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Abstract.  In seismic fragility and risk analysis, the definition of structural limit state (LS) capacities is of 

crucial importance. Traditionally, LS capacities are defined according to design code provisions or using 

deterministic pushover analysis without considering the inherent randomness of structural parameters. To 

assess the effects of structural randomness on LS capacities, ten structural parameters that include material 

strengths and gravity loads are considered as random variables, and a probabilistic pushover method based 

on a correlation-controlled Latin hypercube sampling technique is used to estimate the uncertainties in LS 

capacities for four typical reinforced concrete frame buildings. A series of ten LSs are identified from the 

pushover curves based on the design-code-given thresholds and the available damage-controlled criteria. 

The obtained LS capacities are further represented by a lognormal model with the median mC and the 

dispersion βC. The results show that structural uncertainties have limited influence on mC for the LSs other 

than that near collapse. The commonly used assumption of βC between 0.25 and 0.30 overestimates the 

uncertainties in LS capacities for each individual building, but they are suitable for a building group with 

moderate damages. A low uncertainty as βC=0.1~0.15 is adequate for the LSs associated with slight damages 

of structures, while a large uncertainty as βC=0.40~0.45 is suggested for the LSs near collapse. 
 

Keywords:  limit state; pushover analysis; RC frame; uncertainty analysis; correlation-reduced Latin 

hypercube sampling 

 

 

1. Introduction 
 

Reinforced concrete (RC) frames are commonly found around the world and are often 

subjected to substantial damage during earthquakes. Considering the uncertain nature of 

earthquakes and structural parameters, probabilistic approaches such as the fragility curves and the 

probabilistic risk analysis tools are usually used to estimate the seismic safety of the RC frames. 

In these probabilistic methods, it is crucial to obtain a rational and quantitative definition of the 

structural limit state (LS) capacity (Favvata et al. 2014, Zhang and Goh 2014). In fact, different 
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seismic design codes have provided various empirical thresholds to define the LSs for RC frame 

structures. For instance, the US standard, “Seismic Rehabilitation of Existing Buildings” 

(ASCE/SEI 41-06 2007), defines three performance LSs, namely, Immediate Occupancy (IO), Life 

Safety (LS) and Collapse Prevention (CP), by the drift limits of 1%, 2% and 4%, respectively. In 

the current version of the Chinese code, National Standard of the People’s Republic of China, 

Code for Seismic Design of Building (GB50011 2010), two drift thresholds of 0.18% (1/550) and 

2% (1/50) are recommended to identify the LSs that are labeled as elastic limit and plastic limit, 

respectively. The above code-provided thresholds are generated based on experiment data, 

aftershock investigations and expert judgments and therefore they are empirical models that tend 

to be conservative. As noted in ASCE/SEI 41-06 (2007), the code-provided drift limits are only 

indicative of the range of displacement that the typical structure may undergo in response to 

various loads at different performance levels. From another aspect, the code-provided thresholds 

can only be treated as the general guidelines rather than the strict criteria to judge the LS capacities 

for a particular building against earthquake-induced damages.  

To deal with the above limitations, experiments may be the best way to assess the real capacity 

of the concerned building by observing its damages under earthquakes. This method has been used 

to determine the LS capacities for RC elements (Gardoni et al. 2002, Choe et al. 2007, Tran and Li 

2013, 2015); however it is limited for building systems in terms of applicability and a 

simulation-based method represents a more feasible alternative. The pushover curve, also viewed 

as the capacity curve (ATC40 1996; FEMA 1999), can better capture the realistic performance for 

a given building and is widely used for seismic fragility analysis (Wen et al. 2004, Erberik and 

Elnashai 2004, Kwon and Elnashai 2006, Ji et al. 2007, Pasticier et al. 2008, Erberik 2008, Shome 

and Paolo 2010, Rota et al. 2010, Ozel and Guneyisi 2011, Mwafy 2012, Frankie et al. 2013). 

However, it is not an easy task to determine the LSs of interest on a pushover curve because there 

have been no widely accepted criteria because of different understandings of structural damage 

behaviors. This means that code-provided thresholds rather than the pushover-based results still 

represent the convention today (Ramamoorthy et al. 2006, Hueste and Bai 2007, Ellingwood et al. 

2007, Celik and Ellingwood 2010). However, this does not detract from the fact that defining LS 

capacities on a pushover curve remains an important and viable step going forward.  

