseudo-velocity is very close to the value of velocity. Furthermore, it is convenient for the 

following analyses that the frequently used deformation and pseudo-velocity response spectrums 

for both elastic and elastoplastic systems are directly given by Chopra (2001). In addition, the 

relationship between deformation, pseudo-velocity and pseudo-acceleration can be expressed as 

𝑢 =
𝑇𝑛

2𝜋
�̇�𝑝 = (

𝑇𝑛

2𝜋
)

2
�̈�𝑝                          (29) 

where �̇�𝑝 and �̈�𝑝 denote the pseudo-velocity and pseudo-acceleration, respectively. 

As shown in Figs. 5(a)-(b), the elastic pseudo-acceleration and pseudo-velocity response 

spectrums taken from reference (Chopra 2001) are given and, in addition, the damping rate 𝜉 is 

set to 5%. A simple approach to generate a constant-ductility spectrum for the elastoplastic system 

is given by Chopra (2001, 2004). In this approach, the constant-ductility spectrum is calculated by 

multiplying the elastic spectrum by the normalized yield strength 𝑓�̅� of the elastoplastic system. 

The relationship between normalized yield strength 𝑓�̅� and ductility factor 𝜇 is expressed as 

𝑓�̅� = {

1                              𝑇𝑛 < 𝑇𝑎

(2𝜇 − 1)−1 2⁄          𝑇𝑏 < 𝑇𝑛 < 𝑇𝑐′  

𝜇−1                         𝑇𝑛 > 𝑇𝑐

                   (30) 

where the period values 𝑇𝑎 and 𝑇𝑏 are fixed and set to 0.03 s and 0.125 s respectively for the 

earthquake motions on firm ground. Although the parameters 𝑇𝑐′  and 𝑇𝑐 are involved in Eq. 

(30), they are not essential for the calculation of constant-ductility spectrum. The detailed analysis 

can be seen in references (Chopra 2001, 2004). According to Eq. (3), 𝑓�̅� is the ratio of 𝑓𝑦 and 𝑓0. 

Herein, 𝑓𝑦 can be interpreted as the strength demand for the structure with the given ductility  
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*Semilog coordinates are adopted 

Fig. 5 Calculation process from elastic response spectrum to elastoplastic response spectrum 

 

 

factor (Chopra 2001, Zhai and Xie 2007). In engineering practice, it is desired to determine the 

strength demand fy of the system to limit the ductility demand imposed by the ground motion to a 

specified value.  

According to the above analysis, the maximum strain rate can be obtained if the natural period 

and damping ratio of the SDOF structure are given and the shape function is defined. Two 

exemplary structures are given in Fig. 6 and the shape functions are defined as 

𝜓𝑐 =
𝑥−𝑥1

𝑥2−𝑥1
                             (31) 

𝜓𝑡 =
𝑥𝑖𝑦𝑗−𝑥𝑖𝑦𝑗−(𝑦𝑗−𝑦𝑖)𝑥+(𝑥𝑗−𝑥𝑖)𝑦

(𝑥𝑖𝑦𝑗+𝑥𝑗𝑦𝑚+𝑥𝑚𝑦𝑖)−(𝑥𝑖𝑦𝑚+𝑥𝑗𝑦𝑖+𝑥𝑚𝑦𝑗)
                 (32) 

where 𝜓𝑐 denotes the shape function of cantilever beam at node 2 and 𝜓𝑡 denotes the shape 

function of triangular element at node m; x and y denote the coordinate values; the subscripts 1, 2, 

i, j and m denote the different nodes or supports. The deformation of support 1, node i and node j 

remains zero during seismic excitation, thus the shape functions of support 1, node i and node j are 

unnecessary to be taken into consideration. 
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(a) Cantilever beam (one-dimensional)             (b) Triangular element (two-dimensional) 

*Supports i and j are completely fixed 

Fig. 6 Exemplary structures 
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(a) Cantilever beam                            (b) Triangular element 

Fig. 7 Strain rate spectrums considering the ductility factor 

 

 

The strain operators of the cantilever beam and triangular element, i.e., 𝐸(𝜓𝑐) and 𝐸(𝜓𝑡), can 

be expressed as 

|𝐸(𝜓𝑐)| =
1

𝑥2−𝑥1
                             (33) 

|𝐸(𝜓𝑡)| =
(𝑦𝑗−𝑦𝑖)

(𝑥𝑖𝑦𝑗+𝑥𝑗𝑦𝑚+𝑥𝑚𝑦𝑖)−(𝑥𝑖𝑦𝑚+𝑥𝑗𝑦𝑖+𝑥𝑚𝑦𝑗)
                  (34) 

For the two exemplary structures, |𝐸(𝜓𝑐)| and |𝐸(𝜓𝑡)| are equal to 0.5 and 0.3, respectively. 

