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Abstract.  In this paper the linear elastic coupling between a 2 degree of freedom shear-type frame system and a 
rigid block is analytically and experimentally investigated. As demonstrated by some of the authors in previous papers, 
it is possible to choose a coupling system able to guarantee advantages, whatever the mechanical characteristics of the 
frame. The main purpose of the investigation is to validate the analytical model. The nonlinear equations of motion of 
the coupled system are obtained by a Lagrangian approach and successively numerically integrated under harmonic 
and seismic excitation. The results, in terms of gain graphs, maps and spectra, represent the ratio between the maximum 
displacements or drifts of the coupled and uncoupled systems as a function of the system’s parameters. Numerical 
investigations show the effectiveness of the nonlinear coupling for a large set of parameters. Thus experimental tests 
are carried out to verify the analytical results. An electro-dynamic long-stroke shaker sinusoidally and seismically 
forces a shear-type 2 d.o.f frame coupled with a rigid aluminium block. The experimental investigations confirm the 
effectiveness of the coupling as predicted by the analytical model. 
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1. Introduction 
 

Several papers have been dedicated to the comprehension of the behaviour of rigid block systems, 

starting from the pioneering work of Housner (1963). Both the seismic excitation (Yim et al. 1980, 

Pompei et al. 1998, Taniguchi 2002, Psycharis et al. 2013) and other kinds of ground excitation, 

such as harmonic or impulsive one-sine excitation (Spanos and Koh 1984, Zhang and Makris 2001, 

Kounadis 2013, Vassiliou et al. 2014) and random excitation (Spanos and Koh 1986) were 

considered. 

Several papers presented general formulations for the rocking and slide-rocking motions of free-

standing symmetric rigid blocks (Andreaus 1990, Shenton and Jones 1991, Voyagaki Ioannis et al. 

2013, Shenton 1996, Tung 2007) performed the analysis of the different phases of motions by 

defining criteria for the transition between them. Some papers consider either non-symmetric rigid 

blocks (Contento and Di Egidio 2009, Dar et al. 2018), or three-dimensional blocks (Zulli et al. 
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2012, Di Egidio et al. 2014b, 2015). Other papers investigated the dynamics of rigid blocks in a 

general way (DeJong and Dimitrakopoulos 2014), whereas Kounadis (2014, 2015) focuses on the 

rocking instability (overturning) of different rigid block systems. Spanos et al. (2017) carried out an 

interesting experimental investigation of a block on a non-linear deformable foundation, while 

Aloisio et al. (2019a, b, 2020) identified the actual behaviour of a rocking masonry facade under 

seismic excitation using a linear regression approach. 

Recently, many papers examined the coupling of the block with different passive or active 

devices in order to protect them from the overturning. For example, the effectiveness of base 

anchorages was studied in Makris and Zhang (2001), Dimitrakopoulos and DeJong (2012) in order 

to protect rigid blocks from overturning, whereas Di Egidio and Contento (2009, 2010), Contento 

and Di Egidio (2014), Calio and Marletta (2003), Vassiliou and Makris (2012), DeJong and 

Dimitrakopoulos (2014) highlighted the efficiency of the base-isolated system. Other types of 

passive control methods for the protection of rigid blocks were considered, for example, in Corbi 

(2006), where the authors proposed a sloshing water damper. A mass-damper dynamic absorber in 

the shape of a pendulum was used by different authors (Collini et al. 2016, Brzeski et al. 2016, de 

Leo et al. 2016, Di Egidio et al. 2019c, a), who demonstrated the general effectiveness of this kind 

of protection device. Instead, in Simoneschi et al. (2017a, b), Di Egidio et al. (2018) a mass-damper 

modelled as a single degree of freedom and running on the top of the block was considered as safety 

device. In Contento et al. (2019, 2017) a probability model to compare the effectiveness of base 

isolation and pendulum mass-damper in seismic protection of rigid block-like structures was 

proposed. 

Also, active or semi-active devices were used to improve the dynamic and seismic performances 

of blocks. For example, Ceravolo et al. (2016, 2017) studied the use of semi-active anchorages using 

feedback-feedforward or feedback strategies to increase the acceleration required to topple a 

reference block. Recently Di Egidio et al. (2014a), Simoneschi et al. (2018), Di Egidio et al. (2020a) 

used an active control technique to increase the amplitude of base excitation able to topple a rigid 

block. 

An interesting topic that is increasingly present in the scientific literature regards the dynamic 

improvement of structures by coupling them with devices of same or different type. In this field 

some papers Ormeo et al. (2012), Khatiwada et al. (2013), Huang et al. (2013), Muratovi and 

Ademovi (2015) represent an example. Specifically, in Huang et al. (2013), Muratovi and Ademovi 

(2015) particular attention was devoted to the coupling between a frame structure and a rocking 

block. The use of rocking rigid block as a protecting device of other kinds of structure represents a 

particular issue, not frequently dealt with. In papers Wada et al. (2011), Grigorian and Grigorian 

(2015) rocking walls are used to improve the dynamic and seismic response of existing buildings. 

In particular base pinned rocking wall are rigidly connected to the frame structure and provide a 

reduction of drifts, and suitable supports for energy-dissipating devices. In some recent works 

(Aghagholizadeh and Makris 2018, Makris and Aghagholizadeh 2017) the authors investigated a 

rigid coupling between a frame and a rocking wall under seismic excitations, mainly focusing on 

the differences between base pinned and base rocking rigid blocks. On the contrary, in Di Egidio et 

al. (2019d, b) a visco-elastic connection was considered. These papers showed that the rocking wall 

could act as a tuned mass damper for the frame if the coupling is correctly designed. It was assumed 

that multi-storey frames could be modelled through a dynamically equivalent 2 d.o.f. system like in 

Fabrizio et al. (2017b, 2019, 2017a). The effectiveness of such a visco-elastic connection was 

investigated by performing a numerical parametric analysis on mechanical systems representing real 

buildings. In more recent paper Di Egidio et al. (2020b), the seismic performance of visco-elastic 
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coupling of real frame structures and rocking walls has been investigated and physically interpreted. 

