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Abstract.  Tuned mass dampers (TMDs) have been frequently proposed to mitigate the detrimental effects 

of dynamic loadings in structural systems. The effectiveness of this protection strategy has been 

demonstrated for wind-induced vibrations and, to some extent, for seismic loadings. Within this framework, 

recent numerical studies have shown that beneficial effects can be achieved by placing a linear TMD on the 

roof of linear elastic structural systems subjected to pulse-like ground motions. Motivated by these positive 

outcomes, closed-form design formulations have been also proposed to optimize the device’s parameters. 

For structural systems that undergo a near-fault pulse-like ground motion, however, it is unlikely that their 

dynamic response be linear elastic. Hence, it is very important to understand whether such strategy is 

effective for inelastic structural systems. In order to provide new useful insights about this issue, the paper 

presents statistical results obtained from a numerical study conducted for three shear-type hysteretic 

(softening-type) systems having 4, 8 and 16 stories equipped with a linear elastic TMD. The effectiveness of 

two design procedures is discussed by examining the performances of the protected systems subjected to 

124 natural pulse-like earthquakes. 
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1. Introduction 
 

The placement of tuned mass dampers (TMDs) within structural systems can be a viable 

approach for mitigating undesirable effects induced by dynamic loadings. Active or semi-active 

TMDs provide a flexible and adaptive vibration control strategy (Lin et al. 2013) whereas passive 

TMDs are especially attractive for their robustness, easy maintenance and reduced manufacturing 

costs. For instance, Kwok and Samali (1995) studied the effectiveness of passive and active TMDs 

for linear single-degree-of-freedom (SDOF) system under wind loads. Liu et al. (2008) have 

extended the analysis to a linear multi-degrees-of-freedom (MDOF) system taking into account the  

                                                           
Corresponding author, Associate Professor, E-mail: fabrizio.mollaioli@uniroma1.it 
a
Assistant Professor, E-mail: giuseppe.quaranta@uniroma1.it 

b
Full Professor, E-mail: giorgio.monti@uniroma1.it 



 

 

 

 

 

 

Giuseppe Quaranta, Fabrizio Mollaioli and Giorgio Monti 

soil-structure interaction. On the other hand, Li and Hu (2002) proposed the application of TMDs 

for reducing fatigue damages. Existing studies seem to be conclusive about the usefulness of 

TMDs in reducing vibrations due to wind action if the protected system exhibits an linear elastic 

behavior, a realistic situation for buildings under serviceability conditions. Researches about the 

effectiveness of TMDs in seismic protection are more recent, but encompass a significant number 

of relevant issues. Marano et al. (2007), Marano and Quaranta (2009), Chakraborty and Roy 

(2011) have presented optimal design methods for protecting linear elastic structural systems 

subjected to seismic ground motion by means of passive TMD, where the main focus was the 

development of proper strategies for handling probabilistic or non-probabilistic uncertainties 

within the framework of random vibration theory. The use of passive TMDs for reducing the 

seismic response of irregular buildings was presented in (Lin et al. 2000) whereas Hoang et al. 

(2008) have studied the optimum design of a TMD for the seismic retrofitting of a long-span truss 

bridge. When assessing the effectiveness of linear TMDs in reducing the displacement response of 

elastic systems subjected to 52 components of ground motion records (from 26 earthquakes), 

Sadek et al. (1997) observed that: 

• a greater reduction is achieved for smaller values of the structural damping, 

• the larger is the ratio between the TMD’s mass and the mass of the protected system (this ratio 

was considered in the range 0.02-0.10), the greater are its effectiveness and the dispersion of the 

results, 

• TMDs are not effective for structures with short natural vibration periods (i.e. structures with 

periods 0.1-0.2 s), 

• the mean of the displacement ratio of the protected structure with and without TMD ranges 

from 0.75 to 0.95, whereas the coefficient of variation of this ratio ranges from 0.05 to 0.15. 

Despite the amount of existing studies, the effectiveness of TMDs against seismic loading 

seems still a debated topic. Existing difficulties can be traced back to the high sensitivity of the 

TMD’s performance with respect to the characteristics of soil, foundations and seismic excitation 

as well as to the way by which the structural system is modeled. For this reason, in recent 

installations of TMDs, the possibility for on-site tuning has been foreseen. Wu et al. (1999) have 

pointed out that soil-structure interaction can play an important role in determining the 

effectiveness of TMDs for seismic applications. They showed that strong soil-structure interaction 

defeats the seismic effectiveness of TMD systems. Moreover, they noticed that a TMD can hardly 

reduce the seismic response of a structure supported on shallow spread footings and underlying 

soft soil. Such conclusions were drawn for linear structural systems subjected to stationary random 

excitations. Lee et al. (2012) have studied the effectiveness of TMDs in reducing seismic risk for 

inelastic systems subjected to real earthquake records. When a linear elastic TMD is designed 

according to a simplified approach (i.e., TMD’s optimal parameters are estimated by considering 

the linear elastic properties of the protected building), they found that the ratio between the peak 

displacement of the structure with TMD and the peak displacement of the unprotected structure 

(both normalized by the corresponding yield displacement) can be larger than 1 (up to 1.4 for an 

approximate bilinear system). This implies that a linear elastic TMD designed according to such 

simplified procedures may sensibly worsen the structural performance under some seismic events. 