Then, the strain rate spectrums calculated by Eq. (28) is given in Fig. 7.  

 

 

4. Deduction of multiple-support response spectrum method considering strain rate 
effect 

 

The dynamic equation for a discrete, N-degree-of-freedom elastic system subjected to m 

support motions can be written in following matrix form (Clough and Penzien 1993) 

[
𝑴 𝑴𝑐

𝑴𝑐
𝑻 𝑴𝑔

] {
�̈�

�̈�𝑔
} + [

𝑪 𝑪𝑐

𝑪𝑐
𝑇 𝑪𝑔

] {
�̇�

�̇�𝑔
} + [

𝑲 𝑲𝑐

𝑲𝑐
𝑇 𝑲𝑔

] {
𝒙

𝒖𝑔
} = ,

𝟎
𝑷

-            (35) 

where, M, C and K denote the N×N mass, damping and stiffness matrices associated with the 

unconstrained degrees of freedom, respectively; 𝑴𝑔 , 𝑪𝑔  and 𝑲𝑔  represent the m×m mass, 

damping and stiffness matrices associated with the support degrees of freedom, and m denotes the 

numbers of constrained degrees of freedom; 𝑴𝑐 , 𝑪𝑐  and 𝑲𝑐  represent N×m coupling mass, 

damping and stiffness matrices associated with both unconstrained and support degrees of 

freedom; P denotes the m-vector of reacting forces at the support degrees of freedom; y represents 

the total displacement vector at the unconstrained degrees of freedom; �̈�𝑔, �̇�𝑔 and 𝒖𝑔 denote 

the m-vector of prescribed support acceleration, velocity and displacement, respectively. 

Expanding Eq. (35) gives  

𝑴�̈� + 𝑴𝑐�̈�𝑔 + 𝑪�̇� + 𝑪𝑐�̇�𝑔 + 𝑲𝒙 + 𝑲𝑐𝒖𝑔 = 𝟎                  (36) 
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It is common to decompose the response x into pseudo-static component 𝒙𝑠 and dynamic 

component 𝒙𝑑 as following equation 

𝒙 = 𝒙𝑠 + 𝒙𝑑                               (37) 

Substituting Eq. (37) into Eq. (36) gives 

𝑴�̈�𝑑 + 𝑪�̇�𝑑 + 𝑲𝒙𝑑 = −[(𝑴�̈�𝑠 + 𝑴𝑐�̈�𝑔) + (𝑪�̇�𝑠 + 𝑪𝑐�̇�𝑔) + (𝑲𝒙𝑠 + 𝑲𝑐𝒖𝑔)]      (38) 

It is well known that the term (𝑲𝒙𝑠 + 𝑲𝑐𝒖𝑔) in the right-hand side of Eq. (38) remains zero. 

Therefore, the following relationship can be obtained 

𝒙𝑠 = −𝑲−1𝑲𝑐𝒖𝑔 = 𝑹𝒖𝑔                          (39) 

where R denotes the influence matrix. 

Substituting Eq. (39) into Eq. (38) yields 

𝑴�̈�𝑑 + 𝑪�̇�𝑑 + 𝑲𝒙𝑑 = −(𝑴𝑹 + 𝑴𝑐)�̈� − (𝑪𝑹 + 𝑪𝑐)�̇�  ≈ −(𝑴𝑹 + 𝑴𝑐)�̈�        (40) 

where the right-hand side is approximated by neglecting the damping forces, which are usually 

much smaller than the inertia forces on the same side. It is noted that 𝑴𝑐 = 0 if a lumped-mass 

model is used. 

The circular frequency 𝝎 and mode shape 𝜱 can be calculated by the following equation. 

[𝑲 − 𝝎2𝑴]𝜱 = 𝟎                            (41) 

The vectors of vibration mode and generalized coordinate are given in Eqs. (42)-(43) 

𝜱 = [𝝓𝟏 ⋯ 𝝓𝒏]                             (42) 

𝒚 = [𝑦1 ⋯ 𝑦𝑛]                             (43) 

Substitute transformation 

𝒙𝑑 = 𝚽𝒚                               (44) 

into Eq. (40), the decoupled dynamic equations for the MDOF system under uniform and 

multiple-support excitations are expressed respectively as follows 

�̈�𝑖 + 2𝜉𝑖𝜔𝑖�̇�𝑖 + 𝜔𝑖
2𝑦𝑖 = −

(𝜱𝑖)𝑇𝑴𝑹

(𝜱𝑖)𝑇𝑴𝜱𝑖
�̈�𝑔(𝑡), 𝑖 = 1, ⋯ , 𝑛             (45) 

