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Abstract.  The present investigation is concerned with two-dimensional deformation in a homogeneous isotropic 
non local thermoelastic solid with two temperatures due to thermomechanical sources. The theory of memory 
dependent derivatives has been used for the study. The bounding surface is subjected to concentrated and distributed 
sources (mechanical and thermal sources). The Laplace and Fourier transforms have been used for obtaining the 
solution to the problem in the transformed domain. The analytical expressions for displacement components, stress 
components and conductive temperature are obtained in the transformed domain. For obtaining the results in the 
physical domain, numerical inversion technique has been applied. Numerical simulated results have been depicted 
graphically for explaining the effects of nonlocal parameter on the components of displacements, stresses and 
conductive temperature. Some special cases have also been deduced from the present study. The results obtained in the 
investigation should be useful for new material designers, researchers and physicists working in the field of nonlocal 
material sciences. 
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1. Introduction 
 

The concept of nonlocal theory of thermoelasticity considers the dependence of the various 

physical quantities defined at a point as not just a function of the values of independent constitutive 

variables at that point only but a function of their values over the whole body. So, the nonlocal 

theory is just a generalization of the classical field theory. Edelen and Law (1971) discussed a theory 

of nonlocal interactions. Edelen et al. (1971) discussed the consequences of global postulate of 

energy balance. Artan (1996) proved the superiority of the nonlocal theory by comparing the results 

of local and nonlocal elasticity theories. Marin (1994) derived the generalized solutions in elasticity. 

Eringen (2002) developed nonlocal continuum field theories. Marin (2009) and (2010) extended 

concepts of thermoelasticity to dipolar bodies. Othman and Abbas (2012) developed a solution of 

thermal-shock problem of generalized thermoelasticity of a non-homogeneous isotropic hollow 
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cylinder with energy dissipation. Othman et al. (2015) studied the effects of rotation on the general 

model of the equations of generalized thermo-micro stretch. Marin et al. (2019) explained partition 

of energies for thermoelastic materials. Abualnour et al. (2019) analyzed composite plates 

thermomechanically. Mahmoudi et al (2019) refined quasi 3d deformation theory for 

thermomechanical analysis. Belbachir (2019) analyzed bending of cross ply laminated plates. 

Boussoula et al. (2020) gave a shear deformation theory for thermomechanical bending analysis. 

Zarga et al. (2019) studied thermomechanical bending for functionally graded sandwich plates. 

Tounsi et al. (2020) gave a theory for hygro-thermo-mechanical bending analysis. 

Belkorissat et al. (2015) presented a new nonlocal hyperbolic refined plate model for free 

vibration properties of functionally graded plates. Ebrahimi and Shafiei (2016) investigated the size 

dependent vibration behavior of a rotating functionally graded (FG) Timoshenko nanobeam based 

on Eringen's nonlocal theory. Marin et al. (2017a, 2017b) discussed various results and problems 

for elastic dipolar bodies. Bellifa et al. (2017) developed a nonlocal zeroth-order shear deformation 

theory. Khetir et al. (2017) proposed a new nonlocal trigonometric shear deformation theory.  Lata 

(2018a and 2018b) studied the plane waves in a layered medium of two semi-infinite nonlocal solids. 

Karami and Tounsi (2018) studied nonlocal strain gradient elasticity theory. Mokhtar et al. (2018) 

used the nonlocal differential constitutive relations of Eringen. Hussain et al. (2019) studied 

nonlocal effects on the vibration of armchair and zigzag SWCNTs. Benahmed et al. (2019) presented 

an efficient higher order nonlocal beam theory. Soleimani et al. (2019) investigated the effects of 

inevitable out of plane defects based on nonlocal first order shear deformation theory. Belmahi et 

al. (2019) studied the forced vibration of nanobeam with the application of the non-local continuum 

or elasticity theory. Balubaid (2019) investigated free vibration using nonlocal refined plate theory. 

Lata and Singh (2019) focused on the study of effects of nonlocal parameters due to inclined load. 

Asghar (2020) assessed nonlocal natural frequencies. Bellal et al. (2020) used nonlocal model for 

studying buckling behavior of graphene sheet. 

Thermoelasticity with two temperatures was developed by Chen and Gurtin (1968) suggesting 

that in case of bodies being deformable there is a dependence on two distinct temperatures, namely 

the thermodynamic temperature and the conductive temperature. Youssef (2005) obtained the 

uniqueness theorem for equations of two temperature generalized thermoelasticity. Youssef and Al-

Lehaibi (2007) gave an indication that the two-temperature generalized thermoelasticity is more 

realistic in describing the state of an elastic body as compared to one temperature. Abbas et al. 