This evidence was already pointed out in (Sgobba and Marano 2010), where the optimum 

parameters of the TMD were obtained with a numerical procedure once the hysteretic protected 

system was linearized in a stochastic sense. Particularly, they also concluded that the use of a 

linear TMD does not appear useful for displacement-control of inelastic structures subjected to 

stationary Kanai-Tajimi stochastic ground motion. According to Pinkaew et al. (2003), available 
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results demonstrate that TMDs become effective in reducing the seismic response of structures 

only when the ground motion exhibits narrow-band frequency and long duration, see also 

(Lukkunaprasit and Wanitkorkul 2001). Recently, Matta (2013) has shown that - under certain 

conditions - a linear TMD can be also effective in reducing the seismic demands in linear elastic 

systems subjected to pulse-like ground motion. Within this lively debate, the effectiveness of 

TMDs against pulse-like ground motions appears a critical issue that deserves further studies. In 

this perspective, while the linear elastic behavior might be a reasonable approximation for 

moderate far-field seismic events, it is not a realistic model for structural systems subjected to 

near-fault earthquakes. Additionally, it should be remarked that near-fault earthquakes occur with 

seismological characteristics markedly different from than those observed for far-field seismic 

events. In fact, a comprehensive number of strong motion records obtained in recent earthquakes 

at sites close to the seismic causative fault were characterized by noticeable variability in the 

damage potential (Mavroeidis and Papageorgiou 2003, Bray and Rodriguez-Marek 2004, Mollaioli 

et al. 2006, Kalkan and Kunnath 2006, Baker 2007). The reasons of this variability are the 

proximity of the source and the occurrence of forward directivity effects. Forward directivity 

refers to the strengthening of ground motion at sites located in the direction of the predominant 

rupture propagation, because it produces strong motions near the earthquake ruptures that have 

often a pulse-like waveform. Specifically, most of the energy originating from the source develops 

in a coherent, high-velocity pulse of moderate-to-long duration, with the strongest motion usually 

polarized in the direction normal to the fault (Hall et al. 1995). 

In order to provide new insights and recommendations, this paper addresses the effectiveness of 

optimum design procedures for linear TMD installed on inelastic structures subjected to pulse-like 

ground motion. The numerical analysis of three shear-type hysteretic (softening-type) systems 

having 4, 8 and 16 stories equipped with a linear elastic passive TMD is presented. The device is 

designed according to two closed-form procedures in which the elastic properties of the protected 

buildings are considered, and a statistical analysis has been performed on a database consisting of 

124 natural accelerograms. 

 

 

2. Structural model and optimum TMD design 
 

2.1 Inelastic building with roof-type linear TMD 
 

A simplified model is adopted to represent the inelastic behavior of the structural systems. It is 

assumed that they can be modeled as hysteretic MDOF shear-type systems, for which (by omitting 

the time variable) the nonlinear dynamic equations can be defined in the following form 

gx    Mx Cx Kx Hz Mr ,                           (1) 

where M is the mass matrix, C is the viscous damping matrix, K is the elastic stiffness matrix and 

H is the matrix that contains the nonlinear (hysteretic) terms, r is the influence vector and xg is the 

ground displacement (the upper dot indicates the time derivative). The system matrices in Eq. (1) 

have the following form 

 1diag i Nm m mM ,                         (2) 
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where i=1,…,N indicates the ith floor level, ki is the initial stiffness value at the ith floor level, mi 

is the ith floor mass, αi is a weighting constant representing the relative participations of the linear 

and nonlinear terms (0≤αi≤1). Therefore, if αi →1, then the role of the corresponding nonlinear 

term becomes negligible. The symbol x in Eq. (1) collects the relative displacements of the ith 

mass with respect to the ground. Inter-storey drifts (the relative displacements between floors) are 

denoted as di=xi-xi-1 for i≠1 and d1=x1. The vector z in Eq. (1) collects the so-called hysteretic 

displacements. It is assumed that the hysteretic behavior of the ith mass depends on the relative 

displacement between floors di, according to the Bouc-Wen model 

1i in n

i i i i i i i i i iz Ad d z z d z 


   ,                      (6) 

where βi, γi and ni are hysteresis shape parameters. The relative values of βi and γi determine the 

type of nonlinear response, i.e., softening or hardening (for a weakly softening response, βi+γi>0 

and γi-βi <0). The parameter Ai has been demonstrated to be redundant, and thus it is assumed 

equal to 1. The parameter αi is the ratio between the post-yield tangent stiffness and the initial 

stiffness. The parameter n controls the smoothness of cycle. For n→∞, the model approaches to a 

bilinear one. The motion equation given by Eq. (1) is solved assuming zero initial conditions. 