The LS capacities of structures are highly dependent on the characteristics of structures such as 

material strengths, element geometries and gravity loads, etc. These characteristics are inherent 

random and thus lead to considerable uncertainty in the LS capacities. It is therefore reasonable to 

describe LS capacities with a probabilistic model rather than a deterministic one. According to the 

SAC/FEMA methodology (Cornell et al. 2002), lognormal distributions are commonly assumed 

for the concerned LSs with the parameters as the median capacity mC and the logarithmic standard 

deviation (dispersion) βC. Due to lack of real damage data, mC was often assigned with the 

code-provided thresholds (Ramamoorthy et al. 2006, Ellingwood et al. 2007, Howary and 

Mehanny 2011) or identified from the deterministic pushover curve (Erberik and Elnashai 2004, 

Kwon and Elnashai 2006, Ji et al. 2007, Ramamoorthy et al. 2006), while βC was commonly 

defined with an empirical value based on engineering experiences and judgments (Wen et al. 

2004, Ramamoorthy et al. 2006, Hueste and Bai 2007, Ellingwood et al. 2007). However, such a 

simplistic treatment of mC and βC may not reflect the real probabilistic properties of the LS 

capacities and merits the further study.  

The main goal of this study is not to define new LSs but to assess the uncertainties in LS 

capacities of RC frame buildings with focus on the effect of the variability of structural 

parameters. To this end, the conventional (deterministic) pushover analysis is extended based on a 

142



 

 

 

 

 

 

Estimating uncertainty in limit state capacities for… 

correlation-controlled Latin hypercube sampling technique. A group of possible structural samples 

are generated for accounting for the randomness inherent the material strengths and gravity loads. 

A series of ten LSs using the code-provided thresholds and the available damage-controlled 

criteria are identified from the pushover curves and they are further represented by the lognormal 

distributions. The effects of the considered structural uncertainties on LS capacities are then 

assessed via the variation of mC and βC.  

 

 

 
Fig. 1 Flowchart of the uncertainty study 
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2. Summary of the uncertainty study 
 

The extended pushover procedure aims to consider the effects of the structural uncertainties on 

LS capacities. This goal is achieved by introducing a set of structural models, which reflect the 

structural uncertainty. These random structural models are used to generate probabilistic pushover 

curves. On the obtained pushover responses, the capacities of the considered LSs are identified and 

examined by statistics. Fig. 1 summarizes the analytical methodology of this study. Three main 

steps are involved, namely, the generation of structural models, the identification of the considered 

LSs on pushover curves, and the statistics of the acquired LS capacities. They are described in 

details in the following sections. 

 
2.1 Generation of structural models 

 

The primary task to generate the structural model set is to determine the uncertain parameters 

of structures. Ten structural parameters are considered as random variables, which will be 

described in Section 4. Once the probabilistic properties of the considered uncertain parameters are 

given, the random samples can be derived according to numerical simulation methods. The general 

Monte Carlo simulation (Tomos and Trezos 2006) and the First Order Second Moment method 

(FOSM) (Barbato et al. 2010) have been used in pushover analysis to account for structural 

uncertainties. Both methods have their pros and cons. The general Monte Carlo simulation is 

highly accurate but requires large computation efforts. FOSM greatly reduces the computation cost 

by calculating structural mean responses at the mean parameters but it may lead to inaccuracies in 

cases where the nonlinearity and uncertainty of structures cause a shift in the prediction of mean 

responses.  

To balance these concerns, Monte Carlo simulation with the Latin hypercube sampling (LHS) 

technique has been widely adopted to examine the influences of structural uncertainties on seismic 

responses (Celik and Ellingwood 2010, Vamvatsikos and Fragiadakis 2010, Dolšek 2009, 2012). 

Nevertheless the standard LHS technique would introduce undesired spurious correlation into the 

samples. To overcome this shortcoming, a correlation-reduced LHS (CLHS) technique is 

employed in this study. For reasons of completeness, the main procedures of the CLHS for random 

sampling are briefly introduced hereafter, and the detailed mathematic backgrounds can refer to 

Olsson and Sandberg (2002).  

The random samples are firstly generated by 

1

var

sam

,  =1,...,i i
i iF i N
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  

 
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where xi is the sample column of the variable Xi;  1

iF   represents the inverse marginal cumulative 

distribution function of Xi; Ri is the random number element generated from the uniform (0,1) 

distribution; Pi is the permutation of 1,…, Nsam; and Nvar and Nsam are the numbers of uncertain 

parameters and random samples, respectively.  

The elements of the permutation matrix P are then divided by the number of realizations plus 

one, and mapped on the standard normal distribution by 
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where -1() is the inverse standard normal distribution. 