�̈�𝑖 + 2𝜉𝑖𝜔𝑖�̇�𝑖 + 𝜔𝑖
2𝑦𝑖 = − ∑ 𝛽𝑘𝑖�̈�𝑘(𝑡)𝑚

𝑘=1 , 𝑖 = 1, ⋯ , 𝑛             (46) 

where the subscript i denotes the mode number, and the index k denotes the degrees of freedom 

associated with the prescribed support motions; 𝛽𝑘𝑖 represents the modal participation factor 

given by 

𝛽𝑘𝑖 =
(𝜱𝑖)𝑇(𝑴𝒓𝑘+𝑴𝒄𝒊𝑘)

(𝜱𝑖)𝑇𝑴𝜱𝑖
                            (47) 

in which 𝒓𝑘 is the kth column of R and 𝒊𝑘 is the kth column of an m×m identity matrix.  

For the MDOF system under uniform excitation, the strain rate responses of corresponding 
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SDOF systems can be calculated using Eqs. (28) and (45). Then, the total strain rate and dynamic 

response of the MDOF structure can be obtained by the modal combination method (Clough 1962, 

Singh and Mehta 1983, Sinha and Igusa 1995). 

For the MDOF system under multiple-support excitations, it is convenient to define a 

normalized modal response 𝑠𝑘𝑖(𝑡) , representing the response of a single-degree-of-freedom 

oscillator of unit mass, frequency 𝜔𝑖 and damping 𝜉𝑖, which is subjected to the base motion 

�̈�𝑘(𝑡). Thus, 𝑠𝑘𝑖(𝑡) satisfies 

�̈�𝑘𝑖 + 2𝜉𝑖𝜔𝑖 �̇�𝑘𝑖 + 𝜔𝑖
2𝑠𝑘𝑖 = −�̈�𝑘(𝑡)                     (48) 

The relationship between 𝑦𝑖(t) and 𝑠𝑘𝑖(𝑡) is given as 

𝑦𝑖(t) = ∑ 𝛽𝑘𝑖𝑠𝑘𝑖(𝑡)𝑚
𝑘=1                           (49) 

Combining Eqs. (25) and (37), the strain rate response can be expressed as  

�̇� = 𝐸(𝜓)[�̇�𝑠(𝑡) + �̇�𝑑(𝑡)]                         (50) 

Substituting Eqs. (39) and (44) into Eq. (50) yields 

�̇�′(𝑡) = ∑ 𝒂𝑘�̇�𝑘(𝑡)𝑚
𝑘=1 + ∑ ∑ 𝒃𝑘𝑖 �̇�𝑘𝑖(𝑡)𝑁

𝑖=1
𝑚
𝑘=1                  (51) 

where �̇�′(𝑡) denotes the strain rate response under multiple-support excitations; 𝒂𝑘  and 𝒃𝑘𝑖 

denote the effective influence factors and effective modal participation factors, defined as 

𝒂𝑘 = 𝐸(𝜓)𝒓𝑘                               (52) 

𝒃𝑘𝑖 = 𝐸(𝜓)𝝓𝑖𝛽𝑘𝑖                            (53) 

From Eq. (51), the PSD of the strain rate response can be written in the following form 

𝐺�̇��̇�
′ (𝑖𝜔) = ∑ ∑ 𝒂𝑘𝒂𝑙𝐺�̇�𝑘�̇�𝑙

(𝑖𝜔)

𝑚

𝑙=1

𝑚

𝑘=1

+ 2 ∑ ∑ ∑ 𝑖𝜔𝒂𝑘𝒃𝑙𝑗𝐻𝑗(−𝑖𝜔)

𝑁

𝑗=1

𝑚

𝑙=1

𝑚

𝑘=1

𝐺�̇�𝑘�̈�𝑙
(𝑖𝜔) + 

∑ ∑ ∑ ∑(−𝜔2)𝒃𝑘𝑖𝒃𝑙𝑗𝐻𝑖(𝑖𝜔)𝐻𝑗(−𝑖𝜔)𝐺�̈�𝑘�̈�𝑙
(𝑖𝜔)

𝑁

𝑗=1

𝑁

𝑖=1

𝑚

𝑙=1

𝑚

𝑘=1

 

(54) 

in which 𝐺𝑥𝑦
′ (𝑖𝜔) denotes the cross-PSD of processes x and y. 