(2012) explained a nonlinear thermoelasticity model for temperature dependent materials. Abbas 

and Zenkour (2014) constructed a mathematical model of two-temperature generalized 

thermoelasticity. Abbas (2014) obtained a general solution to the field equations of two-temperature 

generalized thermoelastic theory. Atwa and Jahangir (2014) investigated the effect of two 

temperatures on plane waves propagating through a generalized thermo-microstretch elastic solid. 

Marin and Florea (2014) studied temporal behavior of porous micropolar bodies. Marin (2014) gave 

Lagrange method for microstretch thermoelastic materials. Abbas (2014) studied temperature 

dependent material properties. Sharma et al. (2016) studied the thermomechanical interactions in 

transversely isotropic thermoelastic medium with two temperatures. Said and Othman (2016) 

applied a general model of the two-temperature theory of generalized thermoelasticity to study the 

wave propagation in a magneto-thermoelastic medium. Kumar et al. (2016a, 2016b) studied the 

disturbances in a homogeneous transversely isotropic thermoelastic rotating medium with two 

temperatures.  

The memory-dependent derivative is an integral form of a common derivative with a kernel 

function on a slip in the interval. Yu et al. (2014) introduced a generalized model based on memory-
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dependent derivative (MDD). Ezzat et al. (2014) introduced a novel magneto-thermoelasticity 

theory with memory-dependent derivative while Ezzat et al. (2016) extended the results using two 

temperature with memory-dependent derivative. Sarkar et al. (2018) studied a two-dimensional 

magneto-thermoelastic problem based on a new two-temperature generalized thermoelasticity 

model with memory-dependent derivative. Marin et al. (2013) studied non simple material 

problems. Alzahrani and Abbas (2016) discussed the effect of magnetic field on a thermoelastic 

fiber-reinforced material under GN-III theory. Marin et al. (2016) and (2017) studied porous bodies. 

Jahangir et al. (2020) studied reflection of photo thermoelastic waves in a semiconductor material 

with different relaxations. As per study, it has been found that no work has been done yet about the 

thermomechanical interactions for a nonlocal material with the memory dependent derivatives. So, 

in the present work, we aimed at investigating Thermomechanical interactions in a non local 

thermoelastic model with two temperature and memory dependent derivatives. 

 
 
2. Basic equations 

 

Following Youssef (2005), Eringen (2002) and Sarkar et al. (2018), the equations of motion, heat 

conduction equation with memory dependent derivatives and constitutive relations in a 

homogeneous non local thermoelastic solid with two temperatures are given by 

(λ + 2𝜇)∇(∇. 𝒖) − 𝜇 (∇ × ∇ × 𝒖) − 𝛽∇𝜃 = (1 − 𝜖2∇2)𝜌
𝜕2𝒖

𝜕𝑡2
,              (1) 

𝐾∗∇2𝜑 =  𝜌 𝐶∗
𝜕𝜃

𝜕𝑡
+  𝛽𝜃0

𝜕

𝜕𝑡
 (∇. 𝑢) + ∫ 𝐾(𝑡 − 𝜉)

𝑡

𝑡−𝜏
(𝜌 𝐶∗

𝜕2𝜃

𝜕𝜉2
+  𝛽𝜃0

𝜕2

𝜕𝜉2
 (∇. 𝑢))𝑑𝜉,    (2) 

𝑤ℎ𝑒𝑟𝑒 𝜃 = (1 − 𝑎∇2) 𝜑,                             (3) 

𝑡𝑖𝑗 = 𝜆𝑢𝑘,𝑘𝛿𝑖𝑗 + 𝜇(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) −  𝛽𝜃𝛿𝑖𝑗.             (4) 

where 𝜆, 𝜇 are material constants, 𝜖  is the nonlocal parameter, 𝜌  is the mass density, 𝒖  = 

(𝑢, 𝑣, 𝑤)  is the displacement vector, 𝝋  is the conductive temperature, 𝑎  is two temperature 

parameter, 𝜃 is absolute temperature and 𝜃0 is reference temperature, 𝐾∗ is the coefficient of the 

thermal conductivity, 𝐶∗ the specific heat at constant strain, 𝛽 = (3λ + 2μ)α  where α  is 

coefficient of liner thermal expansion, 𝑒𝑖𝑗  are components of strain tensor, 𝑒𝑘𝑘  is the dilatation, 

𝛿𝑖𝑗  is the Kronecker delta, 𝑡𝑖𝑗  are the components of stress tensor. 

