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supporting members under variable critical excitations

Kohei Fujita, Abbas Moustafa and Izuru Takewaki*

Department of Urban & Environmental Engineering, Graduate School of Engineering,

Kyoto University, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan

(Received December 2, 2009, Accepted February 10, 2010)

Abstract. A gradient-based evolutionary optimization methodology is presented for finding the optimal
design of both the added dampers and their supporting members to minimize an objective function of a
linear multi-storey structure subjected to the critical ground acceleration. The objective function is taken as
the sum of the stochastic interstorey drifts. A frequency-dependent viscoelastic damper and the supporting
member are treated as a vibration control device. Due to the added stiffness by the supplemental viscoelastic
damper, the variable critical excitation needs to be updated simultaneously within the evolutionary phase of
the optimal damper placement. Two different models of the entire damper unit are investigated. The first
model is a detailed model referred to as “the 3N model” where the relative displacement in each component
(i.e., the spring and the dashpot) of the damper unit is defined. The second model is a simpler model
referred to as “the N model” where the entire damper unit is converted into an equivalent frequency-
dependent Kelvin-Voigt model. Numerical analyses for 3 and 10-storey building models are conducted to
investigate the characters of the optimal design using these models and to examine the validity of the
proposed technique.

Keywords: optimal damper placement; evolutionary optimization; viscoelastic damper; critical excita-
tion; stochastic process; supporting stiffness, multi-storey buildings.

1. Introduction

In the early stage of the development in passive structural control, the installation itself of

supplemental dampers was the principal objective. It appears natural that, after extensive

developments of various damper systems, another target was directed to the development of smart

and effective installation of such dampers. 

Although the motivation was inspired and directed to smart and effective installation of dampers,

research on optimal damper placement has been limited. Several studies have dealt with this subject

in the early stage. De Silva (1981) presented a gradient algorithm for the optimal design of discrete

dampers in the vibration control of a class of flexible systems. Constantinou and Tadjbakhsh (1983)

derived the optimum damping coefficient for a damper placed on the first storey of a shear building

subjected to horizontal ground motions. Gurgoze and Muller (1992) presented a numerical optimal

design method for a single viscous damper in a prescribed linear multi-degree-of-freedom system.

Zhang and Soong (1992) proposed a seismic design method for finding the optimal configuration of
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viscous dampers for a building with specified storey stiffnesses. Hahn and Sathiavageeswaran

(1992) performed parametric studies on the effects of damper distribution on the earthquake

response of buildings, and showed that, for a building with uniform storey stiffnesses, dampers

should be added to the lower half of the building. Tsuji and Nakamura (1996) proposed an

algorithm to find both the optimal storey stiffness and damper distribution for a shear building

subjected to the spectrum-compatible ground motions.

Rather recently, Takewaki (1997) developed another optimal method for the smart damper

placement with the help of the concepts of inverse problem approaches and optimal criteria-based

design approaches. He solved a problem of optimal damper placement by deriving the optimality

criteria and then by developing an incremental inverse problem approach. Subsequently, Takewaki

and Yoshitomi (1998), Takewaki et al. (1999) and Takewaki (2000a) introduced a different approach

based on the concept of optimal sensitivity. The optimal quantity of passive dampers is obtained

automatically together with the optimal placement through this new method. The essence of these

approaches is summarized in Takewaki (2009).

In the meanwhile, significant works have been developed by many researchers (Singh and

Moreschi 2001, 2002, Garcia 2001, Garcia and Soong 2002, Liu et al. 2003, Silvestri et al. 2003,

Xu et al. 2003, 2004, Uetani et al. 2003, Park et al. 2004, Wongprasert and Symans 2004, Kiu et

al. 2004, Trombetti and Silvestri 2004, 2007, Tan et al. 2005, Liu et al. 2005, Lavan and Levy

2005, 2006a, b, Levy and Lavan 2006, Silvestri and Trombetti 2007, Marano et al. 2007, Aydin et

al. 2007, Cimellaro 2007, Cimellaro and Retamales 2007, Attard 2007, Cimellaro and Retamales

2007, Viola and Guidi 2008, Wang and Dyke 2008). Most of these studies have developed new

optimal design methods of supplemental dampers and proposed effective and useful approaches.