When a linear elastic TMD is placed on the top of the building, N refers to the structural degree-of-

freedoms (DOFs) plus the SDOF corresponding to the TMD. In this case, the last equation is 

modified accordingly, i.e., by removing the hysteretic contribution. Once the mass mi and the 

initial stiffness ki of the structure are known, the matrices K and M can be obtained as in Eqs. (4), 

(5). The matrix C in Eq. (3) is obtained by specifying the viscous damping ratio for each mode ξi, 

where ci/mi=2ξiωi and ωi
2
=ki/mi. The interested reader is referred, for instance, to (Ikhouane and 

Rodellar 2007) and (Ikhouane et al. 2007) for more details about the dynamics of the Bouc-Wen 

model. 
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2.2 Optimum parameters of the TMD 
 

It is now addressed the problem of designing a linear elastic TMD installed on the roof of a 

multi-storey building. Two methods are considered, in which the elastic properties of the protected 

building are required to calculate the device’s parameters. Both methods allow the determination 

of the optimal frequency ratio ΩTMD (the optimal ratio of the TMD natural frequency to the target 

structural natural frequency) and the TMD damping ratio ξTMD once the structural damping and the 

TMD’s mass are given. The TMD’s mass is considered by introducing the dimensionless 

parameter μeff. For a SDOF, μeff is the ratio between the TMD’s mass the mass of the protected 

system. For a MDOF system, the mass ratio equivalence proposed in (Warburton 1982) can be 

applied if the target mode of the protected system (usually its first mode) is far from other modes. 

In this case, μeff, is the ratio of the TMD’s mass to the effective modal mass of the target mode (in 

this study, it is the first vibration mode). 

The first method is the H∞-based design. It aims at minimizing the H∞ norm of the acceleration-

to-displacement transfer function. This corresponds to the minimization of the steady-state 

structural displacement amplitude under a harmonic-type acceleration time history having constant 

amplitude and any possible frequency content. For a structural damping ratio equal to 0.02, H∞-

based design leads to the following formulations (Matta 2013) 
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in which a1=0.04758, a2=0.03056, a3=0.002715, and a4=0.007453. The second method is indicated 

as Hp, and it has been specifically presented in (Matta 2013) to deal with pulse-like ground motion. 

For a structural damping ratio equal to 0.02 and by taking into account an average pulse, the 

following formulations can be used 
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where b1=0.2926, b2=0.2301, b3=75.34, b4=30185, b5=0.7269, b6=0.3934, b7=0.07388, 

b8=0.001194, b9=0.2978, b10=0.01214, b11=0.01407. The coefficients that appear in Eqs. (7)-(12) 
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are obtained by regression of numerical results, and thus their value is referred to a structural 

damping ratio equal to 0.02.  

 

 

3. Numerical analysis 
 

3.1 Database of pulse-like ground motion records 
 

A database of 124 natural pulse-like earthquake records has been used to estimate the 

performance of three inelastic shear-type systems equipped with a linear TMD. In doing so, it 

should be highlighted that one of the primary factors affecting the motion in the near-fault region 

is the direction in which rupture progresses from the hypocenter along the zone of rupture. A site 

may be categorized subsequently to an earthquake as representing forward, reverse, or neutral 

directivity effects (Somerville and Graves 1993, Hall et al. 1995, Somerville et al. 1997). If the 

rupture propagates toward the site, then it is likely to demonstrate forward directivity. If rupture 

propagates away from the site, then it will likely exhibit backward directivity. If the site is more or 

less perpendicular to the fault from the hypocenter, then it will likely demonstrate neutral 

directivity. Therefore, the selected ground motions were recorded in regions prone to forward 

directivity effects and satisfy the geometric conditions for forward directivity. In addition, the 

velocity time histories of these ground motions show a polarization in the fault-normal direction 

and are characterized by a clear pulse in the fault-normal direction. Consequently, the two 

horizontal components of the ground motions were projected in the fault-parallel (FP) and the 

fault-normal (FN) direction. Pulse-like records due to soft soil site effects or other effects are not 

considered. The larger fault-normal component of motion is considered critical and is commonly 

used for structural analyses. In fact, the presence of high amplitude, long duration pulses in near-

field ground motions gives rise to considerable velocity and displacement demands, and it can be 

consequently considered as a key issue in producing damage, due to the transmission of large 

amounts of energy that should be dissipated in a short time (Mollaioli et al. 2006, Mollaioli and 