This paper investigates the numerical and experimental behaviour of a 2 d.o.f. shear-type frame 

structure, elastically coupled with a rigid aluminum block. The work is conducted under the 

following assumption: it is possible to arrange a coupling system able to ensure benefits, whatever 

are the mechanical properties of the frame (Di Egidio et al. 2019d, 2020b). The primary purpose of 

the investigation is the validation of the analytical model. The system under test is not intended to 

represent any real structure. A Lagrangian approach leads to nonlinear equations of motion of the 

coupled-system. They are numerically integrated to investigate the response of coupled system. A 

parametric analysis leads to gain graphs, maps and spectra. They show the ratio between the 

maximum displacements or drifts of the coupled and uncoupled systems as a function of the system’s 

parameters. Such graphs, maps and spectra allow an immediate understanding of the effects of the 

block: it has a beneficial effect when the ratio of displacements is less than unity. Experimental 

simulations verify the effectiveness of such coupling. A shear-type 2 d.o.f frame elastically coupled 

with a rigid aluminum block is harmonically and seismically driven by an electrodynamic long-

stroke shaker. The systems response, in terms of displacements, measured by no-contact and 

optical/laser sensors, is post-processed using the software MATLAB® and Mathematica®. Then, 

both experimental and theoretical results are compared. 

 

 

2. Motivation of the study 
 

In this paper, experimental tests aim to validate the analytical model. In fact, the description of 

motion of a stand-alone rigid block is a bit difficult with classical analytical models, due to 

particularity of rocking motion. Although the classical Housner’s model (Housner 1963) is able to 

represent correctly the main nonlinear characteristics of the rocking motion of a block, many other 

models that refine Housner’s model were proposed in order to better describe the impacts of block 

with base support and the loss of energy occurring at each impact (Sorrentino et al. 2011, Ther and 

Kollar 2016, Kalliontzis et al. 2016). 

The results of an analytical modelling show that coupling can achieve good performances in 

improving the dynamical behaviour of a frame. Nevertheless, as mentioned above, the model of 

Housner can represent correctly only the main characteristics of rocking motion, therefore the 

analytical and experimental behaviour could be slightly different. It is of fundamental importance to 

check whether the small differences between the ideal and real behaviour of block are able to change 

in a negative way the results provided by the analytical models. Consequently, an experimental 

validation of the analytical model is needed. 

 

 

3. Analytical and experimental model 
 

Both the analytical and experimental models refer to the same mechanical system. A shear-type 

2-d.o.f frame is coupled with a rigid rocking block using a linear elastic device, which connects the 

first storey of the frame to a point on the vertical side of the block. The block has a mass 

M=ρ×2b×2hb×s, where ρ=2450 kg/m3 (aluminium) and s is the dimension orthogonal to the plane 

of the figure. Fig. 1 shows the geometrical configuration and characteristics of the coupled 

mechanical system. 
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(a)                                          (b) 

Fig. 1 Mechanical system: (a) Geometrical characterization of the system; (b) Lagrangian parameters u1,u2,ϑ 
(positive directions) 

 
 
3.1 Analytical model 

 

It is assumed that the block cannot slide and cannot undergo to free-flight motion, therefore only 

rocking motions can occur. Consequently, three Lagrangian parameters fully describe the motion. 

Such parameters are the displacements (relative to the ground) of the 2 d.o.f. system u1 and u2, and 

the rotation of the block ϑ. Figure 1b shows the positive directions of the three Lagrangian 

parameters. Two sets of three equations of motion, which describe the motion of the system when 

the block rocks around either the left corner A or the right corner B, have to be obtained. For the 

sake of brevity, in this section, only the relationships needed to describe the motion of system, when 

the block is rocking around left corner A are reported. 

 
3.1.1 Equations of motion 
The positions of mass centres of the bodies are evaluated with respect to an inertial reference 

frame with origin in 𝑂, initially coincident with the left base corner 𝐴 of the block (Fig. 1a). The 

positions of mass centres 𝐺1 and 𝐺2 of the 2 d.o.f. structure are 

𝑥𝐺1(𝑡) = {
𝑥𝑔(𝑡) − 𝑑 − 𝑑𝐺 + 𝑢1(𝑡)

ℎ1

0

} ;   𝑥𝐺2(𝑡) = {
𝑥𝑔(𝑡) − 𝑑 − 𝑑𝐺 + 𝑢2(𝑡)

ℎ2

0

}        (1) 

The position of the mass center C of the block during a rocking around the left corner A reads 

𝑥𝐶(𝑡) = {
𝑥𝑔(𝑡)

0
0

} + [
Cos𝜗(𝑡) −Sin𝜗(𝑡) 0
Sin𝜗(𝑡) Cos𝜗(𝑡) 0
0 0 1

] {
𝑏
ℎ𝑏

0
}                   (2) 

where the matrix is the rotation tensor of the block. The kinetic energy of the mechanical system 

during a rocking motion of the block around the left corner A reads 

𝑇 =
1

2
[∑2

𝑖=1 𝑚𝑖(𝑥
.

𝐺𝑖(𝑡) ⋅ 𝑥
.

𝐺𝑖(𝑡)) + 𝐽𝐶(𝜗
.

(𝑡) ⋅ 𝜗
.

(𝑡)) + 𝑀(𝑥
.

𝐶(𝑡) ⋅ 𝑥
.

𝐶(𝑡))]           (3) 
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where 𝑚1  and 𝑚2  are the masses of the 2 d.o.f. system; �̇�(𝑡) = {0, 0, �̇�(𝑡)}
𝑇

  and 𝐽𝐶  is the 

polar inertia of the block with respect to its center of mass. In order to evaluate the potential energy 

for a rocking motion around the corner A, the distance vector between the couple of points W, K has 

to be evaluated. It is required to compute the potential energy associated to the elastic device with 

stiffness 𝑘𝐶. Such a distance vector reads 

𝑥𝑊𝐾(𝑡) = 𝑥𝐾(𝑡) − 𝑥𝑊(𝑡) = {
𝑑 − 𝑆𝑖𝑛𝜗(𝑡)ℎ1 − 𝑢1(𝑡)
−ℎ1 + 𝐶𝑜𝑠𝜗(𝑡)ℎ1

0

}                  (4) 

The potential energy of the system then read:  

𝑉 = [𝑀𝑔(𝑥𝐶(𝑡) − �̅�𝐶) ⋅ 𝑗] +
1

2
[𝑘1(𝑢1(𝑡))2 + 𝑘2(𝑢2(𝑡) − 𝑢1(𝑡))

2
] + 

1

2
[𝑘𝐶(√𝑥𝑊𝐾(𝑡) ⋅ 𝑥𝑊𝐾(𝑡) − 𝑑)

2
]                             (5) 

where 𝑘1  and 𝑘2  are the stiffness of the 2 d.o.f. system; g is the gravity acceleration; 𝑗 =
{0, 1, 0}𝑇 is the unity vector of the y-axis; x̅c = {𝑏, ℎ𝑏 , 0}𝑇 is the positions of the mass center 

corresponding to the minimum potential energy of the system. Since x̅c in Eq. (5) is constant, it 

consequently plays no role in the derivation of the equations of motion. 