In this paper, an evolutionary method is proposed for finding the optimal design of both dampers

and their supporting members to minimize an objective function of a linear multistorey structure

subjected to critical resonant ground input. While many researches have been accumulated on the

design of passive dampers themselves, passive dampers design including the supporting members

are very limited. The objective function is taken as the sum of the mean-squares of the interstorey

drifts. A frequency-dependent viscoelastic damper including the supporting unit is taken into

account. Due to the added stiffness by the viscoelastic damper, the resonant variable critical

excitation (Takewaki 2002, 2007) needs to be updated in the evolutionary phase of optimal damper

placement. Two different models of the whole damper unit are investigated. The first model is a

detailed model referred to as “the 3N model” where the relative displacement between each

component of damper unit can be defined. The second model is a simpler model referred to as “the

N model” where the whole damper unit is converted to an equivalent frequency-dependent Kelvin-

Voigt model. Numerical analyses are conducted to show the accuracy of these models and to

examine the validity of the proposed optimal design method.

2. Structural model with viscoelastic dampers and the supporting members

Consider an N-storey planar shear building model with frequency-dependent acrylic visco-elastic

dampers (VED) and their supporting members. Let kFi and cFi denote the storey stiffness and the

damping coefficient in the i-th storey of the main frame. The floor mass of the i-th storey is denoted

by Mi. The dependency of VED on temperature and strain amplitude is not taken into account here.

This acrylic VED is assumed to be described by a 4-elements model as shown in Fig. 1 (Lee et al.
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2002). kMi, kVi, cMi and cVi represent the spring stiffnesses and dashpot damping coefficients in VED

in the i-th storey. In order to take into account the stiffness kbi of the supporting member, the 4-

elements VED model is connected in series with another spring kbi. This entire damper unit can be

converted to two different models (Fig. 2).

Fig. 1 Structural model with viscoelastic damper including supporting member

Fig. 2 Damper models simplified as “3N model” and “N model”
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The first model is a detailed model, as shown in Fig. 2, allocating small lumped masses, i.e., a

and b, between the components of spring and dashpot. Let uFi, u1i and u2i denote the i-th storey floor

displacement relative to the ground and the displacements of the lumped masses, a and b, relative to

the ground. This VED model has three degrees-of-freedom in each storey and the structure with this

VED model is referred to as “the 3N model”. The stiffness and damping matrices of this VED

model are independent of frequency. The components of stiffness and damping matrices Kfull, Cfull,

of the whole building model with VED are linear combinations of kFi, kMi, kVi, cFi, cMi, cVi and kbi.

Because of the complex connection of each structural component, the overall stiffness matrix is not

a simple one (not triple-type matrix). For this reason, it may be disadvantageous to utilize this 3N

model for a large-scale structure and a simpler VED model is needed.

The second VED model is referred to as “the N model”. In this VED model, the whole damper

unit is converted into an equivalent frequency-dependent Kelvin-Voigt model. The equivalent

stiffness and damping coefficients in the i-th storey may be expressed by

(1)

(2)

where the coefficients A to F are given as

(3a-f)

The derivation of Eqs. (1) and (2) can be found in Appendix 1.

In this paper, a comparison between these two models (3N model and N model) is performed later

within the scope of optimal damper placement.

3. Critical excitation for variable design

In the seismic-resistant design of important structures, time-history analysis is often used for a set

of recorded ground motions. However, it is well recognized that the ground motions include various

uncertainties of various levels. In order to account for these uncertainties, more reliable and robust

structural design methods are needed. The critical excitation method is adopted in this paper. The

critical excitation method was initiated by Drenick (1970) and much subsequent research has been

accumulated (Takewaki 2007).

Takewaki (2002) introduced the concept of variable critical excitation which has a variable

resonant frequency close to the fundamental natural circular frequency ω0 of the structure with

varied stiffnesses of the supplemental dampers. Based on this concept, a problem is posed here such

that the optimal viscoelastic damper placement is identified together with the selection of the

optimal stiffness of the supporting members.

Let Sg(ω) denotes the power spectral density (PSD) function of the input ground acceleration

. The constraints on Sg(ω) are the power of the PSD function (i.e., the area under the PSDu··g t( )



Optimal placement of viscoelastic dampers and supporting members 47

function representing the input variance), described by 

(4)

and the intensity of the PSD function (i.e., the maximum or the peak value of the PSD function),

expressed by 

(5)

 and  are the limits on the power and intensity, respectively. These parameters of the critical

excitation are determined from the analysis of recorded ground motions. A shape of the PSD

function as a solution of this problem is assumed to be a Dirac delta function (when  is infinity)

or a band-limited white noise (when  is finite). A band-limited white noise is shown in Fig. 3

where a frequency band-width Ω and upper and lower bounds ωU, ωL of frequency are obtained

from the given parameters  and .

In the following sections, the optimal placement of VED is investigated in which the fundamental

natural frequency of the structure with different VED distributions may vary and ωU, ωL  for critical

excitation may change. This concept is the critical excitation for variable design (Takewaki 2002).