Bosi 2011). About the soil classification at recording stations, with the exception of 4 ground 

motions recorded on soil type B (according to the NEHRP site classification based on the VS30 

value), all the others ground motions were recorded on soil type C or D. The magnitude of all 

earthquakes ranges from 5 to 7.6. Moreover, with the aim of underlining the effect of the pulses on 

the performance of the structures equipped with TMD, the pulse-like ground motions have been 

grouped into bins of pulse period Tp. The pulse periods have been calculated according to the 

procedure suggested by Baker (2007) for all the records considered. The earthquake magnitude M 

and the corresponding pulse period Tp in [s] of the selected seismic events are shown in Fig. 1. The 

complete list of the earthquakes from which these near-fault pulse-like ground motions were 

recorded is reported in Appendix A (see Table A.1). Further details about this database can be 

found in (Mollaioli et al. 2014).  

 

3.2 Structural systems 
 

Three shear-type inelastic structural systems with 4, 8 and 16 stories are considered. A constant 

viscous damping ratio equal to 0.02 is assumed. The mass is constant for all floors and a linear 

variation of the elastic stiffness is assumed, where the last floor has an elastic stiffness obtained by 

reducing the elastic stiffness of the first floor (this reduction is assumed equal to 30%). For the  
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Fig. 1 Relationship between pulse period Tp [s] and earthquake magnitude M within the considered set of 

pulse-like ground motion records 

 
Table 1 First three elastic periods (T1, T2, T3) in [s] and the ratio of the TMD mass to the effective modal 

mass of the target mode μeff 

DOF T1 [s] T2 [s] T3 [s] μeff 

4 1.0783 0.3861 0.2527 0.5693 

8 2.0289 0.7010 0.4313 0.2962 

16 3.4687 1.2010 0.7272 0.1530 

 
 

sake of uniformity, the parameters of the Bouc-Wen model are the same for all systems and are 

constant for all floors (therefore, the subscript i is omitted hereafter). A weakly softening behavior 

is simulated, and n is equal to 1.01 For each MDOF system, the ratio between the TMD mass and 

the mass of the last floor is 2. This can be considered a heavy TMD. A linear elastic model is 

assumed for the TMD. The first three elastic periods (T1, T2, T3) of the structural systems are listed 

in Table 1 together with μeff, i.e., the ratio of the TMD’s mass to the effective modal mass of the 

target mode (the first elastic mode). 

It can be observed that the target mode is sufficiently far from other modes, and thus the mass 

ratio equivalence proposed in (Warburton 1982) can be applied. By keeping constant the ratio 

between the TMD mass and the mass of the last floor, it is also evident that the larger the number 

of DOF, the smaller the value μeff. This, in turn, allows the assessment of the role of the TMD’s 

mass with respect to the effective modal mass of the target mode. 

Two performance indices are examined to evaluate the effectiveness of the TMD design 

procedures. They are 

0

max maxdI  d d ,                                  (13) 

0

max maxaI  a a ,                               (14) 

where the symbol ‖·‖ indicates the Euclidean norm, the vectors dmax and amax collect the maximum 

absolute inter-storey drift values and the maximum absolute floor accelerations of the protected 

245



 

 

 

 

 

 

Giuseppe Quaranta, Fabrizio Mollaioli and Giorgio Monti 

system, respectively, whereas the superscript 0 applies to the quantities evaluated without the 

TMD. The main scope behind the use of such indices is that of assessing the effectiveness in 

reducing structural damages (related to the inter-storey drift) and non-structural damages in 

equipment and furniture (caused by high acceleration levels). The analyses have been performed 

by means of MATLAB (2013b) wherein Eq. (2) has been integrated using the Runge-Kutta 

4th/5th-order method (ode45 embedded MATLAB function). 

 

 

 
Fig. 2 Results for 4 DOF system (T1=1.0783 s): relationship between Id and M for different values of α 

 

 
Fig. 3 Results for 4 DOF system (T1=1.0783 s): relationship between Ia and M for different values of α 
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3.3 Results 
 

Numerical values of Id and Ia for 4, 8 and 16 DOF systems are shown from Fig. 2 to Fig. 13 by 

considering different values of α. These figures include the results obtained by means of, both, 

H∞– and Hp–based design. The values of the performance indices are plotted with respect to the 

earthquake magnitude M and to the pulse period Tp in [s] in order to look for possible correlations 

between structural performance and seismological parameters. 