The damping of the 2 d.o.f. system is modelled through two linear viscous dashpots with damping 

coefficients 𝑐1  and 𝑐2 . The virtual work 𝜕𝑊  of the non-conservative viscous forces has to be 

considered to obtain the Lagrangian equations of motion; it reads 

𝜕𝑊 = −[𝑐1�̇�1(𝑡) 𝛿𝑢1(𝑡) + 𝑐2(�̇�2(𝑡) − �̇�1(𝑡)) (𝛿𝑢2(𝑡) − 𝛿𝑢1(𝑡))]            (6) 

Finally, the equation of motion can be obtained by 

[
𝑑

𝑑𝑡
(

𝜕𝐿

𝜕�̇�𝑖
) −

𝜕𝐿

𝜕𝑞𝑖
] 𝛿𝑞𝑖 = 𝛿𝑊(𝛿𝑞𝑖), ∀𝛿𝑞𝑖 ≠ 0; (𝑖 = 1,2,3)                 (7) 

where 𝐿 = 𝑇 − 𝑉  is the Lagrangian function, (𝑞1, 𝑞2, 𝑞3) = (𝑢1, 𝑢2, 𝜗)  and (𝛿𝑞1, 𝛿𝑞2,  𝛿𝑞3) = 

(𝛿𝑢1, 𝛿𝑢2, 𝛿𝜗). The equations of motion then read 

−𝑘𝐶(𝑑 − ℎ1sin𝜗 − 𝑢1)
(√𝑑2−2(𝑑−𝑢1)ℎ1sin𝜗−2𝑑𝑢1−2ℎ1

2cos𝜗+2ℎ1
2+𝑢1

2−𝑑)

√𝑑2−2(𝑑−𝑢1)ℎ1sin𝜗−2𝑑𝑢1−2ℎ1
2cos𝜗+2ℎ1

2+𝑢1
2

+

(𝑐1 + 𝑐2)�̇�1 − 𝑐2�̇�2 + (𝑘1 + 𝑘2)𝑢1 − 𝑘2𝑢2 + 𝑚1(�̈�𝑔 + �̈�1) = 0
− − − − − − − −
𝑐2(�̇�2 − �̇�1) + 𝑘2(𝑢2 − 𝑢1) + 𝑚2(�̈�𝑔 + �̈�2) = 0
− − − − − − − −
𝐽𝐴�̈� + cos𝜗(𝑏𝑔𝑀 − ℎ𝑏𝑀�̈�𝑔) − 𝑀sin𝜗(𝑏�̈�𝑔 + 𝑔ℎ𝑏) +

𝑘𝐶ℎ1((𝑢1 − 𝑑)cos𝜗 + ℎ1sin𝜗)
(√𝑑2−2(𝑑−𝑢1)ℎ1sin𝜗−2𝑑𝑢1−2ℎ1

2cos𝜗+2ℎ1
2+𝑢1

2−𝑑)

√𝑑2−2(𝑑−𝑢1)ℎ1sin𝜗−2𝑑𝑢1−2ℎ1
2cos𝜗+2ℎ1

2+𝑢1
2

= 0

       (8) 

where 𝐽𝐴  is the polar inertia of the block with respect to the right base corner 𝐴  and the 

dependence on time 𝑡 is removed to make the equation more readable. The equations of motion 

referring to a block that rocks around the right corner 𝐵 can be obtained similarly. They are reported 

in Appendix 7. 
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3.1.2 Uplift and impact conditions of the block 
The uplift conditions describe the initiation of rotation of the block. The uplift of the block around 

point A takes place when the resisting moment 𝑀𝑅 = 𝑀𝑔𝑏, due to the weight of the block gets 

smaller than the overturning moment 𝑀𝑂 = −𝑀�̈�𝑔(𝑡)ℎ𝑏 + [𝑘𝐶𝑢1(𝑡)]ℎ1 due to the inertial force 

and to the elastic one of the internal coupling device. All these moments are evaluated with respect 

to the base point A (Fig. 1(a)). By vanishing the sum of the two previous moments, it is possible to 

obtain the external acceleration �̈�𝑔 able to uplift the block. Such an acceleration reads 

�̈�𝑔 =
𝑔

𝜆
+

𝑘𝐶𝑢1(𝑡)ℎ1

𝑀ℎ𝑏
                               (9) 

where 𝜆 = ℎ𝑏/𝑏 is the slenderness of the block. In absence of the coupling with the device, the 

uplift condition is the same of a stand-alone block. The uplift condition around point B can be 

obtained similarly. It reported in Appendix 7. 

During the rocking motion, when the rotation 𝜗(𝑡)  approaches zero, an impact between the 

block and the ground occurs. Post-impact conditions of the rocking motion can be found assuming 

that the impact happens instantly, the body position remains unchanged and the angular momentum 

is maintained with respect to the base corner around which the block re-uplift after an impact. The 

post-impact angular velocity is equal to 𝜗+ = 𝑟�̇�−, where 𝑟 = (𝐽𝑂 − 2𝑏 𝑆𝑦)/𝐽𝑂 is the restitution 

coefficient equal to that of stand-alone blocks (𝐽𝑂 is the polar inertia of the block with respect to 

one of the two base corners; 𝑆𝑦 = 𝑀𝑏 is the static moment of the block with respect to a vertical 

axis passing through one of the two base corners). Experimental setup is arranged in such a way the 

block behaves as a perfectly rigid body. Some preliminary experimental tests have confirmed that 

the measured restitution coefficient of the block is very close to the analytical one. Specifically, the 

experimental restitution coefficient was obtained from some free rocking motion tests, performed 

on the stand-alone block, imposing different initial inclination of the block. The experimental 

restitution coefficient has been evaluated from the recorded time-histories of such rocking angle. 