Through Cholesky decomposition, the correlation matrixes of Y and X are respectively 

decomposed as 0 0

T
L L  and 1 1

T
L L , where L0 and L1 are both the lower-triangular matrixes. A new 

matrix Y
* is consequently derived by 

* 1

1 0

Y L L Y                                (3) 

The ranks of the columns of Y* (permutation of 1,...,n) become the corresponding elements in 

the columns of the matrix P
*. Replace iP  with 

*

iP  and the random samples with reducing the 

unexpected spurious correlation are provided by Eq. (1).  

One hundred random samples are generated to deal with the considered uncertain parameters. 

According to Olsson and Sandberg (2002), the CLHS with 100 samples can provide better results 

than the standard LHS involving 1000 samples. These generated random parameters are then 

assigned to the deterministic structural model and the structural model set is derived. 

 
2.2 Identification of LS capacities on pushover curves 

 
After generating the structural model set, pushover analyses are repeatedly performed for each 

model and a group of pushover curves in coordinates of base shear F and maximum inter-story 

drift angle max are generated. From these curves, two categories of criteria are considered to 

identify the LS capacities. The first category is based on the code-provided drift thresholds, where 

the F capacities conditioned on the limits of max=0.18% (1/550), 1%, 2% (1/50) and 4% are 

acquired on a pushover curve for defining LS1, LS2, LS3 and LS4, respectively (see Fig. 2(a)). For 

the cases where the pushover responses could not attain the drift of 4%, the ending of the pushover 

curve is used as an alternative (see Fig. 2(b)). Amongst these code-provided drift thresholds, the 

ones defined by 0.18% and 2% are adopted in GB50011-2010 (2010) for defining the performance 

limits in terms of elastic limit and plastic limit, respectively. The drifts of 1%, 2% and 4% are 

recommended in ASCE/SEI41-06 (2007) and widely used for defining the performance limits of 

IO, LS and CP, respectively. 

As for the second category of criteria, six drift limits are captured from the pushover curves 

based on both the local- and global-level damages of structures, as shown in Fig. 3. In the local 

 

 

  
(a) LS4 corresponds to θmax=4% (b) LS4 corresponds to the ending of a pushover curve 

Fig. 2 The code-provide thresholds on a pushover curve 
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damage-based criteria, the element behaviors are monitored and mapped onto the global pushover 

curve once the prescribed damage limits are reached. In this study, the first appearance of concrete 

cracking and steel yielding on elements are taken as the local damage limits. The global 

damage-based criteria involve the global yielding point through idealizing the equivalent 

elastic-plastic system with the principle of equal energy absorption (Mwafy 2012, Frankie et al. 

2013), the peak resistance (Tomos and Trezos 2006) and the 20% reduced post-peak capacity 

(Rota et al. 2010, Pasticier et al. 2008). There are two commonly used approaches to idealize the 

equivalent elastic-plastic system, which are the one recommended in ASCE/SEI41-6 (2007) (see 

Fig. 4(a)) and the other one proposed by Park (1988) (see Fig. 4(b)). They are both used here for 

defining the global yielding point.  

The afore-mentioned two categories of LSs and the corresponding definition criteria are 

summarized in Table 1, where F is used as the capacity indicator for the first category of LSs  

 

 
Table 1 The considered criteria to identify LS capacities on a pushover curve 

Category No. 
Capacity 

indicator 
Description 

Code-provided 

thresholds 

LS1 

F/kN 

θmax=1/550=0.18% 

LS3 θmax=1% 

LS3 θmax=2% 

LS4 θmax=4% 

Damage-based 

criteria 

LS5 

max/% 

First crack presence in the elements of structures 

LS6 
First yielding presence on the longitude reinforcement in the elements of 

structures 

LS7 
Global yielding defined by the equivalent elasto-plastic system 

that is generated by ASCE method 

LS8 
Global yielding defined by the equivalent elasto-plastic system 

that is generated by Park method 

LS9 Peak resistance 

LS10 20% reduced post-peak capacity 

 

 
Fig. 3 Identification of LS thresholds based on the local and global damages 
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(a) ASCE method (b) Park method 

Fig. 4 Definition of the global yielding point based on ASCE method and Park method 

 

 
Fig. 5 Identification of the considered LSs on a pushover curve 

 

 

(LS1~LS4) based on the code-provided drift thresholds, while max is the capacity indictor for the 

second category of LSs (LS5~LS10) according to the specific structural damages. Note that there 

are still other special points that can be identified on the pushover curve to define the LS capacities 

according to different considerations. However this study does not aim to propose the optimum 

definition of LSs with pushover analysis but looks to examine the uncertainties in LS capacities. 