Integrating Eq. (54) over the frequency domain −∞ < 𝜔 < ∞, the mean-square response is 

(𝜍�̇�
′)2 = ∑ ∑ 𝒂𝑘𝒂𝑙𝜌�̇�𝑘�̇�𝑙

𝜍�̇�𝑘
𝜍�̇�𝑙

𝑚

𝑙=1

𝑚

𝑘=1

+ 2 ∑ ∑ ∑ 𝒂𝑘𝒃𝑙𝑗𝜌�̇�𝑘�̇�𝑙𝑗
𝜍�̇�𝑘

𝜍�̇�𝑙𝑗

𝑁

𝑗=1

𝑚

𝑙=1

𝑚

𝑘=1

+ 

∑ ∑ ∑ ∑ 𝒃𝑘𝑖𝒃𝑙𝑗𝜌�̇�𝑘𝑖�̇�𝑙𝑗
𝜍�̇�𝑘𝑖

𝜍�̇�𝑙𝑗

𝑁

𝑗=1

𝑁

𝑖=1

𝑚

𝑙=1

𝑚

𝑘=1

 

(55) 

in which, 𝜌�̇�𝑘�̇�𝑙
, 𝜌�̇�𝑘�̇�𝑙𝑗

 and 𝜌�̇�𝑘𝑖�̇�𝑙𝑗
 are cross-correlation coefficients defined by 
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𝜌�̇�𝑘�̇�𝑙
=

1

𝜍�̇�𝑘
𝜍�̇�𝑙

∫ 𝐺�̇�𝑘�̇�𝑙
(𝑖𝜔)

∞

−∞
𝑑𝜔                      (56) 

𝜌�̇�𝑘�̇�𝑙𝑗
=

1

𝜍�̇�𝑘
𝜍�̇�𝑙𝑗

∫ 𝑖𝜔𝐻𝑗(−𝑖𝜔)𝐺�̇�𝑘�̈�𝑙
(𝑖𝜔)

∞

−∞
𝑑𝜔                 (57) 

𝜌�̇�𝑘𝑖�̇�𝑙𝑗
=

1

𝜍�̇�𝑘𝑖
𝜍�̇�𝑙𝑗

∫ (−𝜔2)𝐻𝑖(𝑖𝜔)𝐻𝑗(−𝑖𝜔)𝐺�̈�𝑘�̈�𝑙
(𝑖𝜔)

∞

−∞
𝑑𝜔             (58) 

Let 𝐷𝑘(𝜔𝑖 , 𝜉𝑖) denote the response spectrum for the support degree of freedom k, representing 

the expected value of the peak of the velocity response of an oscillator of frequency 𝜔𝑖 and 

damping 𝜉𝑖 to the base acceleration �̈�𝑘(𝑡). Likewise, �̇�𝑘,𝑚𝑎𝑥 denotes the mean peak ground 

velocity. Eventually, the maximum strain rate under multiple-support excitations, i.e., |𝜀̇(𝑡)|𝑚𝑎𝑥
′ , 

can be calculated by the following equation 

|𝜀̇(𝑡)|𝑚𝑎𝑥
′ = [∑ ∑ 𝒂𝑘𝒂𝑙𝜌�̇�𝑘�̇�𝑙

�̇�𝑘,𝑚𝑎𝑥�̇�𝑙,𝑚𝑎𝑥

𝑚

𝑙=1

𝑚

𝑘=1

+ 2 ∑ ∑ ∑ 𝒂𝑘𝒃𝑙𝑗𝜌�̇�𝑘�̇�𝑙𝑗
�̇�𝑘,𝑚𝑎𝑥𝐷𝑙(𝜔𝑗 , 𝜉𝑗)

𝑁

𝑗=1

𝑚

𝑙=1

𝑚

𝑘=1

+ 

∑ ∑ ∑ ∑ 𝒃𝑘𝑖𝒃𝑙𝑗𝜌�̇�𝑘𝑖�̇�𝑙𝑗
𝐷𝑘(𝜔𝑖 , 𝜉𝑖)𝐷𝑙(𝜔𝑗 , 𝜉𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

𝑚

𝑙=1

𝑚

𝑘=1

]1 2⁄  

(59) 

in which 

�̇�𝑘,𝑚𝑎𝑥 = 𝐸[𝑚𝑎𝑥|�̇�𝑘(𝑡)|]                        (60) 

�̇�𝑙,𝑚𝑎𝑥 = 𝐸[𝑚𝑎𝑥|�̇�𝑙(𝑡)|]                        (61) 

𝐷𝑘(𝜔𝑖 , 𝜉𝑖) = 𝐸[𝑚𝑎𝑥|�̇�𝑘𝑖(𝑡)|]                       (62) 

𝐷𝑙(𝜔𝑗 , 𝜉𝑗) = 𝐸[𝑚𝑎𝑥|�̇�𝑙𝑗(𝑡)|]                       (63) 

 

 

5. Numerical examples 
 

In order to investigate the effects of strain rate and ductility on the structural dynamic behavior 

and yield strength, the following exemplary structures are taken as examples to calculate their 

seismic responses.  