 

 

 
Fig. 4 Results for 4 DOF system (T1=1.0783 s): relationship between Id and Tp/T1 for different values of α 

 

 
Fig. 5 Results for 4 DOF system (T1=1.0783 s): relationship between Ia and Tp/T1 for different values of α 
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Fig. 6 Results for 8 DOF system (T1=2.0289 s): relationship between Id and M for different values of α 

 

 
Fig. 7 Results for 8 DOF system (T1=2.0289 s): relationship between Ia and M for different values of α 

 
 
This analysis clearly demonstrates that the seismic performance strongly depends on α, i.e., 

enhanced performances are obtained when α→1. When the nonlinear hysteretic component 

becomes negligible (α=0.90), the mean value of the index Id is 0.6724 for μeff=0.5693 and 0.77072 

for μeff=0.1530 (H∞-based design). The corresponding mean values of the index Ia are 0.68123 for 

μeff=0.5693 and 0.89892 for μeff=0.1530 (H∞-based design). This relationship between α and the 

seismic performance is an expected result, because the nonlinear hysteretic component becomes 
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negligible with respect to the linear term when α→1. Conversely, poor performances are found 

when α→0. If α=0.01, then the mean value of the indexes Id and Ia are significantly larger than 

0.90 for most of the buildings. In this case, the dynamic characteristics of the structure changes 

drastically under the seismic motion and the TMD - designed by considering the initial linear 

elastic stiffness of the building - loses its efficacy. A significant variability of the indices can be 

observed, and it is also evident that the TMD designed according to either H∞ or Hp methods can 

occasionally worsen the final performances. 

 
 

 
Fig. 8 Results for 8 DOF system (T1=2.0289 s): relationship between Id and Tp/T1 for different values of α 

 

 
Fig. 9 Results for 8 DOF system (T1=2.0289 s): relationship between Ia and Tp/T1 for different values of α 
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It can be inferred from Fig. 14 that the average values of Id and Ia are near to or less than 0.90 

when the post-yield stiffness is greater than half of the initial stiffness. Below this threshold, the 

linear TMD designed according to H∞ or Hp methods is likely to be ineffective for seismic control 

in the event of pulse-like ground motion and can result in a worsening of the structural 

performance. The increment of μeff in the 4 DOF system is beneficial in reducing the displacements 

when α→1 whereas it is not advantageous when the post-yield stiffness is very small. On the other 

hand, it can be observed that a slight reduction of the floor acceleration is achieved for the highest  

 
 

 
Fig. 10 Results for 16 DOF system (T1=3.4687 s): relationship between Id and M for different values of α 

 

 
Fig. 11 Results for 16 DOF system (T1=3.4687 s): relationship between Ia and M for different values of α 
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value of μeff (μef=0.5693) even when the post-yield stiffness is near to be null (in this case, for 

α=0.01 the mean value of Ia is 0.90575 and the coefficient of variation is 0.0908). An increment of 

μeff causes a reduction of the robustness, i.e., the standard deviation increases as μeff increases. With 

the possible exception of the Id values for 4 and 8 DOF systems, the smaller the mean value of the 

performance index, the larger its standard deviation. Finally, results in Fig. 14 also indicate that 

the H∞ method leads to slightly superior TMD design solution with respect to the Hp method. 

 

 

 
Fig. 12 Results for 16 DOF system (T1=3.4687 s): relationship between Id and Tp/T1 for different values of α 

 

 
Fig. 13 Results for 16 DOF system (T1=3.4687 s): relationship between Ia and Tp/T1 for different values of α 
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Fig. 14 Statistical assessment of the structural performances for different values of α (results shown in the 

lower part are referred to H∞-based design) 

 

 

The identification of possible correlations between the seismological characteristics and the 

effectiveness of the TMD design is a hard task. It seems that a slight correlation exists between the 

effectiveness of the TMD and the ratio Tp/T1. In average, the reduction of the floor accelerations 

for a given structural system improves when the pulse period grows with respect to the 

fundamental period of the structure. However, more sensitivity analyses are required to validate 

this relationship.  