Fig. 5 demonstrates the considered LSs on a pushover curve. As seen from the figure the 

considered LSs have almost covered the entire damage process of the given structure and are 

therefore sufficient for this study. 
 

2.3 Statistics of the acquired LS capacities 
 

The obtained LS capacities from the pushover curves form the data pool for further statistics. 

The lognormal distributions for different LSs are fitted by the method of least squares. The derived 

distribution parameters as the median capacity mC and the capacity dispersion βC are examined to 

detract the effect of structural uncertainties on LS capacities. At first the fitted median capacity mC 

is compared with the LS capacities determined from the deterministic structural model with 
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assigned median parameters. If there is a significant difference between them, the conventionally 

used code-provided and the deterministic pushover-based thresholds should be reconsidered as the 

assumption for mC. As for the capacity dispersion βC, the statistical values of βC are compared with 

the widely used assumptions of βC=0.3 (Wen et al. 2004) and βC=0.25 (Ellingwood et al. 2007). 

This comparison could investigate the validation of these assumptions and help establish the 

quantitative perspective on the variation in LS capacities due to the uncertainties inherent 

structural characteristics. 

 
 
3. Case study buildings 
 

3.1 Structural design 
 

Four RC frame buildings with 3, 5, 8 and 10 stories were considered as the study cases. Fig. 6 

provides the plan and elevation views of the case study buildings. It is noted that these buildings  

 

 

 
Fig. 6 Plan and elevation views of the example frames (unit: mm) 
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have the same plan arrangement, where a long corridor runs through the center of the floor plan 

parallel to the long direction of the building. This plan arrangement is very typical for 

low-to-mid-rise RC frame construction in China, and it creates frames in the transverse direction 

composed of longer exterior bays with a narrower interior bay.  

The buildings were designed according to GB50011 (2010) with the design peak ground 

accelerations of 0.05 g, 0.10 g, 0.15 g and 0.20 g in correspondence to the 3-, 5-, 8- and 10-story 

buildings, respectively. All buildings were assumed to be founded on a medium stiff soil 

consisting of medium dense detritus, gravel or medium sand. This soil condition belongs to the 

site-class II with an equivalent shear wave velocity between 250-500 m/s (GB50011 2010). The 

design characteristic period of ground motion is 0.35 s. Earthquake loading was considered 

together with gravity loading G+0.5Q, where G denotes the permanent loads and Q represents the 

live loads. The permanent loads, including exterior walls, interior light partitions, and 

superimposed dead load, were assumed to be 4.5 kN/m2. The live load was assumed to be 2.0 

kN/m2 according to the requirement for civil buildings. The structural concrete members were 

designed according to the Chinese Code for Design of Concrete Structures (GB50010 2010). Fig. 

7 gives the section dimensions and the reinforcement details for the typical columns and beams. 

For each building, a uniform section was used for the columns and two types of sections were 

designed for the beams of the longer exterior bays and that of the shorter interior bays. The 

nominal properties of the materials used in design are: 1) compressive strength of concrete is 26.8 

MPa; 2) Young’s modulus of concrete is 32500 MPa; 3) yield strengths of longitudinal and 

transverse reinforcement are 400 MPa and 235 MPa, respectively; and 4) Elastic modulus of 

reinforcement is 200 GPa (GB50010 2010). 

 

 

 
Fig.7 Reinforcing details of the typical beams and columns (unit: mm) 
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3.2 Structural model 
 

The finite element (FE) structural analysis program OpenSees (2012) was utilized to develop 

analytical models and perform inelastic analysis for the case buildings. A two-dimensional FE 

model was used due to the symmetrical configuration of the buildings. Beams and columns were 

modeled as the elements with the plasticity concentrating over the specified hinge lengths at the 

element ends. This type of element is based on the non-iterative (or iterative) flexibility 

formulation. The elastic region that links the plastic ends only requires defining the element 

section area and the concrete elastic module. The hinge ends should be defined with a specific 

length 𝐿𝑝 and a previously-defined fiber section. According to the studies by Panagiotakos and 

Fardis (2001), the hinge length is calculated by  

0.18 0.021p s sl b yL L a d f                            (4) 

where Ls is the shear span of member; asl=1 shows the effect of pullout of longitudinal bars is 

considered (asl=0 is adopted here without considering this effect); db is the diameter of 

compressive bars; and fy is the yield strength of tension reinforcement.  