 
 

3. Formulation of the problem 
 

We consider a homogeneous non local isotropic thermoelastic body in an initially undeformed 

state at temperature 𝜃0. We take a rectangular Cartesian co-ordinate system (𝑥, 𝑦, 𝑧) with 𝑧 axis 

pointing normally into the half space. The surface of the half-space is subjected to a normal force 

𝐹1 or a thermal source 𝐹2 acting at 𝑧 = 0. We restrict our analysis to two-dimensional problem 

with 

𝒖 = (𝑢, 0, 𝑤).                               (5) 

Using Eq. (5) in Eqs. (1)-(2), yields 
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(𝜆 + 𝜇)
𝜕𝑒

𝜕𝑥
+ 𝜇 ∇2𝑢 − 𝛽

𝜕𝜃

𝜕𝑥
= (1 − 𝜖2∇2) 𝜌

𝜕2𝑢

𝜕𝑡2
,                   (6) 

(𝜆 + 𝜇)
𝜕𝑒

𝜕𝑧
+ 𝜇 ∇2𝑤 − 𝛽

𝜕𝜃

𝜕𝑧
= (1 − 𝜖2∇2) 𝜌

𝜕2𝑤

𝜕𝑡2
,                   (7) 

𝐾∗∇2𝜑 =  𝜌 𝐶∗
𝜕𝜃

𝜕𝑡
+  𝛽𝜃0

𝜕

𝜕𝑡
 (∇. 𝑢) + ∫ 𝐾(𝑡 − 𝜉)

𝑡

𝑡−𝜏
(𝜌 𝐶∗

𝜕2𝜃

𝜕𝜉2
+  𝛽𝜃0

𝜕2

𝜕𝜉2
 (∇. 𝑢))𝑑𝜉.   (8) 

where, 𝑒 =
𝜕𝑢

𝜕𝑥
+
𝜕𝑤

𝜕𝑧
,   ∇2=

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑧2
. 

we define the following dimensionless quantities            

(𝑥′, 𝑧′, 𝑢′, 𝑤′) =
𝜔1

𝑐1
(𝑥, 𝑧, 𝑢, 𝑤), 𝑡𝑖𝑗

′ =
𝑡𝑖𝑗

𝛽𝜃0
,     𝑡′ = 𝜔1𝑡,    𝑎

′ =
𝜔1
2

𝑐1
2 𝑎, 𝜑

′ =
𝜑

𝜑0
 and 𝐹1

′ = 
𝐹1

𝛽𝜃0
 (9) 

where, 𝑐1
2 =

𝜇

𝜌
 and 𝜔1 = 

𝜌 𝐶∗𝑐1
2

𝐾∗
. 

Following Sarkar et al. (2018), the kernel function form can be chosen freely as 

K(𝑡 − 𝜉) = 1 −
2𝑏

𝜔
(𝑡 − 𝜉) +

𝑎2

𝜔2
(𝑡 − 𝜉)2 

= 

{
 
 

 
 
1                           𝑖𝑓 𝑎 = 0, 𝑏 = 0

1 −
(𝑡−𝜉)

𝜔
            𝑖𝑓 𝑎 = 0, 𝑏 =

1

2

1 − (𝑡 − 𝜉)         𝑖𝑓 𝑎 = 0, 𝑏 =
𝜔

2

(1 −
𝑡−𝜉

𝜔
)
2
    𝑖𝑓 𝑎 = 𝑏 = 1

           (10) 

Upon introducing the quantities defined by Eq. (9) in equations Eqs. (6)-(8), and suppressing the 

primes, yields 

(1 + 𝑎1)
𝜕2𝑢

𝜕𝑥2
+ 𝑎1

𝜕2𝑤

𝜕𝑥𝜕𝑧
+
𝜕2𝑢

𝜕𝑧2
− 𝑎2(1 − 𝑎∇

2)
𝜕𝜑

𝜕𝑥
= (1 − 𝜖2∇2)

𝜕2𝑢

𝜕𝑡2
,            (11) 

𝜕2𝑤

𝜕𝑥2
+ 𝑎1

𝜕2𝑢

𝜕𝑥𝜕𝑧
+ (1 + 𝑎1)

𝜕2𝑤

𝜕𝑧2
− 𝑎2(1 − 𝑎∇

2)
𝜕𝜑

𝜕𝑧
= (1 − 𝜖2∇2)