A similar concept has been developed by Takewaki (2000b), but the parameters ωU, ωL  were kept

unchanged (i.e., they do not depend on the optimization variables).

4. Stochastic response evaluation in frequency domain

4.1 3N model

Let Mfull, r = {1,...,1}T denote the system mass matrix (3N×3N) of the 3N model and the influence

coefficient vector, respectively. The imaginary unit is denoted by . The equations of

motion of the building with VED in frequency domain can be expressed by 

Sg ω( ) ω S≤d
∞–

∞

∫

supSg ω( ) s≤

S s

s

s

S s

i 1–=

Fig. 3 Critical PSD function as band-limited white noise compared with that of El Centro NS 1940 record



48 Kohei Fujita, Abbas Moustafa and Izuru Takewaki

(6)

where Ufull(ω) and  are the Fourier transforms of the nodal displacements ufull = {uF1 u11 u12

uF2 u12 u22 ··· ··· ··· uFN u1N u2N}T
 and the Fourier transform of the ground acceleration . Eq. (6)

can be described simply as

(7)

where

Afull = -ω2Mfull + iωCfull + Kfull, Bfull = -Mfullr (8a,b)

Fourier transforms of the interstorey drifts D(ω) = {D1,···,DN}T can then be derived by 

D(ω) = TfullUfull(ω) (9)

where T is a constant transformation matrix consisting of 1, -1 and 0. By substituting Eq. (7) into

Eq. (9), D(ω) can be rewritten as

(10)

The transfer functions  of interstorey drifts can be defined as

(11)

By using the resonant PSD function, the objective function as the sum of the mean-squares

responses  of the interstorey drifts for the 3N model can be evaluated by

(12)

where  is the i-th component of the interstorey drift transfer function  for the 3N

model and (  )* denotes the complex conjugate.

It is well understood that the stiffness of supporting members should be strong enough to ensure

the effectiveness of the damper unit. For this reason, the stiffness kb= {kbi}(i=1,···, N) of each

supporting member is treated as another design variable and the axial force of each supporting

member is constrained to an upper limit (e.g., the yield force). In the 3N model, the maximum value

of the axial force of the supporting member can be evaluated by

(13)

where ρ is the peak factor for the maximum axial force of the supporting member. In order to

evaluate the maximum axial force of the supporting member, the peak factor has been introduced.

Tb is a transformation matrix from the nodal displacements to the relative displacements between

both ends of supporting members (see Appendix 2).

ω
2
Mfu l l– iωCful l Kfu l l+ +( )Uful l ω( ) Mfu l lrU

··
g ω( )–=

U
··
g ω( )

u··g t( )

Aful lUful l ω( ) Bfu llU
··
g ω( )=

D ω( ) Tfu llAfu l l

1–
Bful lU

··
g ω( )=

HD

ful l
ω( ) HD i ω( ){ }=

HD

ful l
ω( ) Tfu llAfu l l

1–
Bful l=

σDi
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ful l
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4.2 N model

Let A, B denote the matrix and vector for the N model corresponding to Eqs. 8(a) and 8(b). The

equations of motion for the N model in frequency domain may be expressed by

(14)

The objective function can be described by

(15)

where  is the i-th component of the interstorey drift transfer function vector TA-1B for the N

model. 

The axial force of the supporting member can be evaluated in the N model as the internal force of

the frequency-dependent Kelvin-Voigt model.

(16)

where ρ and HNbi(ω) are the peak factor and the transfer function, respectively, of the axial force.

The transfer function HNbi(ω) of the axial force can be expressed by 

(17)

where KEi(ω) + iωCEi(ω) represents the complex stiffness of the equivalent Kelvin-Voigt model of

the damper unit including the supporting member.

5. Optimal design problem 

The problem of optimal damper placement of passive dampers and optimal stiffness selection of

supporting members for the N-storey shear building model subjected to variable critical excitation is

to find the distribution of both VED shear areas Sd = {Sd1,···, SdN} and supporting members

stiffnesses kb = {kb1,···, kbN}. Sdi is the VED shear area in the i-th storey. The fundamental natural

circular frequency ω0 of the building can vary according to the change of the damper unit (damper

area and stiffness of supporting member). The property of critical excitation Sg(ω) is therefore

dependent on the design variables Sd and kb. The objective function f, Eq. (15), can then be

regarded as a function of ω0, Sd and kb, i.e., f(ω0, Sd, kb).