The fiber section consists of the layers of reinforcement bars and the patches of the unconfined 

cover concrete and the confined core concrete. A nonlinear constitutive material relationship with 

isotropic strain hardening (Menegotto and Pinto 1973) was adopted to define uniaxial nonlinear 

behavior of reinforcement bars. Six parameters are required to define the steel material, which are 

the initial stiffness Es, the yield strength fy, the ratio of the post yield to initial stiffness α, and the 

parameters controlling the transition from the elastic to plastic branches, CR1, CR2 and R0. Four 

steel parameters were taken as deterministic: CR1=0.925, CR2=0.15, R0=20, α=0, while the left 

parameters, i.e., Es and fy, were viewed as random (see section 4). The well-known nonlinear 

constitutive law by Kent and Park (1971) was used to define the uniaxial nonlinear behavior of 

concrete. This concrete material is determined by four parameters, i.e., the peak strength, the strain 

at peak strength, the residual strength, and the strain at which the residual strength is reached. For 

the unconfined concrete cover, these four parameters are termed as fcp,cover, εcp,cover, fcu,cover and 

εcu,cover, respectively, while they are denoted as fcp,core, εcp,core, fcu,core and εcu,core for the confined core 

concrete, respectively. During defining the core concrete parameters, the equations proposed by 

Scott et al. (1982) were employed to consider the additional confinement offered by the actual 

layouts, diameter and spacing of stirrups. Amongst the concrete parameters, only two were taken 

as deterministic: εcp,cover=0.002 and fcu,cover=0, while the left ones were viewed as uncertain (see 

section 4).  

Fig. 8 summarizes the overall FE modeling contents. Rigid end zones were used for 

beam-column joint modeling. The columns of the first floor were modeled with a fixed base 

condition. Geometric nonlinearities have been incorporated in the form of P- effects. Through FE 

linear analysis, the fundamental periods of the example frames are determined as 0.71 s, 0.90 s, 

1.19 s and 1.47 s for the 3-, 5-, 8- and 10-story buildings, respectively, and the corresponding 

percentages of first modal mass are equal to 91%, 85%, 79% and 77%, respectively. It is clear that 

the 3- and 5-story buildings are first-mode dominant while the 8- and 10-story structures have a 

considerable sensitivity to the higher modes. Note that concrete cracking is not considered during 

determining the fundamental periods of the buildings. If it is considered, the calculated periods 

will be slightly increased.  
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Fig. 8 Structural model on the OpenSees software platform 

 
 
4. Uncertainty parameters 

 

A total of ten structural parameters are considered as random variables, involving the weight 

density of the reinforced concrete ρdead, the live load on the floor qlive, the yield strength fy and the 

elastic modulus Es of steel material, the peak strength fcp,cover and the strain at the peak strength 

εcp,cover of the cover concrete, and the peak strength fcp,core, the strain at the peak strength εcp,core, the 

residual strength fcu,core and the strain at the residual strength εcu,core of the core concrete. In these 

random variables, ρdead and qlive are assumed to follow a normal distribution and a Gamma 

distribution, respectively, and the remaining material parameters are lognormal variables. The  

 
 
Table 2 Probabilistic distributions of the considered uncertainty parameters 

Uncertainty source Parameter Mean 
Coefficient 

of variation 
Distribution type 

Dead load ρDead 26.50 kN/m3 0.07 Normal 

Live load qLive 0.98 kN/m 0.41 Gamma 

Concrete 

fcp,cover 29.10 MPa 0.13 

Lognormal 

εcu,cover 0.004 0.20 

fcp,core 37.95 MPa 0.20 

εcp,core 0.0021 0.16 

fcu,core 28.70 MPa 0.20 

εcu,core 0.0110 0.52 

Reinforcing steel 
fy 378 MPa 0.07 

Lognormal 
Es 200000 MPa 0.02 

Concentrated force 

from the gravity load 

of the joint-connected 

elements 

Rigid joint 
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determination of the distribution parameters is not provided here but can be found in Lu et al. 

(2014). For reasons of completeness, the probabilistic distributions of the above random 

parameters are given in Table 2.  

The correlation between the random parameters are considered according to Barbato et al. 

(2010): ρ=0.8 for (i) fcp,cover and fcp,core; (ii) fcp,core and fcu,core; (iii) εcu,cover and εcu,core; (iv) εcp,core and 

εcu,core; ρ=0.64 for (i) fcp,cover and fcu,core; (ii) εcu,cover and εcp,core; and ρ=0 for all other pairs of 

parameters due to lack of knowledge. Note that the spatial variation of the random parameters 

within the structure is not considered here. All the random parameters are modeled as spatially 

fully correlated over the same structure. 