The constitutive model for dynamic loading of steel material considering the strain rate effect 

(Li and Li 2010) is given by Eqs. (64)-(65) 

𝑓𝑦𝑑 𝑓𝑦𝑠⁄ = 1 + 𝑐𝑦lg(𝜀�̇� 𝜀�̇�0⁄ )                       (64) 

𝑐𝑦 = 0.1709 − 3.289 × 10−4𝑓𝑦𝑠                     (65) 

where 𝜀�̇� and 𝜀�̇�0 denote the current strain rate and quasi-static strain rate, respectively; 𝑓𝑦𝑑 and 

𝑓𝑦𝑠 denote the concrete compressive strength under dynamic and static loads. In general, 𝜀�̇�0 is 

equal to 2.5×10-4 s-1. 
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(a) SDOF system under uniform excitation 

 
(b) MDOF systems under uniform and multiple-support excitations 

Fig. 8 DMF calculation flowcharts considering the ductility and strain rate effects 
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Fig. 9 Visual interface of the program 

 

 

The DMF calculation flowcharts for SDOF and MDOF systems considering ductility and strain 

rate effects are illustrated in Fig. 8. It is convenient to estimate the maximum strain rate for SDOF 

system through the strain rate spectrum (see Fig. 7). For the MDOF system under uniform 

excitation, the total response can be obtained by superposing the response of each mode (Clough 

1962, Singh and Mehta 1983, Sinha and Igusa 1995), and the SRSS modal combination method is 

adopted in this paper. Considering the spatially varying ground motions, a new response spectrum 

method developed in Section 4 can be employed for the calculation of the maximum strain rate. 

Therefore, three different numerical examples representing the above three cases respectively are 

given as follows. Moreover, a visual program shown in Fig. 9 is developed to perform the 

numerical calculation effectively and conveniently.  

 

5.1 SDOF system under uniform excitation 
 
The cantilever beam shown in Fig. 10 is taken as an example to investigate the effects of strain 

rate and ductility on the dynamic behavior and yield strength. In addition, the nodal coordinates in 

Fig. 10 remain the same as those in Fig. 6(a). Therefore, the strain rate spectrum illustrated in Fig. 

7(a) is still available. 

As shown in Fig. 10, the axial motion and deformation of the cantilever beam are merely 

considered in the analysis. Furthermore, the total mass and stiffness matrices, 𝑴𝑡𝑜𝑡𝑎𝑙 and 𝑲𝑡𝑜𝑡𝑎𝑙, 

are expressed as 
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u(t)

2l

x

k=EA/2lm=┭Al

ui

ui
support 1 node 2

support 1 node 2
Original

Deformation

x

 
*m and k denote the lumped mass and stiffness, respectively; E and ρ denote the modulus of elasticity and 

density, respectively; A and l denote the cross-sectional area and length of the cantilever beam. 

Fig. 10 Cantilever beam (one-dimensional) 

 

 
Fig. 11 El Centro earthquake acceleration history 

 
 

𝑴𝑡𝑜𝑡𝑎𝑙 = 𝜌𝐴𝑙 *
1 0
0 1

+                           (66) 

𝑲𝑡𝑜𝑡𝑎𝑙 =
𝐸𝐴

2𝑙
*

1 −1
−1 1

+                          (67) 

where 𝜌𝐴𝑙 = 5.8 × 107Kg and 𝐸𝐴 2𝑙⁄ = 6.0 × 1010N/m. 

The El Centro earthquake ground motion shown in Fig. 11 is selected as the dynamic excitation 

and the peak ground acceleration (PGA) is highlighted.  

According to Eq. (40), the dynamic response can be calculated by Newmark-β explicit method 

(Clough and Penzien 1993, Chopra 2001). The integration step is 0.0002 s and the parameters 𝛾 

and 𝛽 are equal to 0.5 and 0.25, respectively. The displacement response of the corresponding 

elastic system is given in Fig. 12 and the internal force f shown in Fig. 13 is obtained directly by 

the following equation 

𝑓 = 𝑘𝑢2                                 (68) 

where k denotes the axial stiffness of the cantilever beam; 𝑢2 denotes the deformation of node 2.  