The first constraint on damper capacity is

(18)

where  is a specified total damper area. Additional constraints on the added damper’s area in

each storey are also considered, specifically 

AU ω( ) BU
··
g ω( )=

fN H iδ ω( )H iδ

*
ω( )Sg ω( ) ωd

∞–

∞

∫
i 1=

N

∑=

H iδ ω( )

Nb i ρ HNb i ω( )
2
Sg ω( ) ωd

∞–

∞

∫( )
1 2⁄

=

HNb i ω( ) KE i ω( ) iωCE i ω( )+{ }H iδ ω( )=

Sdi

i 1=

N

∑ W=

W
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 (i=1,···, N) (19)

where  is the upper bound of damper area in the i-th storey. 

The constraint on axial force of the supporting member may be expressed as 

 (i=1,2,···, N) (20)

where  is the yield force of the supporting member and a function of kbi.

6. Optimality conditions 

The generalized Lagrangian L for the optimal design problem can be defined as

L(Sd, kb, λ, µ, γ, κ)

(21)

where λ, µ = {µi}, γ = {γi} and κ = {κi} are the Lagrange multipliers. The principal optimality

conditions for this problem without active upper and lower bound conditions on damper area and

axial force of supporting member may be derived from the stationarity conditions of L(µ = 0, γ = 0,

κ = 0)    with respect to Sd and kb.

(22)

(23)

The symbols (  ),j and (  )’j denote the partial differentiation with respect to Sdj and kbj, respectively. 

In the process of increasing the quantity of VED in each storey, the axial force of the supporting

member usually increases. When the constraint on axial force of the supporting member is active,

the optimality conditions should be modified by the stationarity conditions of L(µ = 0, γ = 0) as

follows 

(24)

(25)

where m and pi denote the number of storeys and their locations having inactive constraint on

damper area and n and qi denote the number of storeys and their locations having active constraints

on axial force of the supporting member. In Eq. (25), it is assumed that the partial differentiation of

i-th storey axial force Nbi with respect to other storey’s supporting member stiffness kbj can be

0 Sdi Sdi≤ ≤

Sdi

Nb i Sd kb,( ) Py i kb i( )≤

Py i
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neglected (Nbi’
j = 0 (i ≠ j)). This accuracy has been confirmed through numerical tests. In addition,

the yield force  of each supporting member is assumed to be a function of only the stiffness kbj

of that supporting member. As a result, Eq. (25) reduces to

 (26)

It is noted that the Lagrange multiplier κj can be evaluated directly from Eq. (26). This assumption

facilitates a simple sensitivity expression of the objective function.

When the other constraints on upper and lower bounds of damper's area are active, the optimality

conditions should be modified by 

(27)

(28)

If there is no VED for which the axial force of supporting member attains its yield force, Eq. (28)

should be replaced by 

(29)

7. Solution procedure of optimal design

7.1 Algorithm for optimal damper placement and optimal design of supporting members

A gradient-based evolutionary solution algorithm is presented for the problem of optimal damper

placement. Since it is quite beneficial to obtain the optimal damper placement for various capacities

of dampers, the total damper quantity  is increased gradually. The flow chart of this solution

algorithm is shown in Fig. 4. Furthermore, Fig. 5 explains the evolution of the design variables Sd

and kb during the optimal design process. The solution procedure is summarized as follows :

Step 0 Design the main frame without VED under the system dependent critical excitation.

Step 1 Calculate the undamped fundamental natural circular frequency ω0 of the frame.

Step 2 Create the critical PSD function Sg(ω) as a band-limited white noise which has a central

frequency ω0.

Step 3 Evaluate the axial force Nbi of supporting member and count the number n of storeys in

which Nbi reaches its yield axial force .

Step 4 Identify the location of storey where the absolute value of the first-order sensitivity of the

objective function f is maximized.

Step 5 Count the number m of storeys where the maximum absolute values of the first-order

sensitivity of the objective function coincide.

The above global procedures can be further subdivided into 4 different domains, called A, B, C

and D (see Fig. 5), depending on the values m and n. To find the optimal increment of Sd and kb, an

appropriate set of optimality conditions have to be selected from Eq. (22) through Eq. (29). The

Py j

W

Py i
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relationship between the optimality conditions and each domain is shown in Table 3.

Step 6AThe case of m = 1, n = 0 corresponds to the domain A. The increment ∆W of VED is

added only to the specific storey attaining |f, j|.

Step 6B The case of m ≥ 2, n = 0 corresponds to the domain B. When the multiple equality

optimality conditions, Eq. (22), are satisfied, the optimal damper distribution Sdi has to be

computed and updated to keep the coincidence of the multiple first-order sensitivities.