The mean value of the ratio between the experimental restitution coefficient 𝑟𝑒𝑥𝑝 and the analytical 

one 𝑟𝑡ℎ is 𝑟𝑒𝑥𝑝/𝑟𝑡ℎ = 0.992. As an example, some experimental tests performed in Di Egidio et 

al. (2019a, 2015) confirm that the experimental and the analytical restitution coefficients can be very 

close to each other. 

 

3.2 Experimental setup 
 

The experimental investigation was performed in the laboratory Analytical, Numerical, 

Experimental Models for Civil Engineering (ANEMCE), which is a section of the Dynamics 

Laboratory of the Department of Civil, Architectural-Construction and Environmental Engineering 

(DICEAA) at University of L’Aquila, Italy. 

Several challenging tasks were tackled in designing the coupling between the frame and the rigid 

block. The experimental setup consists of a two-storey frame and an aluminium rigid block, 

supported by a movable base driven by a long-stroke electromagnetic shaker (Fig. 2(a)). The shaker 

is an electromagnetic seismic simulator (EMSS) capable of testing scaled specimens. The rigid 

block stands over an adjustable base (Fig. 2(b)), sliding over two guides anchored to the base of the 

frame. The movable base is equipped with two sharpedged profiles which allow the block to rock 

without sliding, in order to avoid problems with the micro-sliding of the block as described in 

Kounadis (2018). The coupling spring is inserted in a thin rod, equipped with a hook on one side,  
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(a) 

 

 

 

(b) (c) (d) 

Fig. 2 Details of the structure under test: (a) Overall view of the experimental setup; (b) adjustable base, sliding 

over two guides anchored to the base of the frame; (c) connection between the block and the spring (the spring 

is held by the head of a screw inserted in the rigid block); (d) connection between the first storey and the rigid 

block 

 

 

avoiding instability of the spring under compression; the hooked end is locked with a catch on the 

first storey of the frame, while, on the other side, the rod is free to slide inside a flared hole, made 

in the center of mass of the block (Fig. 2(c)). The frictional force of the rod is made negligible by 

using lubricants, therefore in the analytical model, it is not considered. The spring is fixed on both 

the hook and the rigid block (Fig. 2(d)). The electrodynamic shaker is driven via a power control 

unit (amplifier) and the CompactRIO, a real-time embedded industrial controller made by National 

Instruments (NI). The CompactRIO is programmed in LabView in order to carry out both the 

harmonic analysis and the reproduction of time histories of recorded earthquakes. Two high-

resolution Laser sensors (Micro-Epsilon optoNCDT 1420) are used as contact-free devices for 
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tracking the displacements of the two storeys. Measurements, observed via an oscilloscope and a 

spectrum analyser, were acquired by a NI acquisition board, which provides a sample rate up to 

20000 samples/s and 14 bits resolution. A filter unit is implemented to cut off high frequencies 

induced by some overall noise. The recorded response is post-processed by means of the software 

MATLAB® and Mathematica®. 

 

3.3 Parametric analysis 
 

An extensive numerical and experimental parametric analysis is performed on the described 

mechanical system. The numerical integration of the equations of rocking motion Eq. (8) and Eq. 

(7.1), taking into account the uplift conditions Eq. (9) and Eq. (7.3) and the impact conditions, is 

performed by an original code developed by the same authors of this paper. The procedure is 

programmed to detect, from the first step of integration, the achievement of the uplift condition 

expressed by Eqs. (9) or (7.3). As long as these conditions are not verified, only the equations of 

motion for the sole 2-DOF are integrated. Then, once the block starts to uplift, according to Eq. (9) 

or (7.3), the algorithm starts with the integration of equation Eq. (8) for the rocking around the left 

corner 𝐴 or Eq. (7.3) for the rocking around the right corner 𝐵, assuming as initial conditions for 

the 2-DOF, the values of 𝑢1, 𝑢2 and �̇�1, �̇�2 obtained at the end of the previous integration step. 
After each integration step 𝑖 , a check is made on the rocking angle 𝜗 . If 𝜗𝑡𝑖−1

∗ 𝜗𝑡𝑖
< 0 , it 

means that an impact has occurred and the algorithm switches from a set of rocking equations to the 
other one by reducing the post-impact angular velocity �̇�+ = 𝑟�̇�−, as already explained in Section 
3.1.2 - Uplift and impact conditions of the block. Moreover, at each step, a check is performed to 
verify if an overturning occurred. If so, the integration procedure is stopped. The classical four-order 
Runge-Kutta method is used as integration method. It is known that the search of the impact time 
has to be performed with a sufficient accuracy (Acikgoz et al. 2016, Diamantopoulos and 
Fragiadakis 2019). Therefore, the time step used in the numerical integration is Δ𝑡 = 0.001𝑠, that 
assures a good accuracy in the evaluation of the times at which an impact occurs for harmonic 
excitation. Instead, for seismic excitation, a refined procedure has been adopted to find the time at 
which an impact occurs. Specifically, during the rocking motion, if in the successive integration 
time-step there is a change of sign of rocking angle, then algorithm re-start from the time before 
change of sign occurs and performs a further subdivision of the time-step in order to find the impact 
time with higher precision. 

 

3.3.1 Frame and block characteristics 
With reference to Fig. 1, the geometrical characteristics of the frame and of the block are shown 

in Table 1 and Table 2 respectively, whereas the mechanical characteristics of the system are shown 

in Table 3.  