 
 
5. Uncertainty analysis 
 

5.1 Probabilistic pushover curves and the identified LS capacities  
 
A displacement-controlled pushover procedure is adopted with incremental invariant lateral 

loads. Two lateral load patterns, namely the uniform load pattern and the SRSS load pattern, are 

used here to account for the effect of lateral forces on pushover responses. The uniform pattern 

applies the lateral forces that are proportional to the total mass at each floor level; while the SRSS 

pattern applies the lateral loads proportional to the story shears calculated by response spectrum 

analysis of the building to include sufficient modes to capture at least 90% of the total mass are 

used. The above choice of lateral load patterns is consistent with the suggestion by FEMA 273 

(1997) that requires at least two vertical distributions of lateral loads, i.e., the uniform pattern and 

the model pattern, to be considered for nonlinear static analysis. The lateral forces used for 

pushover analysis is associated with the floor mass. Due to the uncertainty of the global load 

parameters as ρdead and qlive, the floor mass varies significantly, as shown in Fig. 9, where the 

8-story frame is taken as the example. The variation of the lateral forces due to that in floor mass is 

accounted for in performing pushover analyses for random structural models. 

Fig. 10 illustrates the pushover curves obtained from the random structural models when 

separately applying uniform and SRSS load patterns, where the LS thresholds are identified on 
 

 

 
Fig. 9 Variation of floor mass due to the uncertainties in load parameters ρdead and qlive 
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each curve according to the criteria listed in Table 1. Therein, the wide ranges of the pushover 

curves are apparent, illustrating the considerable effect of structural randomness on the capacity. 

The acquired LS capacities are shown in Fig. 11 for each considered LS. As seen from the figure, 

the thresholds corresponding to most of the concerned LSs scatter in a wide range. For instance, 

LS10 has a wide drift scope that reaches 0.5%<max<6.0%. It is clear that merely using the 

deterministic threshold without considering the structural uncertainties will not provide the 

complete prediction of structural capacities, although the US standard (ASCE/SEI41-06 2007) and 

the Chinese code (GB50011 2010) support the use of arbitrary drift limits. It is also important to 

notice that the varieties of building designs and lateral load patterns also contribute to the wide 

drift scopes. These two factors in fact can only be incorporated in the simulation-based approach 

instead of the empirical code-provided thresholds. In other words, the empirical thresholds given 

in the codes are not suitable for the individual buildings if you want to know the real capacity. 
 

 

   
a) 3-story: SRSS b) 3-story:Uniform c) 5-story: SRSS 

   
d) 5-story: Uniform f) 8-story: SRSS g) 8-story: Uniform 

  

 

h) 10-story: SRSS i) 10-story: Uniform  

Fig. 10 Probabilistic pushover curves and the identified thresholds for the considered LSs 
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a) LS1 b) LS2 c) LS3 

   
d) LS4 e) LS5 f) LS6 

   
g) LS7 h) LS8 i) LS9 

 

  

j) LS10   

Fig. 11 Identified thresholds of the considered LSs from probabilistic pushover 

 

 

5.2 Uncertainty analysis results: mC 
 

Based on the obtained LS capacities, lognormal distributions are fitted for each considered LS 

154



 

 

 

 

 

 

Estimating uncertainty in limit state capacities for… 

using the least-squares method and the corresponding parameters as mC and βC are derived. The 

influence of structural randomness on LS capacities is first examined by comparing mC with the 

capacity Cm that is defined from the deterministic structural model using the median parameters. 

The difference between mC and Cm is measured by 

,U ,U

,U

,U 

C m

C

m

m C

C



                              (5) 

and  

,S ,S

,S

,S 

C m

C

m

m C

C



                              (6) 

where αC,U and αC,S are the difference ratios calculated from the pushover responses when applying 

the uniform load pattern and the SRSS load pattern, respectively; mC,U and mC,S are the median 

capacities from the probabilistic pushover responses of the random structural models using the 

uniform load pattern and the SRSS load pattern, respectively; and Cm,U and Cm,S are defined from 

the deterministic pushover responses of the median structural models using the uniform load 

pattern and the SRSS load pattern, respectively. 