Step 6C The case of m = 1, n = 1 corresponds to the domain C. The stiffness kbi of the supporting

max
j

Fig. 4  Flowchart for the optimal placement of viscoelastic dampers and optimal stiffnesses of the supporting members 
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member is increased to prevent Nbi from exceeding the yield axial force .

Step 6D The case of m ≥ 2, n ≥ 1 corresponds to the domain D. All the optimality conditions have

to be satisfied. This corresponds to the conditions that the multiple first-order sensitivities

coincide due to Eq. (22) and the corresponding kbi is increased to satisfy Nbi = .

Step 7 Update design variables Sd and kb according to the optimality conditions summarized in

Table 3.

Step 8 Repeat Step 1 through Step 7 until the constraint Eq. (18), i.e., the total area of VED, is

satisfied.

The initial model is without VED, i.e., Sdi = 0 (i = 1,···, N). Additional VED is distributed via the

steepest direction search algorithm (Takewaki 2009). Let ∆Sd = {∆Sdi} and ∆W denote the increment

of VED area and the increment of the sum of VED areas, respectively. When ∆W is given, it is

needed to find the optimal placement to decrease the objective function most effectively. For this

purpose, the first and the second-order sensitivities of the objective function with respect to the

design variables Sd and kb are necessary. Those sensitivities f ,j, f 
,j, f ,jk, f ,j

,k and f ,jk can be derived

by differentiating Eq. (15) with respect to the design variables. The N model is used here. Detailed

expressions of the first and the second-order sensitivities are shown in the next section.

For clarification, the steps 6C and 6D are explained in more detail below.

[Step 6C] When m = 1, VED is added only to a single specific storey. When Nbj attains its upper

bound , kbj has to be increased so as to keep the increment ∆Nbj coinciding with . This

requires

(30)

Herein, the assumption discussed below Eq. (25) is employed again. When n = 1, the increment of

Py i

Py i

Py j P∆ y j

Fig. 5 Evolution of design variables in the proposed optimization process (a) Case including domains A, C, D,
(b) Case including domains A, B, D
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the stiffness ∆kbj of the supporting member can be derived by 

(31)

[Step 6D] When m ≥ 2, an appropriate distribution of VED to more than two storeys should be

employed for a given value of ∆W. In this case, the number of unknown variables is m + n. From

Eq. (30), n equations with respect to kb can be derived. We, therefore, need more m equations.

Successive satisfaction of Eq. (24) requires that

(j = q1,..., qn) (32)

where κk in Eq. (32) can be derived from Eq. (26) as 

  (33)

It can be mentioned that, after the multiple optimality conditions are updated, the first-order

sensitivities should continue to be satisfied. To achieve this, the following equation can be derived

by substituting Eq. (33) into Eq. (32)

(34)

In case of using Eq. (22) in place of Eq. (24), the following equations should be employed.

(35)

After some manipulation in Eq. (34), we can derive m−1 equations to determine the optimal

solution Sd and kb. 

The last condition with respect to the design variables Sd is

(36)

From Eqs. (30), (34), (35) and (36), we can derive the following simultaneous linear equation for

{ , ... , , , ... , }.

Sdi∆
i p

1
=

p
m

∑ dW=

Sdp
1

∆ Sdp
m

∆ kbq
1

∆ kbq
n

∆
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(37)

where αij (i = 1,2,...,m−1; j = 1,2,...,m) and βij (i = 1,2,...,m−1; j = 1,2,...,n) are described by 

(38-a,b)

(39-a,b)

7.2 Sensitivity with respect to damper area

The first and second-order sensitivities of the objective function with respect to design variables

Sd and kb are derived here. The PSD function of the variable critical excitation has the power  in

the frequency band between ωL and ωU. The objective function in Eq. (15) can be simplified to

(40)

where ψδi is defined by

(41)

s
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Note that ωL and ωU are dependent on the natural circular frequency ω0 of the building with VED.

For this reason, the objective function in Eq. (40) can be regarded as an implicit function of ω0.

The first and the second-order sensitivities with respect to Sd can be derived from

(42)

(43)

where Hδi(ω),j and Hδi(ω),jk are derived as follows.

Hδi (ω), j = Ti (A
−1), j B (44)

Hδi (ω), jk = Ti (A
−1), jk B (45)

In Eq. (44), the first derivative of A-1 with respect to Sd is given by 

(46)

Furthermore (ω0), j and (ω0), jk are evaluated following the method of Fox and Kapoor (1968).