 

 
Table 1 Geometric characteristics of the the frame 

𝑆𝑡𝑜𝑟𝑒𝑦𝑠 ℎ1(𝑚) ℎ2(𝑚) 

2 0.2 0.496 

   
Table 2 Geometric characteristics of the the block 

2𝑏(𝑚) 2ℎ𝑏(𝑚) 𝑠(𝑚) 

0.05 0.4 0.10 
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Table 3 Mechanical characteristics of the 2 d.o.f. frame 

𝑘1 (N/m) 𝑘2 (N/m) 𝑚1 (kg) 𝑚2 (kg) 𝜉1 𝜉2 

213.44 56.45 1.062 1.062 0.010 0.035 

 

 

In Table 3, 𝜉1 and 𝜉2 are the damping ratios of the 2 d.o.f. shear-type frame. All the quantities 

in Table 3 are directly measured (𝑚1 and 𝑚2) or identified through preliminary free motion of the 

uncoupled frame (𝑘1, 𝑘2, 𝜉1 and 𝜉2). 

The mechanical characteristics of the frame have been chosen in order to have a highly 

deformable structure. This makes easy the observation of the motion during the experimental tests 

and its measurement. Specifically, the frequencies of the two oscillation modes of the stand-alone 

frame are: 𝑓1 ≅ 1.0𝐻𝑧 and 𝑓2 ≅ 2.5𝐻𝑧, thus confirming the high deformability of the system. The 

geometrical and mechanical characteristics of the block and of the connection have been chosen to 

enhance the dynamic response of the coupled system. As in Di Egidio et al. (2019d, 2020b), the 

spectral characteristics of the linearised coupled system, compared with those of the uncoupled one, 

is the main factor which affects the effectiveness of coupling. Therefore, in Section 4.1 - Linearized 

equations, the linearized equations will be used to interpret the working of coupled system. 

 

3.3.2 Gain coefficient 
The displacement 𝑢1  and the drift 𝑢2 − 𝑢1  are used as indicators to evaluate the dynamic 

performance of the system. The smaller 𝑢1 and 𝑢2 − 𝑢1 are, the greater the effectiveness of the 

coupling with the block is. As done in Fabrizio et al. (2017b), two gain parameters are then 

introduced 

𝛼1 =
max|𝑢1(𝑡)|

max|�̃�1(𝑡)|
,    𝛼2 =

max|𝑢2(𝑡)−𝑢1(𝑡)|

max|�̃�2(𝑡)−�̃�1(𝑡)|
                      (10) 

where the displacements �̃�1 and �̃�2 refer to the uncoupled frame structure. If the parameters of 

Eq. (10) are less than unity, the coupling between the frame structure and the rocking block is 

beneficial for the frame structure. 

This paper aims to study the effects of the coupling mainly on the part of the structure standing 

above the connecting point with the block (super-structure), that is described by the 𝛼2  gain 

coefficient. 

 

 

4. Harmonic analysis 
 

The harmonic excitation used in the analyses is �̈�𝑔(𝑡) = 𝐴𝑠sin(Ω𝑡), 0 ≤ 𝑡 ≤ 𝑡m𝑎𝑥, where 𝐴𝑠 

is the amplitude of the harmonic excitation and 𝑡max is the maximum time used in the numerical 

integrations (𝑡max = 120𝑠). The high value of 𝑡max is needed to reach stationary conditions. The 

comparison among numerical and experimental results is performed in stationary conditions since 

experimental tests manifested the following aspect: the steady-state response is highly repeatable, 

while the transient response suffers from repeatability issues. The structural system may exhibit 

significantly distinct transient responses to the same excitation, while approaching the almost 

identical steady-state response to that excitation. This fact remarks the significant effect of the initial 

conditions on the transient response. Due to dissipation, even in nonlinear systems, the effect of 

different initial conditions is lost when approaching the steady-state response if they all belong to 
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the same attracting basins. 

The parameters considered in this analysis are the circular frequency of the harmonic excitation 

Ω and the coupling stiffness ratio 𝛽 = 𝑘𝐶/𝑘1 (see Fig. 1(a)). 

Since the mechanical system is nonlinear, its behaviour depends on the amplitude 𝐴𝑠 of the 

excitation. In the analysis, a fixed value of the amplitude is taken. In fact, the amplitude is defined 

𝐴𝑠 = 1.01𝑔/𝜆                                 (11) 

which is slightly greater than the uplift value of the stand-alone block. Since during the motion the 

rocking angle 𝜗 is always very small, the behaviour of the system is almost linear. It is observed 

that, for higher excitation amplitudes than the chosen one (up to a reasonable value), the response 

of the system is almost proportional to such excitation amplitude. Therefore, the excitation 

amplitude does not play an interesting role in the range of the investigated amplitude of the harmonic 

excitation. 

 
4.1 Linearized equations 

 
Linearized equations of motion need to be obtained for the correct interpretation of the results. 

These equations are based on the hypotheses of small rotations 𝜗. The linearized equations of the 

coupled system can be obtained expanding the equations of motion in McLaurin series up to the first 

order, with respect to the Lagrangian parameters 𝑢1, 𝑢2 and 𝜗. The equation of rocking motion 

around left corner read: 

𝐌�̈� + 𝐊𝐗 = 𝟎                                 (12) 

where M is mass matrix, 𝐗  is vector of Lagrangian parameters and K is stiffness matrix; by 

referring to the rocking motion of the block around the left base corner 𝐴, they read 

𝐌 = [

𝑚1 0 0
0 𝑚2 0
0 0 𝐽𝐴

] ;     𝐗 = {

𝑢1

𝑢2

𝜗
}

𝐊 = [

𝑘1 + 𝑘2 + 𝑘𝐶 −𝑘2 ℎ1𝑘𝐶

−𝑘2 𝑘2 0

ℎ1𝑘𝐶 0 −ℎ𝑏𝑀𝑔 + ℎ1
2𝑘𝐶

]

                    (13) 

The linearized equations of motion referring to the block that rocks around the right corner B are 

exactly equal to Eq. (12) and Eq. (13). Precisely, only the term 𝐽𝐴 in the mass matrix M (Eq. (13)) 

change in 𝐽𝐵. However, due to the assumed symmetry of the block, it follows that 𝐽𝐴 = 𝐽𝐵 (i.e., the 

polar inertia of the block around the two base corners are equal). 

The frequencies and the modes of the coupled system are obtained by solving the following 

eigenproblem 

 (𝐊 − 𝜔2𝐌)𝚿 = 0                               (14) 

where 𝜔 is the eigenvalue (linearized circular frequency) of the system and 𝚿 is the eigenvector 

(vibration mode). 