𝜕2𝑤

𝜕𝑡2
.           (12) 

and, ∇2𝜑 = (1 + 𝜔𝐷𝜔)[𝑎3(1 − 𝑎∇
2)

𝜕𝜑

𝜕𝑡
𝐶∗

𝜕𝜃

𝜕𝑡
+ 𝑎4

𝜕𝑒

𝜕𝑡
],                (13) 

where,  𝑎1 =
𝜆+𝜇

𝜇
, 𝑎2 =

𝛽𝜃0

𝜇
, 𝑎3 =

𝜌𝐶∗𝑐1
2

𝐾∗𝜔1
 and 𝑎4 =

𝛽𝑐1
2

𝐾∗𝜔1
 

The initial and regularity conditions are given by 

𝑢(𝑥, 𝑧, 0) = 0 = �̇�(𝑥, 𝑧, 0), 
𝑤(𝑥, 𝑧, 0) = 0 = �̇�(𝑥, 𝑧, 0), 

𝜑(𝑥, 𝑧, 0) = 0 = �̇�(𝑥, 𝑧, 0) for 𝑧 ≥ 0,−∞ < 𝑥 < ∞, 

𝑢(𝑥, 𝑧, 𝑡) = 𝑤(𝑥, 𝑧, 𝑡) = 𝜑(𝑥, 𝑧, 𝑡) = 0 𝑓𝑜𝑟 𝑡 > 0 𝑤ℎ𝑒𝑛 𝑧 → ∞. 

Applying Laplace and Fourier Transform defined by  

𝑓(̅x, z, s) = ∫ 𝑓(𝑥, 𝑧, 𝑡)
∞

0
𝑒−𝑠𝑡𝑑𝑡,                       (14) 

𝑓(ξ, 𝑧, 𝑠) = ∫ 𝑓(̅𝑥, 𝑧, 𝑠)
∞

−∞
𝑒𝑖ξ𝑥𝑑𝑥.                       (15) 

on Eqs. (11)-(13), we obtain a system of equations 

[(1 + 𝑎1)(−𝝃
2) + 𝐷2(1 + 𝜖2s2) − (1 + 𝜖2ξ2)𝑠2]�̃� + 𝜄𝑎1𝜉𝐷�̃� − [𝜄𝜉𝑎2(1 + 𝑎𝜉

2 − 𝑎𝐷2)]�̃� = 0, 

  (16) 
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𝜄𝑎1𝜉𝐷�̃� + [(1 + 𝑎1 + 𝜖
2s2)𝐷2 − 𝜉2 − (1 + 𝜖2ξ2)𝑠2]�̃� − [𝑎2(1 + 𝑎𝜉

2 − 𝑎𝐷2)𝐷]�̃� = 0,  (17) 

(1 + 𝐺)[𝜄𝑎4𝑠𝜉�̃� + 𝑎4𝑠𝐷�̃�] + [𝑎3𝑠(1 + 𝑎𝜉
2 − 𝑎𝐷2)(1 + 𝐺) − 𝐷2 + 𝜉2]�̃� = 0.     (18) 

where, 

𝐺(𝑠) = (1 − 𝑒−𝑠𝜔) (1 −
2𝑏

𝑠𝜔
+

2𝑎2

𝑠2𝜔2
) − 𝑒−𝑠𝜔 (𝑎2 − 2𝑏 +

2𝑎2

𝑠𝜔
)             (19) 

and a, b are constants such that  

L(𝜔𝐷𝜔𝑓(𝑡) =

{
 
 

 
 
1 − 𝑒−𝑠𝜔                                                          𝑖𝑓 𝑎 = 0, 𝑏 = 0

1 −
(1−𝑒−𝑠𝜔)

𝑠𝜔
                                                    𝑖𝑓 𝑎 = 0, 𝑏 =

1

2

(1 − 𝑒−𝑠𝜔) −
1

𝑠
(1 − 𝑒−𝑠𝜔) + 𝜔𝑒−𝑠𝜔         𝑖𝑓 𝑎 = 0, 𝑏 =

𝜔

2

(1 −
2

𝑠𝜔
) +

2(1−𝑒−𝑠𝜔)

𝑠2𝜔2
                                    𝑖𝑓 𝑎 = 𝑏 = 1

        (20) 