Referring to Eqs. (1) and (2), the first derivative of the matrices K and C with respect to Sdj can

be computed by the first derivative of the equivalent stiffness KEj and the damping coefficient CEj

described by 

(47)

(48)

Eqs. (1) and (2) have been re-written in terms of the parameters kdM, cdM, kdV, cdV without {Sdj}. The

coefficients c1 ··· c4 are defined as follows
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(49-a,b,c,d)

where ε1 = kdM kdV − cdM cdVω2, ε2 = kdM cdV + kdVcdM + kdM cdV.

On the other hand, in Eq. (45), the second derivative of A-1 with respect to Sd can be computed

by differentiating Eq. (46) with respect to Sdk.

(50)

In Eq. (50), it should be remarked that in case of using viscous damper or viscoelastic damper in

the “3N model”, A, jk = 0. This is because the stiffness and damping matrix consist of a linear

combination of damper damping coefficients and stiffnesses, i.e., all the components of A, j are

constant values. On the other hand, in the case of using the frequency-dependent “N model”,

A, jk ≠ 0 (j = k) because the first derivative of A contains KEi and CEi, Eqs. (47) and (48), which are

also the functions of design variables  Sd and kb.

The second-order sensitivities of the equivalent stiffness and damping coefficient with respect to

damper area are shown in Appendix 3.

7.3 Sensitivity with respect to the stiffness of the supporting members

The sensitivity of the objective function with respect to kb is also needed to determine the optimal

solution for the stiffness of the supporting members. These sensitivities can be derived following the

same procedures used in deriving Eqs. (42) and (43).

(51)

(52)

where Hδi (ω), j = Ti (A
-1), j B and Hδi (ω), jk = Ti (A

-1), jk B. The first derivative of A-1 with respect to

kb can be computed by replacing K, j and C, j with K, j and C, j whose components consist of KEi
, j

and CEi
, j given as

(53)

(54)
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Note that the parameters  and  need to be evaluated only for j = i In the same way, the

second derivative of A-1 with respect to kb can be evaluated in terms of A, j, A, jk and A-1.

The second-order sensitivities of the equivalent stiffness and damping coefficient with respect to

the stiffness of the supporting members are shown in Appendix 3.

 
7.4 Sensitivities of the axial force of the supporting members

The sensitivity of the axial force  of the supporting member with respect to Sd can be derived

by differentiating Eq. (16) as follows.

(55)

As defined before in Eq. (17), HNbi (ω) is obtained from the complex stiffness of the equivalent “N

model”. In Eq. (55), the sensitivity of the axial force Nbi with respect to Sd, i.e., (HNbi (ω)), j, can be

derived from Eq. (17).

(56)

where  is a complex stiffness of the equivalent whole damper unit as an “N model”, defined by

= KEi + iωCEi.

The sensitivity of Nbi with respect to kb can be derived by replacing HNbi (ω), j in Eq. (55) with

HNbi (ω), j computed by substituting , j, i.e., KEi
, j + iωCEi

, j, into Eq. (56) instead of .

8. Numerical examples

Numerical examples are presented for 3-storey and 10-storey building models to demonstrate the

usefulness and validity of the proposed optimal design method. Detailed comparison between “3N

model” and “N model” is also presented to demonstrate the validity and accuracy of the proposed

formulations for the two models.

The structural parameters are shown in Table 1. The floor masses and frame storey stiffnesses are

identical in all the storeys. The structural damping ratio of the main frame is assumed to be 0.02

KE i CEi

Nbi

K̂E i

K̂E i

K̂E i K̂E i j,

Table 1 Structural parameters of main frame

3-storey model 10-storey model

Floor mass [kg] 512×103 1024×103

Storey stiffness (N/mm) 6.02×108 1.20×109

Natural circular frequency without 
damper (rad/s)

15.268 5.125

Natural period
 without damper (s)

0.411 1.225
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(stiffness-proportional damping). The properties of each component in four elements of VED per

unit damper area (thickness is fixed at 10 mm and area is 1 m2) are shown in Table 2 (Lee et al.

2002). The ratio rs = kbi / kfi between the stiffness kfi of the building frame and that kbi of the

supporting member is varied between 0.5 and 3.0. The initial stiffness of the supporting member is

given by selecting an appropriate ratio rs. The total damper area  is taken as = 51.2 m2 for the

3-storey building model and = 400 m2 for the 10-storey building model. The peak factor for axial

force of supporting member is given as 3.0 in both examples. The parameters  and  of the input

critical acceleration are estimated as = 0.02 m2/s3 and = 0.04 m2/s4 from the El Centro NS 1940

with PGA = 0.32 g.