In Fig. 3 the frequencies and the modal shapes (arrows) of the first and the second mode of both 

coupled and uncoupled system are reported. The third mode is not useful in the comprehension of 

the results since its frequency is very high and is out of the range of the investigated frequencies, 

therefore it is neglected in this paper. 
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Fig. 3 Frequencies and mode shapes of the uncoupled and the coupled system (frequencies (𝑟𝑎𝑑/𝑠−1)). 

 

 

4.2 Numerical gain maps 
 

In Fig. 4 the gain maps and surfaces of the coefficients 𝛼1 and 𝛼2 are shown. The surfaces in 

Fig. 4(a) represent the values of both gain coefficients in the parameter plane Ω − 𝛽, obtained in 

stationary conditions. The maps, shown in Fig. 4(b), are the contour plots of the gain surfaces in the 

same parameter plane. In both the gain maps inside the light grey regions, 𝛼1 and 𝛼2 are less than 

unity. Hence, these regions, which are named gain region, represent combinations of the parameters 

for which the coupling with the rigid block is beneficial for the structure. 

Particular attention is given to gain coefficient 𝛼2, which represents the capability of the block 

to mitigate displacement of the super-structure. This means that through coupling with a rocking 

block a reduction of the drift of 80% can be achieved. Moreover, along the dash-dotted lines on 

the 𝛼1 and 𝛼2 maps the gain coefficients present the minimum value for each stiffness ratio 𝛽. 

This occurs for an excitation frequency Ω ≅ 16.35  𝑟𝑎𝑑/𝑠  very close to the frequency of the 

second mode of the uncoupled system (see Fig. 3). Since in such a mode the two storeys of the frame 

structure move in counter phase, the drift of the super-structure is expected to be the higher possible. 

Instead, the same excitation frequency is sufficiently far from the frequencies of the second coupled 

mode. Then the displacements and the drift of the uncoupled system are greater than those of the 

coupled system, thus assuring gain coefficients less than unity. 
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(a)                                        (b) 

Fig. 4 Evaluation of the effectiveness of the coupling: (a) Gain surfaces of the coefficients 𝛼1 and 𝛼2; (b) 

Gain maps of the coefficient 𝛼1 and 𝛼2 

 

 

Inside the dark grey region the coefficients 𝛼1 and 𝛼2 are greater than unity and no advantage 

from the coupling occurs. As can be observed in Fig. 4(a), the gain surfaces present points of relative 

maxima which move to higher frequencies when coupling stiffness increases. They are located in 

the dark grey region and can be explained as resonance conditions between the harmonic frequency 

and the frequency of the second coupled mode of the linearised system (see Fig. 3). 

In order to investigate how the coupling works, the time-histories of coupled and uncoupled 

system are analysed. Fig. 5 shows the time-history of the drift 𝑢2 − 𝑢1 of both the coupled and the 

uncoupled system (left graphs) and of the displacement 𝑢1 and the angle 𝜗 (right graphs). Both 

graphs in Fig. 5(a) refer to the point 𝐴 in Fig. 4(b), which is located close to a relative minimum 

point of the 𝛼2 gain surface. As can be observed, the time-history of the drift of the coupled system 

has a maximum amplitude smaller than the drift of the uncoupled system. Very interesting is the 

observation in the same graph of the time-histories of the displacement 𝑢1 of the coupling storey 

and of the rocking angle 𝜗 . By taking into account the positive directions of the Lagrangian 

parameters (see Fig. 1(b)), the first storey and the block move almost in counter-phase. In such a 

case the block works as a Tuned Mass Damper for the structure.  
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Fig. 5 Time-histories of coupled and uncoupled system: (a) characteristics labelled with 𝐴 in Fig. 4(a) (Ω =
16; 𝛽 = 0.4); (b) characteristics labelled with 𝐵 in Fig. 4(a) (Ω = 14;  𝛽 = 0.4); (c) characteristics labelled 

with 𝐶 in Fig. 4(a) (Ω = 17.5; 𝛽 = 0.4) 

 

 

The time-histories of the point 𝐵 (Fig. 5(b)), located in a point of the map where 𝛼2 is greater 

than that in the point 𝐴, show a smaller reduction of the coupled drift than the uncoupled one. The 

observation of the evolution of 𝑢1 and of 𝜗 highlights that the first storey and the block does not 

move in counter-phase, but neither in phase. As a consequence, there is a lower ability of the block 

to reduce the drift of the structure than the previous case. The time-histories of the point 𝐶 (Fig. 

5(c)), that is located very close to boundary of the gain region of the map in Fig. 4(b) (where 𝛼2 =
1), show a further worsening of the effectiveness of the coupling. In fact, the maximum amplitude 

of the drifts of the coupled and of the uncoupled systems are almost the same. On the contrary, the 

evolution of 𝑢1 and 𝜗 show that in this case the first storey and the block move almost in phase, 

thus vanishing the effect of the coupling. It is worth observing that during the motion shown in 

Fig. 5(a), (b) the amplitude of the displacement 𝑢1 is very small. In particular, it is much smaller 

than the amplitude of the rocking angle 𝜗. In order to make 𝑢1 clearly visible in the graphs where 

both 𝑢1 and 𝜗 are reported (left graphs of Fig. 5(a), (b)), a scale factor equal to 10 is applied to 

the displacement 𝑢1. In the motion shown in Fig. 5(c) it is not necessary to apply a scale factor to 

the displacement 𝑢1 since it is of the same order of magnitude as the angle 𝜗. 
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Fig. 6 Numerical and experimental 𝛼2 gain spectra 

 

 

4.3 Experimental gain spectra 
 

Gain spectra provide the gain coefficients 𝛼1  or 𝛼2  versus the frequency of the harmonic 

excitation. They formally are sections for fixed 𝛽 of the gain map (or of the gain surface), shown 

in Fig. 4. In the following section the interest will be focused on the sole 𝛼2 gain spectrum. 