 

3.4 Comparison with previous results 
 

The statistical overview of the obtained results proposed in Fig. 14 is useful for supporting 

some comparative analyses. Regardless the pulse-like characteristic of the ground motion and 

considering linear elastic systems, Sadek et al. (1997) have found that the mean of the 

252



 

 

 

 

 

 

Effectiveness of design procedures for linear TMD installed on inelastic structures under… 

displacement ratio of a linear elastic SDOF with and without TMD ranges from 0.75 to 0.95, 

whereas the coefficient of variation of this ratio ranges from 0.05 to 0.15 (when μeff lies within 0.02 

and 0.10). For a comparable structural system (the 16 DOF system with α=0.90 and μeff=0.1530), it 

is found that the mean value of Id is 0.77072 and the coefficient of variation is about 0.17 under 

pulse-like ground motion. Therefore, no statistically significant differences can be identified. In 

agreement with (Sadek et al. 1997), the larger is the ratio between the TMD’s mass and the mass 

of the protected system, the greater is the dispersion of the results. It is also convenient to compare 

the results for the 16 DOF system with those presented in (Lee et al. 2012) without taking into 

account the pulse-like characteristic of the seismic input, because some of the adopted values for 

μeff are similar. For instance, the highest values of Id when α=0.90 (i.e., the worst performance of a 

nearly linear system in terms of inter-storey drift) is about 1.2, which is close to the maximum 

value of the displacement-based performance index reported in (Lee et al. 2012) for a linear SDOF 

system (about 1.3). There are several differences between this study and the one presented in (Lee 

et al. 2012), such as the formulation of the performance index, the value of the fundamental 

period, and the residual hysteretic component of the response. However, it is likely that the most 

influent parameter be μeff (the value considered in Lee et al. 2012 is equal to 0.05 and the value 

μeff=0.1530 adopted in this study results in enhanced average performances). Similar evidences 

between this study and the article by Lee et al. (2012) can be found for the 16 DOF system when 

α=0.05. In this case, the highest value of Id is about 1.4, in agreement with the maximum value of 

the displacement-based performance index shown in (Lee et al. 2012) for an approximate bilinear 

system having α=0.05, μeff=0.05 and T1=2 s. Statistical results for the 16 DOF and the 4 DOF 

nearly linear systems (μeff=0.1530 and μeff=0.5693, respectively, with α=0.90) seem rather similar 

to that obtained by Matta (2013) for analogous (linear elastic) case studies.  

 

3.5 Discussion 
 

The considerations that can be formulated from this numerical study are listed in the following.  

• An optimized linear TMD is effective in reducing inter-storey drift and floor acceleration due 

to pulse-like ground motion if the hypothesis of linear elastic behavior for the protected building is 

valid. In this case, the larger is μeff, the greater is the effectiveness.  

• The linear TMD designed by considering the elastic properties of the protected building is not 

effective if the structure exhibits a significant inelastic behaviour when subjected to near fault 

pulse-like ground motion. The average values of Id and Ia are larger than 0.90 when the post-yield 

tangent stiffness is greater than one half of the initial stiffness. 

• In contrast to what has been observed for linear protected buildings, the increment of μeff is 

not recommended for displacement-control in the event of pulse-like ground motion when the 

post-yield stiffness is very small. This heavily worsens, both, the mean performance and the 

dispersions of the results. However, a large value of μeff can be marginally beneficial for reducing 

structural accelerations when α→0.  

• There is a significant record-to-record variability. The larger is the ratio between TMD’s mass 

and target mass of the protected system, the greater is the dispersion of the results. This holds true 

for, both, elastic and inelastic protected buildings. Occasionally, the linear TMD designed 

according to these methods can worsen the structural performance. A small value of the post-yield 

stiffness (α→0) can further aggravate negative structural performances. This indicates that the 

effectiveness of simplified TMD design procedures must be always validated through dynamic 

analyses conducted on a set of site-specific earthquake records. Attention should be paid in 
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determining the minimum size of the database used for the statistical assessment of the TMD 

design. The TMD’s performance and the variability of the final results can result conflicting 

objectives. Hence, a robust design of the TMD may be appropriate in some circumstances, i.e., 

looking for the optimum parameters of the TMD in such a way that the average performance and 

its variability are minimized.  

• The H∞ method is preferable. 

 

 

4. Conclusions 
 
This study provided a comprehensive assessment of some procedures to design linear TMD for 

inelastic structures subjected to pulse-like ground motion. These design procedures rely on the 

linear elastic properties of the protected structure. Two design methods (namely, H∞ and Hp 

methods) have been compared and nonlinear dynamic analyses are performed for a set of 124 

selected carefully natural earthquake records. Three shear-type structural systems with 4, 8 and 16 

stories have been considered, with a fundamental period equal to 1.0783 s, 2.0289 s and 3.4687 s, 

respectively. The softening behavior is simulated by means of the Bouc-Wen model. The ratio 

between the TMD’s mass and the mass of the last floor is 2. Therefore, the ratio of the TMD mass 

to the effective fundamental modal mass (denoted as μeff) varies between 0.1530 (for the 16 DOF 

system) and 0.5693 (for the 4 DOF system). Displacement- and acceleration-based performance 

indices have been examined, labeled as Id and Ia, respectively.  