From Eq. (16), Eq. (17) and Eq. (18), we obtain a set of homogeneous equations which will have 

a nontrivial solution if determinant of coefficient [�̃�, �̃�, �̃�]𝑇 vanishes so as to give a characteristic 

equation as 

[𝐷6 + Q𝐷4 + 𝑅𝐷2 + 𝑆](�̃�, �̃�, �̃�) = 0.                  (21) 

where,  

𝑄 =
1

𝑃
{[𝜁1𝜁4(𝑎3𝑠𝜁3𝜁5 + 𝜉

2] + 𝜁6[𝜉
2𝜁7 + 𝑠

2(𝜁2 − 𝜁1)] + 𝑎𝑎2𝑎4𝑠𝜉
2𝜁3(𝜁1 + 𝜁7) 

+𝑎2𝑎4𝑠𝜁3(𝜁1𝜁5 + 𝑎𝑠
2𝜁2) − 𝑎1𝜉

2[𝑎𝑠𝜁3(𝑎1𝑎3 + 𝑎2𝑎4) + 𝑎1]}, 

𝑅 =
1

𝑃
{−𝑠2𝜁1𝜁2(𝑠𝑎3𝜁3𝜁5 + 𝜉

2) + 𝜉2𝜁7[𝑠
2 − 𝜉2 + 𝑠𝑎3𝜁7(𝑎𝑠

2 − 𝜁5𝜁4)] 

−𝜁3𝜁5𝑠(𝑎2𝑎4𝜁7 + 𝑎3𝑠
2𝜁2𝜁4) + 𝑠

4𝜁2
2(𝑠2 − 𝜉2 + 𝑎𝑎3𝑠𝜁3}, 

𝑆 =
1

𝑃
{𝑎3𝑠

3𝜁3𝜁5𝜁2(𝑠
2𝜁2 − 𝜉

2𝜁7) − 𝑠
2𝜉2(𝜉2𝜁7 + 𝑠

2𝜁2) 

+𝑠𝑎2𝑎4𝜉
2𝜁3𝜁5(𝑠

2𝜁2 + 𝜉
2)}, 

𝑃 = −𝜁1[𝜁4𝜁6 + 𝜁3𝑎𝑎2𝑎4𝑠]. 

where, 𝐷 =
𝑑

𝑑𝑧
 , 𝜁1 = 1 + 𝜖

2s2 , 𝜁2 = 1 + 𝜖
2ξ2 , 𝜁3 = 1 + 𝐺 , 𝜁4 = 1 + 𝑎1 + 𝜖

2s2 , 𝜁5 = 1 +

𝑎ξ2, 𝜁6 = 1 + 𝑎𝑎3𝑠(1 + 𝐺), 𝜁7 = 1 + 𝑎1.  

The roots of the Eq. (21) are ±𝜆𝑖(𝑖 = 1, 2, 3) satisfying the radiation condition that  �̃�, �̃�, �̃� →
0 as 𝑧 → ∞,  the solutions of equation can be written as 

�̃� = 𝐴1𝑒
−𝜆1𝑧 + 𝐴2𝑒

−𝜆2𝑧 + 𝐴3𝑒
−𝜆3𝑧,                         (22) 

�̃� = 𝑑1𝐴1𝑒
−𝜆1𝑧 + 𝑑2𝐴2𝑒

−𝜆2𝑧 + 𝑑3𝐴3𝑒
−𝜆3𝑧,                      (23) 

�̃� = 𝑙1𝐴1𝑒
−𝜆1𝑧 + 𝑙2𝐴2𝑒

−𝜆2𝑧 + 𝑙3𝐴3𝑒
−𝜆3𝑧.                     (24) 

where 

𝑑𝑖 =
𝑃∗𝜆𝑖

3+𝑄∗𝜆𝑖

𝑆∗𝜆𝑖
4+𝑇∗𝜆𝑖

2+𝑈∗
  𝑖 = 1,2,3.                           (25) 

 𝑙𝑖 =
𝑃∗∗𝜆𝑖

2+𝑄∗∗

𝑆∗𝜆𝑖
4+𝑇∗𝜆𝑖

2+𝑈∗
  𝑖 = 1,2,3.                           (26) 
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where, 

𝑃∗ = 𝜄𝜉[𝑎1 + 𝑎𝑠𝜁3(𝑎1𝑎3 − 𝑎2𝑎4)],  

𝑄∗ = 𝜄𝜉[𝜁3𝜁5𝑠(𝑎2𝑎4 − 𝑎1𝑎3) − 𝑎1𝜉
2],  

𝑆∗ = −𝜁4𝜁6,  

𝑇∗ = 𝜁4(𝑠𝑎3𝜁3𝜁5 + 𝜉
2) + (𝑠2𝜁2 + 𝜉

2)(𝑎𝑠𝑎3𝜁3 − 1),  

𝑈∗ = −(𝑠𝑎3𝜁3𝜁5 + 𝜉
2)(𝑠2𝜁2 + 𝜉

2),  

𝑃∗∗ = −𝜄𝜉𝑎4𝑠𝜁3𝜁1,  

𝑄∗∗ = 𝜄𝜉𝑎4𝑠𝜁3(𝜉
2 + 𝑠2𝜁2).  