The pushover responses from different lateral load patterns are then considered together, and 

the median capacity in terms of mC,T is fitted. The mean value of Cm,S and Cm,U is used as the 

comparison and then the difference ratio C,T is calculated by 

 

 

,S ,U

,T

,T

,S ,U

2

2

m m

C

C

m m

C C
m

C C








                         (7) 

 

 
Table 3 Comparisons between mC and Cm by αC,U, αC,S and αC,T 

LS 
3-story 5-story 8-story 10-story 

αC,U αC,S αC,T αC,U αC,S αC,T αC,U αC,S αC,T αC,U αC,S αC,T 

LS1 0.42% 0.42% 1.19% 0.79% 0.78% 1.32% 0.18% 0.16% 1.06% 0.22% 0.07% 0.50% 

LS2 0.61% 0.43% 1.18% 1.01% 0.92% 1.49% 1.33% 1.05% 1.38% 0.10% 0.39% 1.43% 

LS3 2.38% 0.78% 2.15% 1.42% 0.80% 1.47% 2.72% 3.13% 3.01% 0.54% 0.83% 4.13% 

LS4 1.21% 3.94% 2.75% 4.85% 2.83% 2.84% 24.54% 15.48% 19.38% 12.90% 10.04% 8.81% 

LS5 1.00% 1.02% 0.61% 1.12% 1.09% 0.77% 1.01% 0.61% 0.73% 1.16% 0.76% 1.13% 

LS6 2.57% 1.33% 2.17% 2.03% 1.42% 2.02% 1.32% 1.20% 0.91% 1.00% 0.59% 0.66% 

LS7 0.33% 1.13% 0.93% 0.16% 0.23% 0.14% 1.44% 1.48% 1.68% 1.54% 0.85% 1.21% 

LS8 0.01% 0.91% 0.41% 0.33% 0.76% 0.31% 3.03% 1.61% 1.95% 0.89% 0.10% 0.17% 

LS9 4.40% 0.58% 2.18% 0.58% 0.71% 1.30% 1.01% 2.09% 3.85% 2.73% 1.30% 7.05% 

LS10 2.60% 1.62% 1.88% 3.33% 2.27% 4.00% 10.32% 11.07% 11.14% 1.62% 6.21% 9.54% 
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Table 3 compares mC and Cm for different LSs by αC,U, αC,S and αC,T. It is found that the effect of 

structural uncertainties on the median capacities is actually negligible for the LSs other than that 

near collapse (LS4 and LS10). For LS4 (max=4%) and LS10 (20% reduced post-peak capacity), the 

corresponding median capacities are more sensitive to the variation of structural parameters than 

the other LSs. For instance, the difference ratio of αC,T is close to 20% for the 8-story frame while 

that of the 3- and 5-story frames are below 5%. This result implies that the building height also 

contributes to the variation of median capacities. Compared to the low-rise buildings (3- and 

5-story), the mid-rise buildings (8- and 10-story) have larger difference ratios of median capacity 

at the LSs near collapse. 

The LS capacities from different buildings and different lateral load patterns are considered 

together further. The overall difference ratio, αC,TT, is generated by 

4
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where mC,TT is fitted from the total thresholds for each considered LSs.  

Fig. 12 shows the values of αC,TT calculated for different LSs. As revealed from this figure only 

the LSs near collapse, i.e., LS4 and LS10, are significantly affected by structural uncertainties as the 

corresponding values of αC,TT greater than 10%. For the other LSs, LS9 that is defined at the peak 

resistance and LS3 that corresponds to the drift of 2% are moderately affected by structural 

uncertainties with the values of αC,TT between 5% and 10%, whereas the left LSs are total slightly 

affected by structural uncertainties showing the values of αC,TT below 2%. Merely based on the 

above observations we can conclude that structural uncertainties have not significant effects on the 

median capacities corresponding to the LSs except for that near collapse; therefore it is reasonable 

to determine mC for these LSs using the code-provided or the deterministic pushover-based 

thresholds. However this simple treatment of mC without considering the effects of structural 

uncertainties may cause the incorrect prediction on the median capacities for the LSs near collapse. 

 

 

 
Fig. 12 Overall difference ratios of the median LS capacities 
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5.3 Uncertainty analysis results: βC 
 

Let βC,U, βC,S and βC,T denote the dispersions of LS capacities from the pushover responses by 

the uniform load pattern, by the SRSS load pattern and by both of them, respectively. They are 

compared with the commonly used assumptions on the variation of LS capacities as βC=0.25 that 

was adopted by Ellingwood et al. (2007), and βC=0.30 that was recommended by Wen et al. 