The PSD function of the critical ground motion defined as a variable critical excitation is

computed to have the circular frequency resonant to the fundamental natural circular frequency of

the building model. In the process of optimal damper placement where the stiffness and damping

W W

W

s S

s S

Table 2 Properties of acrylic viscoelastic damper per unit area

kdV 2756.3[N/m3] kdM 5120.5[N/m3]

cdV 00221.7[Ns/m3] cdM 00254.8[Ns/m3]

Table 3 Optimality conditions in each domain

Domain A
(m = 1, n = 0)

p1
 

storey Other storeys

Eq. (22) Eq. (23) Eq. (27)

Domain B 
(m ≥ 2, n = 0)

p1 ~ pm storey Other storey

Eq. (22) Eq. (23) Eq. (27)

Domain C 
(m = 1, n = 1)

p1 (=q1) storey Other storey

Eq. (24) Eq. (25) Eq. (27)

Domain D
(m ≥ 2, n ≥ 1)

 q1 ~ qn storey   pn+1 ~ pm storey Other storey

Eq. (24) Eq. (25) Eq. (22) Eq. (23) Eq. (27)

Fig. 6 First-order sensitivity of sum of mean-squares interstorey drifts with respect to VED area (a) 3-storey
model, (b) 10-storey model
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matrices are updated according to the available additional VED, eigenvalue analysis has to be

carried out in every step. It should be remarked that the 3N model, whose components are

independent of frequency, facilitates the computation of eigenvalues.

Fig. 6 shows the variation of the first-order sensitivities of the objective function with respect to

Sd = {Sd1,..., SdN} for (a) 3-storey and (b) 10-storey models where rs = 1.0. In the initial phase of the

optimization process which corresponds to the domain A, the maximum absolute value of the first

derivative is attained only in the first storey, i.e., |f ,1|. It is shown in Fig. 6 that, after the multiple

coincidence of the maximum absolute value of the first derivatives in domain B, they continue to be

satisfied in the optimal design process. This fact indicates a continuing satisfaction of the

stationarity conditions of Lagrangian as the optimality conditions.

Fig. 7 illustrates the optimal area distribution Sd of VED with respect to varied total damper area

and a variation of the lowest-mode damping ratio for (a) 3-storey and (b) 10-storey models. It can

be observed that the passive dampers are placed optimally in the building model according to the

variation of the first derivative of the objective function shown in Fig. 6. Fig. 7(a) depicts the

comparison of this result by using different damper models, i.e., “N model” and “3N model” for the

Fig. 7 Optimal damper placement and lowest-mode damping ratio (a) 3-storey model, (b) 10-storey model

Fig. 8 Stiffness and axial force of supporting member (a) 3-storey model, (b) 10-storey model
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3-storey model. It can be seen that almost identical result are obtained by using either of the two

damper models. This verifies the validity of the two proposed VED models.

Fig. 8 shows the evolution of the stiffness and the axial force of the supporting members in the

process of optimal damper placement for (a) 3-storey and (b) 10-storey models. The initial yield

force of the supporting members is also shown in Fig. 8(a). It can be observed that, after the axial

force  coincides with the initial yield force, kb is updated according to the optimality conditions.

Fig. 9 shows the variation of the objective function for the following three distributions in (a) 3-

storey and (b) 10-storey models: Case 1) Optimal damper placement based on the proposed method,

Case 2) Uniform placement, and Case 3) First-storey placement. It can be observed that the result

of case 1 perfectly coincides with that of case 3 in the early stage of the optimization procedure.

However, as the total damper area increases, the objective function is minimized by the optimal

damper placement.

In order to investigate the effect of the stiffness of the supporting members on the optimal damper

distribution, two cases of rs = kbi / kFi = 0.5 and 3.0 are considered for the 3-storey model. The yield

Nb i

Fig. 9 Variation of objective function in optimal placement, uniform placement and first-storey placement (a)
3-storey model, (b) 10-storey model

Fig. 10 Evolution of optimal damper placement (a) kbi / kFi = 0.5, (b) kbi / kFi = 3.0



62 Kohei Fujita, Abbas Moustafa and Izuru Takewaki

forces of the supporting members are set at a high level to investigate the effect of the stiffness of

the supporting members. Fig. 10 shows the evolution of the optimal damper distribution for (a)

rs = kbi / kFi = 0.5 and (b) rs = kbi / kFi = 3.0. It can be observed that, while the dampers are

concentrated in the lower storeys for rs = kbi / kFi = 3.0, they are distributed in all the storeys for

rs = kbi / kFi = 0.5. This reveals that the optimal distribution of the dampers requires the damper

installation in the effective position where the interstorey drift is large.