In Fig. 13, the original yield strength without considering the ductility and strain rate effects is 

equal to 300 MPa, and plastic deformation occurs at certain moments. Considering the ductility 

and strain rate effects, the dynamic yield strength increases and the yield deformation may be 
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Fig. 12 Displacement response of the corresponding 

elastic system 

Fig. 13 Yield conditions in the cases of with and 

without considering strain rate effect 

 

  
(a) Considering only the ductility effect (b) Considering both ductility and strain rate effects 

Fig. 14 Displacement responses of cantilever beam 

 
 

significantly different. The displacement response and DMF history in time domain are given in 

Fig. 14. The results show that the permanent deformation without considering the strain rate effect 

reaches 2.3×10-3 m. However, the permanent deformation is close to 0 if the ductility and strain 

rate effects are taken into consideration. It is necessary to consider the effects of ductility and 

strain rate on structural dynamic response in practical engineering accordingly. 

In practice, it is known that the strength demand is reduced with increasing ductility factor and 

strain rate, and even small amount of inelastic deformation produces a significant reduction in the 

strength demand (Chopra 2001). Current seismic design methods are based on an estimate of the 

elastic strength demand that is decreased based on a “response modification factor” (UBC 1997, 

IBC 2003), which is implicitly related to the system overstrength and displacement ductility 

capacity (Medina and Krawinkler 2005), to estimate the design strength demand. Considering the 

reduction effects produced by the ductility and strain rate, the strength demand can be 

quantitatively estimated based on Eqs. (30), (64)-(65).  

As shown in Table 1, four cases are discussed. In Case 1, the effects of ductility and strain rate 

on the strength demand are ignored in the analysis; in Case 2, only the ductility effect is 

considered; in Case 3, only the strain rate effect is considered; and in Case 4, both the ductility and  
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Table 1 Strength demand in different cases 

Case 

Strength demand 𝑓𝑦 (MPa) 

Elastic system Elastoplastic system 

μ=1 μ=1.5 μ=2 μ=4 

1 300 300 300 300 

2 300 212.1 173.2 113.4 

3 250.6 250.6 250.6 250.6 

4 250.6 179.0 146.8 97.3 

 
 

strain rate effects are considered. Results show that in combination of ductility and strain rate 

effects, the strength demand decreases significantly.  

 
5.2 MDOF system under uniform excitation 
 
As illustrated in Fig. 15, the triangular element is given for investigating the effects of strain 

rate and ductility on the structual dynamic behavior and yield strength. The calculation procedures 

are shown in Fig. 8 and the aforementioned program is adopted. Moreover, the total mass and 

stiffness matrices, 𝑴𝑡𝑜𝑡𝑎𝑙
′  and 𝑲𝑡𝑜𝑡𝑎𝑙

′ , are given as follows 

 

(69) 
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(a) Original triangular element (b) Deformed triangular element 

*Supports i and j are completely fixed; node m has two degrees of freedom in x and y direction, respectively. 

Fig. 15 Triangular element under uniform excitation 

1005



 

 

 

 

 

 

Guohuan Liu, Jijian Lian, Chao Liang and Mi Zhao 

where 𝑴′ and 𝑲′ are the mass and stiffness matrices associated with the unconstrained degrees 

of freedom, respectively; 𝑴𝑔
′  and 𝑲𝑔

′  are the mass and stiffness matrices associated with the 

support degrees of freedom, respectively; 𝑴𝑐
′  and 𝑲𝑐

′  are coupling mass and stiffness matrices 

associated with both unconstrained and support degrees of freedom; the subscripts m, i and j relate 

to the associated variable of node m, i and j. 

Only the submatrices 𝑴′ , 𝑴𝑐
′ , 𝑲′  and 𝑲𝑐

′  in Eq. (40) are involved in the calculation. 

Herein, 𝑴𝑐
′  is a null matrix due to the lumped mass matrix adopted in this numerical example; 

𝑴′ and 𝑲′ can be calculated by following equations 

𝑴′ = 𝒎𝑚𝑚
′ =

𝜌′𝐴′𝑡′

3
*
1 0
0 1

+                         (71) 

𝑲′ = 𝒌𝑚𝑚
′ =

𝐸′𝑡′

4(1−𝜇′2
)𝐴′

[
𝑏𝑚

2 +
1−𝜇′

2
𝑐𝑚

2 1+𝜇′

2
𝑏𝑚𝑐𝑚

1+𝜇′

2
𝑐𝑚𝑏𝑚 𝑐𝑚

2 +
1−𝜇′

2
𝑏𝑚

2
]               (72) 

𝑏𝑚 = − |
1 𝑦𝑖

1 𝑦𝑗
|                             (73) 

𝑐𝑚 = |
1 𝑥𝑖

1 𝑥𝑗
|                              (74) 

where 𝐸′, 𝜇′ and 𝜌′ denote elasticity modulus, Poisson’s rate and density, respectively; 𝐴′ and 

𝑡′ denote the cross-sectional area and thickness of the triangular element; 𝜌′𝐴′𝑡′ 3⁄  is set to 

2.832×104 kg; 𝐸′𝑡′ 4(1 − 𝜇2)𝐴′⁄  is set to 50.758 N/m3. 