(2004) and widely accepted by the following studies on seismic fragility assessment of RC 

buildings (Ramamoorthy et al. 2006, Hueste and Bai 2007). The comparison results are illustrated 

in Fig. 13. It is clear that the assumption of βC between 0.25 and 0.30 is only suitable for 

describing the uncertainties associated with the LSs near collapse (LS4 and LS10) for the 8- and 

10-story frames, whereas it obviously overestimates the uncertainties in the other LSs. For 

instance, the dispersions with respect to LS1, LS2, LS3, LS5 and LS8 are even less than 0.1. For 

such a small uncertainty scale, if the assumption of βC=0.30 or βC=0.25 is still used, the resultant 

probabilistic capacity model will not be well predictable. Besides, no clear influence from building 

height is observed on the dispersion of LS capacities.  

The overall dispersions in terms of βC,TT are examined using the total LS capacities acquired 

from the pushover responses of different buildings with different lateral load patterns, as shown in 

Fig.14. Because the variation between different case buildings is additional involved, the derived 

dispersions of LS capacities are increased in comparison with that for the individual buildings. The 

 

 

  
a) 3-story b) 5-story 

  
c) 8-story d) 10-story 

Fig. 13 Comparison of the calculated C with the that from empirical assumptions 
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Fig. 14 The capacity dispersions of considered LSs from the pushover responses of the building group 

 
 
capacity dispersions βC,TT for the building group are beyond 0.30 even 0.40 at LS2, LS3, LS4, LS9 

and LS10. For LS5 and LS6, the corresponding dispersions are beyond 0.20 while below 0.30, 

whereas the left LSs only show limited uncertainty with a value of βC,TT around 0.10. Only from 

the above observations, the assumptions of C=0.25 and C=0.30 seems to be suitable for defining 

the uncertainties associated with moderate structural damages for the generic RC building group. 

But for the LSs near collapse (LS4 and LS10) a larger C range between 0.40 and 0.45 seems proper 

and are suggested by this study. In addition, a rough approximation of βC between 0.10 and 0.15 

seems enough to consider the uncertainties with respect to these LSs related to slight damages. 

 
 
6. Conclusions 

 

The uncertainties in limit state (LS) capacities of RC frame buildings were assessed using a 

probabilistic pushover approach that adopted a correlation-controlled Latin hypercube sampling 

(CLHS) technique to determine the structural model set for accounting for the inherent 

randomness in structural parameters. Four typical RC frame buildings with 3, 5, 8 and 10 stories 

were used as the study cases. Ten of structural parameters including concrete and steel strengths 

and gravity loads were considered as random variables. Based on the CLHS, 100 structural models 

were derived for each case study frame and pushover analyses were repeatedly performed for each 

model. A set of ten LSs based on the design-code-given thresholds and the available 

damage-controlled criteria were acquired from the pushover responses of the random structural 

models. The obtained LS capacities were further fitted by the commonly used lognormal 

assumptions. The lognormal distribution parameters as the median capacity mC and the logarithm 

standard deviation (dispersion) βC were examined to extract the effect of structural uncertainties on 

LS capacities. 

Based on the results of this study, structural randomness showed significant effect on the 

median capacities of the LSs close to collapse while the effects on the other LSs were negligible. 

Therefore it is reasonable to determine the median capacity mC for the LSs far from collapse states 

with the thresholds provided by the design codes or the deterministic pushover analysis. However 

the structural uncertainties should be carefully considered when defining mC for the LSs near 
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collapse. As for the dispersion βC of LS capacities, the widely used assumption as βC=0.25 or 0.30 

was found to overestimate the uncertainties in LS capacities for the individual buildings. However 

they seemed to be more suitable to describe the uncertainties associated with the LSs 

corresponding to moderate structural damages from the viewpoint of the building group. Also seen 

from the building group, a large scale of uncertainty as βC=0.40~0.45 was suggested to be used for 

the LSs near collapse, and a relative small value of capacity dispersion between 0.1 and 0.15 

seems adequate to describe the uncertainties inherent the LSs related to slight structural damages.  

This study presented in this paper only uses four RC frame buildings as a case study with the 

aim to provide a quantitative assessment of the uncertainties in LS capacities of structures by 

considering the randomness in structural parameters. Due to the limitation of the study cases, the 

above findings may differ with varying building properties, uncertain parameters, response 

parameters and the used criteria to identify limit states on a pushover curve. However the 

methodology presented in this paper is general in scope and it is beneficial to estimate the 

uncertainties in LS capacities especially for the individual buildings. Moreover, the problem of 

uncertainty treatment in LS capacities is a common theme in seismic fragility and risk assessment 

of structural portfolios. The obtained findings here help develop reliable fragility curves for 

different types of structures for use in seismic risk assessments.  
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