9. Conclusions

The conclusions may be stated as follows:

(1) An evolutionary optimal placement method of viscoelastic dampers and supporting members

has been proposed. The critical earthquake ground motion is defined as the resonant input to the

structure with viscoelastic dampers. As the size or quantity of viscoelastic dampers becomes large,

the force acting on the supporting member increases and an appropriate cross-sectional area of the

supporting member is required. Simultaneous design consideration of viscoelastic dampers and

supporting members is a new aspect of the theoretical development and practicality.

(2) The sum of the mean-squares of interstorey drifts under random input is taken as an objective

function. The total quantity of viscoelastic dampers has been increased evolutionary while the

constraint on the member force of the supporting member is satisfied.

(3) Two models are used in the modeling of the viscoelastic dampers. The first model is the four-

elements model of viscoelastic dampers with a supporting member. Two masses are considered in

this model. Then the 3N degrees-of-freedom model for structural analysis is employed in the first

model. The second model is an equivalent Kelvin-Voigt model of viscoelastic dampers with a

supporting member. There is no additional mass in the model of the equivalent Kelvin-Voigt model.

Then the N degrees-of-freedom model for structural analysis is employed in the second model.

(4) A gradient-based evolutionary optimization technique is developed by using the Lagrange

multiplier optimization technique. Simultaneous satisfaction of the optimality criterion on placement

of viscoelastic dampers and the constraint on forces of the supporting members have been

guaranteed which have been demonstrated through numerical examples.

In this study, the simultaneous optimal placement of viscoelastic dampers and the optimal design

of the stiffnesses of the supporting members are estimated under the system-dependent variable

critical input that is modeled as stationary random ground motion. Although the objective function

becomes a time-dependent function for non-stationary earthquake inputs, the framework remains the

same. In such case, the optimal damper and the stiffness parameters should be evaluated by

minimizing the maximum response. This requires the minimization of the objective function at

discrete time instants which obviously increases the computations. This aspect is of interest and will

be carried out in a future work.
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Appendix 1 Equivalent stiffness and damping coefficient of damper unit including support-

ing member in N-model (Eqs. (1) and (2))

Let δFi, δ1i, δ2i denote the interstorey drift, the internal nodal displacement in the Maxwell model

in Fig. 2 relative to the (i-1)-th floor and the displacement of the node between the damper unit and

the supporting member in the i-th storey, i.e., δFi = uFi − uF(i-1), δ1i = u1i − uF(i-1) and δ2i = u2i − uF(i-1).

The equations of dynamic equilibrium of the 3N model can be derived as

(A1-1)

(A1-2)

(A1-3)

where pi (t) denotes the internal force of the supporting member in the i-th storey. Let ∆Fi (ω), ∆1i

(ω), ∆2i (ω), Pi (ω) denote the Fourier transforms of δFi(t), δ1i (t), δ2i (t) and pi (t). From Eq. (A1-1),

∆2i (ω) can be described by Pi (ω)/kbi. By substituting this equation into Eq. (A1-3) expressed in

frequency domain, we can obtain ∆1i (ω) as

(A1-4)

Substitution of these equations for ∆1i (ω) and ∆2i (ω) into Eq. (A1-2) in frequency domain leads to

the relationship between ∆Fi (ω) and Pi (ω).

(A1-5)

After some manipulations, Eq. (A1-5) can be rewritten as

(A1-6)

On the other hand, the force-displacement relation of the general Kelvin-Voigt model can be given

by

(A1-7)KE i iωCE i+( )  F i ω( )∆ Pi ω( )=
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where KEi and CEi are the equivalent stiffness and the damping coefficient of the frequency-

dependent Kelvin-Voigt model in the i-th storey defined by Eqs. (1) and (2). By comparing Eq.

(A1-6) and Eq. (A1-7), Eqs. (1) and (2) can be derived.

Appendix 2 Transformation matrix from the nodal displacements to the relative displace-

ments between both ends of supporting members

For evaluating the axial force of the supporting member, the relative displacements ub between

both ends of supporting members are expressed by 

ub = Tbufull (A2-1)

where Tb denotes the transformation matrix. In the case of the 3-storey building model, Tb can be

given by

(A2-2)

Appendix 3 Second-order sensitivities of the equivalent stiffness and damping coefficient

Second-order sensitivities of the equivalent stiffness and the damping coefficient for the N model

can be derived as follows
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(A3-1,2,3,4,5,6)

where c1, c2, c3 are given by Eq. (49a-c) and c5 = kdM ε2 − cdM (kdM kdV − cdM cdv ω
2).
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