Three experimental tests were performed, considering three different values of the coupling 

stiffness 𝑘𝐶  (i.e., three values of 𝛽 ), in order to obtain three different gain spectra. The 

experimental results are compared with three corresponding sections of the gain map, labelled with 

𝑆1, 𝑆2 and 𝑆3 in Fig. 4. In order to obtain the experimental gain spectra, four different frequencies 

are considered for each value of the coupling stiffness; specifically Ω = 12.5, 15.0, 17.5  and 

20.0𝑟𝑎𝑑/𝑠 are considered. During the tests, the time-histories of the total displacements 𝑢1 and 

𝑢2  of both coupled and uncoupled system are acquired. The 𝛼2  gain coefficient is the ratio of 

maximum drifts 𝑢2 − 𝑢1 of the coupled and uncoupled system, in stationary condition (after that 

the transient dynamics is vanished due to the damping of the system). 

Fig. 6 shows three gain spectra, each one referring to different stiffness ratios 𝛽. Two different 

curves are reported in each graph. Solid line represents the gain spectrum obtained by the numerical 

integration of the mathematical model, whereas dashed line represents the gain spectrum obtained 

by the experimental investigation. It is useful remarking that the numerical curves (solid line) are 

section of the gain map in Fig. 4. Specifically, section 𝑆1 refers to 𝛽 = 0.25, section 𝑆2 refers to 

𝛽 = 0.64, whereas section 𝑆3 is obtained for 𝛽 = 0.97. 

The gain regions in each spectrum (the regions below the reference dash-dotted line passing 

through unity) are well described by the numerical results, since they are sufficiently close to the 
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experimental curves. However, outside the gain regions, the numerical results show a faster growth 

than that of the experimental ones. In particular, the numerical spectrum obtained for 𝛽 = 0.25 

(upper left graph) has a maximum at Ω ≅ 18.0. On the contrary, the experimental spectrum does 

not manifest a maximum in correspondence of the discrete values of the frequencies considered in 

the experiment (12.5, 15.0, 17.5  and 20 𝑟𝑎𝑑/𝑠 ). For this maximum value the frequency of the 

excitation and the frequency of the second linearised coupled mode are close to each other (𝛽 =
0.25, Fig. 3). Since the excitation is almost in resonance condition with the second coupled mode, 

the displacements of such coupled system are higher than the displacements of the uncoupled one. 

For this reason the gain coefficient 𝛼2  is higher than unity. In the other graphs, the numerical 

spectrum never reaches the resonance condition, since it is located outside the range of the 

considered frequencies Ω. In general, the growth that the experimental curves manifest outside the 

advantage region is slower than the numerical curves. This fact is possibly related to differences 

among the real and numerical frequencies of the second linearised mode, mainly due to 

imperfections of the real system. These imperfections can be identified in the small planarity defect 

of impacting surface and the not perfect symmetry of the block. 

 

 

5. Seismic analysis 
 

In order to check the validity of the analytical model and the performances of the coupling 

system, more complex excitations were selected. By thinking to a future use of such a method in 

Civil Engineering problems, in the numerical and experimental investigations a set of seven 

earthquake records is used as exciting input. Such seismic records have been selected to be 

sufficiently different to each other in terms of Peak Ground Acceleration (PGA), spectral content, 

length. The time histories, shown in Fig. 7, were opportunely scaled to have maximum PGA (Peak 

Groung Acceleration) 20% higher than the uplift acceleration of the stand-alone block. The 

earthquake records are fully listed below: 

1. Pacoima, Dam-164 ground motion recorded during the 1971 San Fernando, California 

earthquake;  

2. Parkfield, CO2-065 ground motion recorded during the California earthquake 1966;  

3. Erzincan, NS ground motion recorded during the 1992 Turkey earthquake;  

4. El Centro, CA - Array Sta 9 - Imperial Valley Irrigation District - 302 Commercial (component 

180), 1979;  

5. L’Aquila, IT.AQV.HNE.D.20090406.013240.X.ACC station, ground motion recorded during 

the 2009 Italian earthquake;  

6. Newhall, Newhall-360 station, ground motion recorded during the 1994 Northridge, California 

earthquake;  

7. Kobe, Takarazuka-000 station, ground motion recorded during the 1995 Japan earthquake.  

 

5.1 Analytical and experimental results 
 

Gain curves, providing the value of the 𝛼2 gain coefficient versus the stiffness ratio 𝛽, are 

obtained. The experimental curves are derived by considering three different values of the stiffness 

ratio 𝛽 (the same used in the harmonic analysis) for each earthquake. Although the experimental 

tests have been performed by selecting only three values of the coupling stiffness ( 𝛽 ), the 

experimental gain curves have been obtained approximately by connecting these few points. Then,  
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Fig. 7 Time histories of the earthquakes analysed: (a) Pacoima; (b) Parkfield; (c) Erzincan; (d); El Centro; (e) 

L’Aquila; (f) Newhall; (g) Kobe 

 

 

the experimental curves are compared with the numerical ones. During the numerical and the 

experimental tests, the time-histories of the total displacements 𝑢1 and 𝑢2 of both coupled and 

uncoupled system are acquired. 

554



 

 

 

 

 

 

Rigid block coupled with a 2 d.o.f. system: Numerical and experimental investigation 

 

Fig. 8 Seismic analysis: (a) Experimental (dashed line) and analytical (solid line) gain curves of two different 

earthquakes Pacoima (top) and Parkfield (bottom); (b) Experimental time-histories of super-structure drift of 

the uncoupled (thin line) and the coupled (thick line) structure, related to points A (𝛽 = 0.25) 

 

 

Specifically, for the two earthquakes Pacoima (Fig. 7(a)) and Parkfield (Fig. 7(b)), a comparison 

between analytical and experimental models is performed. In Fig. 8(a) the numerical and the 

experimental gain curves are reported, whereas Fig. 8(b) shows the experimental time-histories of 

the super-structure drift. As can be observed, the numerical and the experimental gain curves for 

both the earthquakes match well, assuring the good quality of the analytical model and of the results. 

Moreover, since for both earthquakes the 𝛼2 gain coefficient is always less than unity, the coupling 

with the rigid block is beneficial for the frame structure. The best behaviour of the coupling, that 

corresponds to smaller values of 𝛼2, occurs mainly for smaller values of the coupling stiffness. In 

fact, for higher values of the stiffness ratio 𝛽, the gain curves approach the unity. The comparison 

between the time-histories of the drift of the uncoupled and the coupled systems, both referring to 

point 𝐴 in Fig. 8(a) (𝛽 = 0.25), shows the sensible reduction of the oscillation amplitudes of the 

coupled system with respect to the uncoupled one. 