It has been found that optimum design procedures for linear TMDs based on the elastic 

properties of the protected structural system are not effective for displacement-control of buildings 

that can undergo significant inelastic deformations when subjected to pulse-like ground motion, 

and they are marginally useful for acceleration mitigation. Occasionally, the TMD can worsen the 

structural performance and a small post-elastic stiffness can further aggravate negative seismic 

performances. The increment of the TMD’s mass - which has been found useful in case of linear 

elastic protected buildings - has negative effects on the displacements of inelastic structures, slight 

positive consequences on the floor accelerations and it increases the dispersion of the results.  

Finally, a note about the TMD’s mass. In this study, the TMD mass has been assumed as twice 

the mass of the last floor. Such quite heavy mass cannot be mounted by using common building 

facilities available on the top floor. This mass value can be attained by exploiting roof gardens and 

helicopter platforms (when available). In doing so, large values of μeff can be achieved in low- and 

middle-rise buildings, but this remains a very hard task for tall buildings. For multi-stories high-

rise buildings, the opportunity of placing some isolators at one intermediate floor level can be 

considered: in this case, the stories below the isolators level constitute the protected building 

whereas the stories above the isolators level provide the TMD’s mass (the behavior of the TMD 

depends on the isolator type). However, technical and economic benefits of such strategy with 

respect to a conventional base isolation system have to be determined.  

In the future, the effectiveness of the TMD against pulse-like ground motion should be verified 

once its parameters are properly optimized for buildings with inelastic behaviors. The use of 

nonlinear TMDs is an area of future researches.  
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Appendix A 
 
A complete list of the pulse-like ground motion records considered in this study is given within 

Table A.1, together with the magnitude M and the pulse period Tp in [s]. 

 

 
Table A.1 Full list of pulse-like ground motion records together with the magnitude M and the pulse period 

Tp in [s] 

Earthquake name Year M Tp [s] 

Managua, Nicaragua-01 1972 6.24 1.90 

Gazli, USSR 1976 6.80 4.87 

Coyote Lake 1979 5.74 1.21 

Imperial Valley-06 1979 6.53 4.03 

Imperial Valley-06 1979 6.53 4.52 

Imperial Valley-06 1979 6.53 3.35 

Imperial Valley-06 1979 6.53 4.49 

Imperial Valley-06 1979 6.53 7.36 

Imperial Valley-06 1979 6.53 5.24 

Imperial Valley-06 1979 6.53 4.61 

Imperial Valley-06 1979 6.53 4.05 

Imperial Valley-06 1979 6.53 3.84 

Imperial Valley-06 1979 6.53 4.23 

Imperial Valley-06 1979 6.53 5.39 

Imperial Valley-06 1979 6.53 5.86 

Imperial Valley-06 1979 6.53 4.80 

Irpinia, Italy-01 1980 6.90 2.28 

Westmorland 1981 5.90 2.43 

Westmorland 1981 5.90 3.58 

Coalinga-05 1983 5.77 0.69 

Coalinga-05 1983 5.77 0.92 

Coalinga-07 1983 5.21 0.40 

Morgan Hill 1984 6.19 0.53 

Morgan Hill 1984 6.19 1.24 

N. Palm Springs 1986 6.06 1.55 

N. Palm Springs 1986 6.06 1.38 

San Salvador 1986 5.80 0.86 

San Salvador 1986 5.80 0.96 

Whittier Narrows-01 1987 5.99 0.79 

Whittier Narrows-01 1987 5.99 0.95 

Whittier Narrows-01 1987 5.99 0.76 

Superstition Hills-02 1987 6.54 6.82 

Superstition Hills-02 1987 6.54 2.28 
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Table A.1 Continued 

Earthquake name Year M Tp [s] 