 
 
4. Applications 

 

On the half-space (𝑧 = 0) normal point force and thermal point source are applied. The boundary 

conditions are 

                                                  (1) 𝑡𝑧𝑧(𝑥, 𝑧, 𝑡) = −𝐹1𝜓1(𝑥)𝛿(𝑡),  

(2) 𝑡𝑥𝑧(𝑥, 𝑧, 𝑡) = 0, 

(3) 
𝜕

𝜕𝑧
𝜑(𝑥, 𝑧, 𝑡) = 𝐹2𝜓2(𝑥)𝛿(𝑡) at 𝑧 = 0.            (27) 

where, 𝐹1 is the magnitude of the force applied,  𝐹2 is constant force applied on the boundary,  

𝜓1(𝑥) specify the source distribution function along 𝑥 axis. 

Using the dimensionless quantities defined by Eq. (9) and using Eqs. (3), (4), (13), (17) in Eq. 

(27) and substituting values of �̃� , �̃�  and �̃� from Eqs. (22)-(24), and solving, we obtain the 

components of displacement, normal stress, tangential stress and conductive temperature as 

�̃� =
𝐹1𝜓1̃(𝜉)

Δ
{ ∆11𝑒

−𝜆1𝑧 + ∆21𝑒
−𝜆2𝑧 + ∆31𝑒

−𝜆3𝑧} +
𝐹2𝜓2̃(𝜉)

Δ
{ ∆12𝑒

−𝜆1𝑧 + ∆22𝑒
−𝜆2𝑧 + ∆32𝑒

−𝜆3𝑧}, 

 (28) 

�̃� =
𝐹1𝜓1̃(𝜉)

Δ
{ 𝑑1∆11𝑒

−𝜆1𝑧 + 𝑑2∆21𝑒
−𝜆2𝑧 + 𝑑3∆31𝑒

−𝜆3𝑧}  

+
𝐹2𝜓2̃(𝜉)

Δ
{ 𝑑1∆12𝑒

−𝜆1𝑧 + 𝑑2∆22𝑒
−𝜆2𝑧 + 𝑑3∆32𝑒

−𝜆3𝑧},               (29) 

�̃� =
𝐹1𝜓1̃(𝜉)

Δ
{ 𝑙1∆11𝑒

−𝜆1𝑧 + 𝑙2∆21𝑒
−𝜆2𝑧 + 𝑙3∆31𝑒

−𝜆3𝑧}  

+
𝐹2𝜓2̃(𝜉)

Δ
{ 𝑙1∆12𝑒

−𝜆1𝑧 + 𝑙2∆22𝑒
−𝜆2𝑧 + 𝑙3∆32𝑒

−𝜆3𝑧},               (30) 

𝑡𝑧�̃� =
−𝐹1𝜓1̃(𝜉)

Δ
{ 𝑁21∆11𝑒

−𝜆1𝑧 +𝑁22∆21𝑒
−𝜆2𝑧 +𝑁23∆31𝑒

−𝜆3𝑧}  

−
𝐹2𝜓2̃(𝜉)

Δ
{ 𝑁21∆12𝑒

−𝜆1𝑧 + 𝑁22∆22𝑒
−𝜆2𝑧 + 𝑁23∆32𝑒

−𝜆3𝑧},          (31) 

𝑡𝑧�̃� =
𝐹1𝜓1̃(𝜉)

Δ
{ ∇11∆11𝑒

−𝜆1𝑧 + ∇12∆21𝑒
−𝜆2𝑧 + ∇13∆31𝑒

−𝜆3𝑧}  

+
𝐹2𝜓2̃(𝜉)

Δ
{ ∇11∆12𝑒

−𝜆1𝑧 + ∇12∆22𝑒
−𝜆2𝑧 + ∇13∆32𝑒

−𝜆3𝑧}         (32) 

𝑡𝑥�̃� =
𝐹1𝜓1̃(𝜉)