To conclude, the proposed comparisons among numerical and experimental results are judged to 

be able to validate correctly the analytical model. Other (exclusively) numerical results referring to 

the other five earthquake records, will be used in the next Section. They have the aim to check the 

effectiveness of coupling with a rocking wall under different seismic excitations, to be sure that the 

system is able to work well in different conditions. 

 

5.2 Experimental gain curves 
 

Experimental seismic investigations using the other five earthquakes Erzincan, El Centro, 

L’Aquila, Newall, and Kobe (from Fig. 7(c) to Fig. 7(g), respectively) are performed. In Fig. 9(a),  
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Fig. 9 Seismic analysis: (a) Experim. gain curves of five different earthquakes; (b) Experimental time-histories 

of the super-structure drift of the uncoupled (thin line) and the coupled (thick line) structure related to points 

A, labelled to the relevant gain curves 
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the experimental gain curve of the five different earthquakes are shown. 

In all the cases, the gain coefficient 𝛼2 is less than unity, assuring beneficial effects in reduction 

of the drift of the super-structure. As can be observed, through the coupling with a rocking block, it 

is possible to reach around the 50% drift reduction. The minimum value of 𝛼2 is obtainable in 

each earthquake, for a different value of 𝛽; hence the choice of the characteristics of block and 

coupling device is a fundamental aspect, in order to obtain the best performances of the coupled 

system. Finally, the time histories of the drift of the coupled and uncoupled system, referring to point 

𝐴 of the relevant gain curves, are shown in Fig. 9(b). They all confirm the results reported by the 

gain curves and the strong effect of coupling the frame structure to a rigid block. 

 

 

6. Conclusions 
 

A 2 d.o.f. shear-type frame is elastically coupled with an aluminum rocking block to improve the 

dynamics of the system. Both the frame and the block have fixed characteristics, whereas the 

stiffness of the coupling device was considered as variable parameter. The non-linear equations of 

motion were obtained by a Lagrangian approach and successively numerically integrated to analyze 

the behaviour of the coupled system. The coupling with the block improves the behaviour of the 

frame structure in terms of displacements. Simulations were performed considering both harmonic 

and seismic excitation. The results were summarized in gain curves, maps and several gain spectra 

plotted in the system’s parameters plane. In the harmonic analysis, characterizing parameters are the 

frequency of the harmonic excitation and the stiffness of the coupling device. The gain map provides 

the ratio of the maximum displacement or drift of the coupled and the uncoupled systems. When 

this ratio is less than unity, the coupling with the block enhances the dynamics of the frame structure. 

Results have shown the existence of a significant advantage region in the parameters plane, where 

the coupling is beneficial for the system. Experimental simulations are aimed at validating the results 

of the analytical model. The same mechanical system, studied in numerical simulations, was 

experimentally tested using a harmonically driven electro-dynamic long-stroke shaker. The response 

of the experimental system, arranged in gain spectra (i.e. sections of the previous gain map), were 

compared with the numerical sections. The comparison confirms the effectiveness of the analytical 

model in predicting the actual behaviour of the experimental system. Further, it gives an affirmation 

of the capability of the rigid rocking block in improving the response of the frame system. In order 

to check the validity of the analytical model and the performances of the coupling system under 

more complex excitations, seven registered earthquakes were selected. In this analysis, only stiffness 

of the coupling device was considered as a parameter. The numerical and experimental results of 

two earthquakes were compared to each other, confirming the validity of the analytical model and 

the sound efficiency of the coupling. The experimental tests performed by using the other five 

earthquakes confirm an improvement of the behaviour of the coupled frame with respect to the 

uncoupled one. 
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Appendix A. Rocking of the block around the right corner 
 

The equations of motion of the system when the block rocks around the right corner 𝐵 read 

𝑘𝐶(−2𝑏 − 𝑑 + 2𝑏cos𝜗 + ℎ1sin𝜗 + 𝑢1)
(√𝑇𝑒𝑟𝑚𝑠1−𝑑)

√𝑇𝑒𝑟𝑚𝑠1
+

(𝑐1 + 𝑐2)�̇�1 − 𝑐2�̇�2 + (𝑘1 + 𝑘2)𝑢1 − 𝑘2𝑢2 + 𝑚1(�̈�𝑔 + �̈�1) = 0
− − − − − − − −
𝑐2(�̇�2 − �̇�1) + 𝑘2(𝑢2 − 𝑢1) + 𝑚2(�̈�𝑔 + �̈�2) = 0
− − − − − − − −
𝐽𝐵�̈� − cos𝜗(𝑏𝑔𝑀 + ℎ𝑏𝑀�̈�𝑔) + 𝑀sin𝜗(𝑏�̈�𝑔 − 𝑔ℎ𝑏) +

𝑘𝐶(ℎ1(𝑢1 − 𝑑)cos𝜗 + (ℎ1
2 + 2𝑏(2𝑏 + 𝑑 − 𝑢1))sin𝜗)

(√𝑇𝑒𝑟𝑚𝑠1−𝑑)

√𝑇𝑒𝑟𝑚𝑠1
= 0

      (A.1) 

where 

𝑇𝑒𝑟𝑚𝑠1 = 8𝑏2 − 4𝑏(2𝑏 + 𝑑)cos(𝜗(𝑡)) + 𝑢1(𝑡) (4𝑏cos(𝜗(𝑡)) − 4𝑏 − 2𝑑 + 𝑢1(𝑡)) +

4𝑏𝑑 + 𝑑2 + 2ℎ1(𝑢1(𝑡) − 𝑑)sin(𝜗(𝑡)) − 2ℎ1
2(cos(𝜗(𝑡)) − 1)

  (A.2) 

The uplift condition around the right corner 𝐵 reads 

�̈�𝑔 = −
𝑔

𝜆
+

𝑘𝐶𝑢1(𝑡)ℎ1

𝑀ℎ𝑏
                            (A.3) 
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