The coupled stiffness matrix 𝑲𝑐
′  can be obtained based on the condition of static equilibrium 

due to the supports i and j are completely fixed 

𝑲𝑐
′ = [𝒌𝑚𝑖

′ 𝒌𝑚𝑗
′ ] = [

2.7322𝑘𝑎 −0.7321𝑘𝑏 −3.7322𝑘𝑎 −0.2679𝑘𝑏

2.7322𝑘𝑏 −0.7321𝑘𝑐 −3.7322𝑘𝑏 −0.2679𝑘𝑐
]       (75) 

𝑘𝑎 =
𝐸′𝑡′

4(1−𝜇2)𝐴
(𝑏𝑚

2 +
1−𝜇

2
𝑐𝑚

2 )                       (76) 

𝑘𝑏 =
𝐸′𝑡′

4(1−𝜇2)𝐴

1+𝜇

2
𝑏𝑚𝑐𝑚                         (77) 

𝑘𝑐 =
𝐸′𝑡′

4(1−𝜇2)𝐴
(𝑐𝑚

2 +
1−𝜇

2
𝑏𝑚

2 )                       (78) 

The El Centro earthquake acceleration history shown in Fig. 11 is selected as the uniform 

dynamic excitation for the triangular element. To analyze how the elastoplastic displacement 

response of triangular element is affected by the strain rate effect, the dynamic excitation is 

magnified 20 times to make the structure yield. The stress history at node m can be calculated by 

following equations 

 

(79) 
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𝜀𝑥 = |
𝜕(𝜓𝑡)

𝜕𝑥
| 𝑢𝑥                              (80) 

𝜀𝑦 = |
𝜕(𝜓𝑡)

𝜕𝑦
| 𝑢𝑦                              (81) 

where 𝜍 and 𝜏 denote the normal and shear stress, respectively; 𝜀 and 𝛾 denote the normal 

and shear strain, respectively. For the steel material, elastic modulus and Poisson’s rate are equal to 

2×1011 Pa and 0.3, respectively.  

The horizontal displacement and stress responses are given in Figs. 16-17, and the maximum 

value of displacement response is highlighted. In Fig. 17, the original yield strength without 

considering the strain rate effects is equal to 300 MPa. The dynamic yield strength increases under 

the effect of ductility and strain rate, thus the displacement response will be different. In general, 

the permanent displacement tends to decrease with increasing yield strength, but this trend is not 

absolute because the permanent displacement depends not only on the yield strength but also on 

the characteristics of the ground motion.  

As shown in Fig. 18, the displacement response and DMF history in time domain under 

uniform excitation is given. For the displacement response without considering the strain rate 

 

 

 
Fig. 16 Displacement response of the corresponding 

elastic system 

Fig. 17 Yield conditions in the cases of with and 

without considering strain rate effect 

 

  
(a) Considering only the ductility effect (b) Considering both ductility and strain rate effects 

Fig. 18 Displacement responses of triangular element under uniform excitation 
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Table 2 Strength demand in different cases 

Case 

Strength demand 𝑓𝑦 (MPa) 

Elastic system Elastoplastic system 

μ=1 μ=1.5 μ=2 μ=4 

1 300 300 300 300 

2 300 256.1 236.6 206.7 

3 254.7 254.7 254.7 254.7 

4 254.7 220.0 204.1 180.7 

 

 

effect, the permanent deformation at the end of seismic excitation is close to 0 because the yield 

deformations in the positive and negative directions cancel each other out. For the displacement 

response considering the ductility and strain rate effects, the permanent deformation is 
approximately 1.7×10-3 m. The reason is that due to the increase in yield strength, yield 

deformation in the negative direction is reduced more significantly than that in the positive 

direction. 

Considering the reduction effects produced by the ductility and strain rate, the strength demand 

can be quantitatively estimated using Eqs. (30), (64)-(65). Four cases included in Table 2 are 

identical to those in Table 1.  