Δ
{ 𝑁31∆11𝑒

−𝜆1𝑧 +𝑁32∆21𝑒
−𝜆2𝑧 +𝑁33∆31𝑒

−𝜆3𝑧}  

+
𝐹2𝜓2̃(𝜉)

Δ
{ 𝑁31∆12𝑒

−𝜆1𝑧 + 𝑁32∆22𝑒
−𝜆2𝑧 + 𝑁33∆32𝑒

−𝜆3𝑧}.              (33) 
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∆=  −𝑀11Δ12 +𝑀22Δ22 +𝑀33Δ32                       (34) 

where,  

∆11= M33∇12 −M22∇13, ∆21= M33∇11 −M11∇13, ∆31= M22∇11 −M11∇12. 

∆12= N13∇12 − N12∇13, ∆22= N13∇11 − N11∇13, ∆32= N12∇11 − N11∇12. 

N1𝑗 = 𝜆𝑗𝑑𝑗(𝜆 + 2𝜇) − 𝛽𝑙𝑗(1 + 𝑎𝜉
2 − 𝑎𝜆𝑗

2), N2𝑗 = 𝜆𝑗𝑑𝑗(𝜆 + 2𝜇) + 𝛽𝑙𝑗(1 + 𝑎𝜉
2 − 𝑎𝜆𝑗

2), 

N3𝑗 = 𝜄𝜉(𝜆 + 2𝜇) − 𝛽𝑙𝑗(1 + 𝑎𝜉
2 − 𝑎𝜆𝑗

2), ∇1𝑗= 𝜄𝜉𝑑𝑗 − 𝜆𝑗, M𝑗𝑗 = 𝑙𝑗𝜆𝑗 ;  𝑗 = 1,2,3. 

 
5a. Mechanical force on the surface of half-space: 
Taking 𝐹2 = 0 in Eqs. (28)-(33), we obtain the components of displacement, normal stress, 

tangential stress and conductive temperature due to mechanical force. 

 
5b. Thermal source on the surface of half-space 
Taking 𝐹1 = 0 in Eqs. (28)-(33), we obtain the components of displacement, normal stress, 

tangential stress and conductive temperature due to thermal force. 
 

5.1 Influence function 
 

The method to obtain the half-space influence function, i.e. the solution due to distributed load 

applied on the half space is obtained by setting 

𝜓1(𝑥) = {
1 𝑖𝑓  |𝑥| ≤ 𝑚

0 𝑖𝑓  |𝑥| > 𝑚
.                           (35) 

in Eq. (27). The Laplace and Fourier transform of 𝜓1(𝑥) with respect to the pair (x, 𝜉) for the case 

of a uniform strip load of non-dimensional width 2 m applied at origin of co-ordinate system 𝑥 =
𝑧 = 0  in the dimensionless form after suppressing the primes is given by 

𝜓1̂(𝜉) = [
2 sin (𝜉𝑚)

𝜉⁄ ] 𝜉 ≠ 0.                           (36) 

The expressions for displacement, stresses and conductive temperature can be obtained for 

uniformly distributed normal force and thermal source by replacing 𝜓1̂(𝜉) from Eq. (36) in Eqs. 

(28)-(33) respectively. 

 
 
6. Particular cases 
 

• If 𝑎 = 0, then from Eqs. (28)-(33), the corresponding expressions for displacements, stresses 

and conductive temperature for nonlocal isotropic solid without two temperature are obtained . 

• If 𝜖 = 0, then from Eqs. (28)-(33), the corresponding expressions for displacements, stresses 

and conductive temperature for isotropic solid without nonlocal effects and with two temperature 

are obtained. 

• If  𝜖 = 𝑎 = 0 , then from Eqs. (28)-(33), the corresponding expressions for displacements, 

stresses and conductive temperature for isotropic solid without nonlocal effects and two 

temperature are obtained. 
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7. Inversion of the transformation 
 

To obtain the solution of the problem in physical domain, we must invert the transforms in Eqs. 