Loma Prieta 1989 6.93 1.72 

Loma Prieta 1989 6.93 2.32 

Loma Prieta 1989 6.93 4.40 

Loma Prieta 1989 6.93 4.47 

Loma Prieta 1989 6.93 1.90 

Erzican, Turkey 1992 6.69 2.65 

Cape Mendocino 1992 7.01 2.55 

Cape Mendocino 1992 7.01 3.00 

Landers 1992 7.28 5.10 

Landers 1992 7.28 7.50 

Northridge-01 1994 6.69 3.53 

Northridge-01 1994 6.69 3.53 

Northridge-01 1994 6.69 2.21 

Northridge-01 1994 6.69 1.65 

Northridge-01 1994 6.69 1.04 

Northridge-01 1994 6.69 2.41 

Northridge-01 1994 6.69 0.50 

Northridge-01 1994 6.69 1.23 

Northridge-01 1994 6.69 3.48 

Northridge-01 1994 6.69 3.49 

Northridge-01 1994 6.69 3.11 

Kobe, Japan 1995 6.90 0.95 

Kobe, Japan 1995 6.90 2.06 

Kobe, Japan 1995 6.90 2.73 

Kobe, Japan 1995 6.90 1.43 

Kobe, Japan 1995 6.90 1.62 

Northwest China-03 1997 6.10 1.34 

Kocaeli, Turkey 1999 7.51 10.91 

Kocaeli, Turkey 1999 7.51 5.11 

Kocaeli, Turkey 1999 7.51 5.87 

Kocaeli, Turkey 1999 7.51 6.50 

Chi-Chi, Taiwan 1999 7.62 2.63 

Chi-Chi, Taiwan 1999 7.62 5.49 

Chi-Chi, Taiwan 1999 7.62 2.12 

Chi-Chi, Taiwan 1999 7.62 1.44 

Chi-Chi, Taiwan 1999 7.62 4.77 

Chi-Chi, Taiwan 1999 7.62 3.41 

Chi-Chi, Taiwan 1999 7.62 6.45 

Chi-Chi, Taiwan 1999 7.62 6.19 
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Table A.1 Continued 

Earthquake name Year M Tp [s] 

Chi-Chi, Taiwan 1999 7.62 8.61 

Chi-Chi, Taiwan 1999 7.62 5.40 

Chi-Chi, Taiwan 1999 7.62 6.96 

Chi-Chi, Taiwan 1999 7.62 6.27 

Chi-Chi, Taiwan 1999 7.62 9.11 

Chi-Chi, Taiwan 1999 7.62 8.58 

Chi-Chi, Taiwan 1999 7.62 11.83 

Chi-Chi, Taiwan 1999 7.62 13.29 

Chi-Chi, Taiwan 1999 7.62 8.49 

Chi-Chi, Taiwan 1999 7.62 12.94 

Chi-Chi, Taiwan 1999 7.62 10.47 

Chi-Chi, Taiwan 1999 7.62 12.92 

Chi-Chi, Taiwan 1999 7.62 13.84 

Chi-Chi, Taiwan 1999 7.62 8.36 

Chi-Chi, Taiwan 1999 7.62 12.02 

Chi-Chi, Taiwan 1999 7.62 7.27 

Chi-Chi, Taiwan 1999 7.62 8.31 

Chi-Chi, Taiwan 1999 7.62 5.74 

Chi-Chi, Taiwan 1999 7.62 12.17 

Chi-Chi, Taiwan 1999 7.62 5.15 

Chi-Chi, Taiwan 1999 7.62 3.98 

Chi-Chi, Taiwan 1999 7.62 9.18 

Chi-Chi, Taiwan 1999 7.62 9.04 

Chi-Chi, Taiwan 1999 7.62 7.55 

Chi-Chi, Taiwan 1999 7.62 10.04 

Chi-Chi, Taiwan 1999 7.62 9.72 

Chi-Chi, Taiwan 1999 7.62 8.26 

Chi-Chi, Taiwan 1999 7.62 12.03 

Chi-Chi, Taiwan 1999 7.62 7.85 

Chi-Chi, Taiwan 1999 7.62 6.75 

Chi-Chi, Taiwan 1999 7.62 5.43 

Chi-Chi, Taiwan 1999 7.62 10.89 

Chi-Chi, Taiwan 1999 7.62 9.01 

Chi-Chi, Taiwan 1999 7.62 10.33 

Chi-Chi, Taiwan 1999 7.62 4.30 

Chi-Chi, Taiwan-03 1999 6.20 3.19 

Chi-Chi, Taiwan-03 1999 6.20 1.35 

Chi-Chi, Taiwan-03 1999 6.20 0.91 

Duzce, Turkey 1999 7.14 5.57 
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Table A.1 Continued 

Earthquake name Year M Tp [s] 

Duzce, Turkey 1999 7.14 5.72 

Yountville 2000 5.00 0.73 

Bam, Iran 2003 6.50 2.04 

Parkfield 2004 6.00 1.33 

Parkfield 2004 6.00 1.15 

Parkfield 2004 6.00 1.02 

Parkfield 2004 6.00 0.69 

Parkfield 2004 6.00 1.42 

Parkfield 2004 6.00 1.27 

Parkfield 2004 6.00 1.20 

Parkfield 2004 6.00 0.56 

Parkfield 2004 6.00 0.50 

Parkfield 2004 6.00 0.62 
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