In Table 2, results show that with the consideration of ductility and strain rate effects, the 

strength demand of the system to limit the ductility demand imposed by the ground motion to a 

specified value decreases significantly. 

 
5.3 MDOF system under multiple-support excitations  
 
The numerical example shown in Fig. 19 is almost the same as that shown in Fig. 15, and the 

only difference is that the multiple-support (instead of uniform) excitations is adopted. In addition, 

El Centro and Kobe earthquake acceleration histories recorded at firm-soil condition are selected 

as the dynamic excitation at support i and j, respectively. As shown in Fig. 20, the Kobe 

earthquake acceleration history is given and the PGA is highlighted. In order to analyze how the 

elastoplastic displacement response of triangular element is affected by the strain rate effect, the El 

Centro and Kobe acceleration histories are magnified 10 and 3.82 times (the PGAs of two 

acceleration histories are equal) to make the structure yield. 

For a simple MDOF system like the numerical example given herein, the dynamic response of 

the triangular element in time domain can be calculated based on Eq. (40) by numerical 

time-stepping algorithm. The horizontal displacement and stress responses are given in Figs. 

21-22, respectively, and the maximum value of displacement response is highlighted. As illustrated 

in Fig. 22, the original yield strength without considering the strain rate effects is equal to 300 

MPa, and the plastic deformation occurs at certain moments. In combination of the ductility and 

strain rate effects, the dynamic yield strength increases and the permanent displacement may be 

significantly different.  

The displacement response and DMF history in time domain under multiple-support excitations 

are given in Fig. 23. Due to the amplification effect of the strain rate on the yield strength, the 

yield deformation in the negative direction shown in Fig. 23(a) is larger than that shown in Fig. 

23(b). For the displacement response without considering the strain rate effect, the permanent 
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(a) Original triangular element (b) Deformed triangular element 

*Supports i and j are completely fixed; node m has two degrees of freedom in x and y direction, respectively 

Fig. 19 Triangular element under multiple-support excitations 

 

 
Fig. 20 Kobe earthquake acceleration history 

 

  
Fig. 21 Displacement response of the corresponding 

elastic system 

Fig. 22 Yield conditions in the cases of with 

and without considering strain rate effect 

 

 

deformation at the end of seismic excitation is equal to -8.9×10-3m. However, for the displacement 

response considering the ductility and strain rate effects, the permanent deformation is 
approximately 2.3×10

-3 
m. The results indicate that the difference between deformations with and 

without considering strain rate effect is significant and unnegligible. 
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(a) Considering only the ductility effect (b) Considering both ductility and strain rate effects 

Fig.23 Displacement responses of triangular element under multiple-support excitatio 

 
Table 3 Strength demand in different cases 

Case 

Strength demand 𝑓𝑦 (MPa) 

Elastic system Elastoplastic system 

μ=1 μ=1.5 μ=2 μ=4 

1 300 300 300 300 

2 300 256.1 236.6 206.7 

3 250.0 250.0 250.0 250.0 

4 250.0 213.4 199.7 178.2 

 
 

Based on the response spectrum method developed in Section 4, the maximum strain rate of 

triangular element under multiple-support excitation can be calculated. Considering the reduction 

effects produced by the ductility and strain rate, the strength demand can be quantitatively 

estimated based on Eqs. (30), (64)-(65). Four cases included in Table 3 are the same as those in 

Tables 1-2. 

The strength demand decreases significantly under the effects of strain rate and ductility. In 

addition, as shown in Fig. 7 in section 3, the increasing ductility factor has a reduction effect on 

strain rate, which makes the yield strength decrease indirectly. 

 
 
6. Conclusions 

 
The effects of ductility and strain rate on the structural dynamic behaviors and yield strength 

are investigated in this paper. On the basis of theoretical deduction, three numerical models are 

taken as examples to calculate their displacement response and strength demand. The main 

conclusions are summarized as follows. 

• The relationship between relative velocity and strain rate response is deduced and the strain 

rate spectrum is presented. The ductility factor is incorporated into the strain rate spectrum based 

on the constant-ductility velocity response spectrum. It is convenient to estimate the maximum 

strain rate of the structure through the strain rate spectrum.  
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• Considering the spatially varying ground motions, a new response spectrum method is 

developed by incorporating the ductility factor and the strain rate into the conventional response 

spectrum method to estimate the maximum strain rate of structure. 

• Numerical results show that the permanent displacements, as well as the deformation 

histories, are significantly influenced by strain rate effect. Furthermore, considering the ductility 

and strain rate effects, the strength demands are significantly reduced. The results indicate that it is 

not only necessary in theory but also significant in engineering practice to take the ductility and 

strain rate effects into consideration. 
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