(28)-(33). Here the displacement components, normal and tangential stresses and conductive 

temperature are functions of   𝑧  and the parameters of Laplace and Fourier transforms s and  𝜉 

respectively and hence are of the form 𝑓(𝜉, 𝑧, 𝑠). To obtain the function 𝑓(𝑥, 𝑧, 𝑡) in the physical 

domain, we first invert the Fourier transform as used by Sharma et al. (2008), using 

𝑓(𝑥, 𝑧, 𝑠) =
1

2𝜋
∫ 𝑒−𝑖𝜉𝑥
∞

−∞
𝑓(𝜉, 𝑧, 𝑠)𝑑𝜉 =

1

2𝜋
∫ |cos(𝜉𝑥) 𝑓𝑒 − 𝑖 sin(𝜉𝑥) 𝑓0|
∞

−∞
𝑑𝜉.      (37) 

where, 𝑓𝑒 and 𝑓0 are respectively the even and odd parts of  𝑓(𝜉, 𝑧, 𝑠). Thus the expression (37) 

gives the Laplace transform 𝑓(𝑥, 𝑧, 𝑠) of the function 𝑓(𝑥, 𝑧, 𝑡). Following Honig and Hirdes, the 

Laplace transform function 𝑓(𝑥, 𝑧, 𝑠) can be inverted to 𝑓(𝑥, 𝑧, 𝑡). 
The Last step is to calculate the integral in Eq. (37). The method for evaluating this integral is 

decscribed in Press at al. It involves the use of Romberg’s integration with adaptive step size. This 

also uses the results from successive refinements of the extended trapezoidal rule followed by 

extrapolation of the results to the limit when the step size tends to zero. 

 

 
8. Numerical results and discussion: 

 

Magnesium material is chosen for the purpose of numerical calculation which is homogeneous 

isotropic and according to Dhaliwal and Singh (1980), physical data for which is given as 

𝜆 = 9.4 × 1010𝑁𝑚−2, 𝜇 = 3.278 × 1010𝑁𝑚−2,  𝐾∗ = 1.7 × 102𝑊𝑚−1𝐾−1,   
𝜌 = 1.74 × 103𝐾𝑔𝑚−3, 𝜃0 = 298 𝐾, 𝐶

∗ = 10.4 × 102𝐽𝐾𝑔−1𝑑𝑒𝑔−1,  𝜔1 = 3.58  𝑎 = 0.05 

A comparison of values of displacement components 𝑢 and 𝑤, stress components 𝑡𝑧𝑧, 𝑡𝑥𝑥, 𝑡𝑧𝑥 

and conductive temperature 𝜑 for a transversely isotropic thermoelasic solid with distance x has 

been made for the local parameter (𝜖 = 0) and nonlocal parameter (𝜖 = 2). 
1) The solid black colored line with center symbol square corresponds to local parameter (𝜖 = 0). 
2) The dashed reddish colored line with center symbol circle represents local parameter (𝜖 = 2). 

 
 

  

Fig. 1 Variation of displacement component 𝑢 with 

displacement x (mechanical force) 

Fig. 2 Variation of displacement component 𝑤 with 

displacement x (mechanical force) 
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Fig. 3 Variation of stress component 𝑡𝑧𝑧  with 

displacement x (mechanical force) 

Fig. 4 Variation of stress component 𝑡𝑥𝑥  with 

displacement x (mechanical force) 

 

  

Fig. 5 Variation of stress component 𝑡𝑧𝑥  with 

displacement x (mechanical force) 

Fig. 6 Variation of conductive temperature 𝜑 with 

displacement x (mechanical force) 

 
 

a) Mechanical force on the surface of half-space 
Uniformly distributed normal force:  

Fig. 1, shows the variations in values of displacement component 𝑢. It is clear that the values of 

𝑢 follow oscillatory pattern. For 𝜖 = 0, the variations are more oscillatory as compared to 𝜖 = 2. 

Fig. 2 depicts the variation of values of displacement component 𝑤. The pattern is oscillatory with 

a clear difference between values for local and non-local parameters. Fig. 3 and Fig. 4 describe the 

variations of stress components 𝑡𝑧𝑧  𝑎𝑛𝑑 𝑡𝑥𝑥 with respect to displacement. For both local and non-

local parameters, the behavior is oscillatory but the nonlocality effects can be visibly seen. Fig. 5 

shows the variation of stress component 𝑡𝑧𝑥 . Here too the behavior followed is oscillatory with 

more variations for 𝜖 = 2 as compared to 𝜖 = 0. Fig. 6 illustrates the variation of conductive 

temperature 𝜑. The behavior followed is oscillatory with non-local parameter causing the effects. 

 
b) Thermal source on the surface of half-space 
Uniformly distributed normal force:  

Fig. 7 and Fig. 8, shows the variations in values of displacement components  𝑢 and  𝑤  
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Fig. 7 Variation of displacement component 𝑢 with 

displacement x (thermal source) 

Fig. 8 Variation of displacement component 𝑤 with 

displacement x (thermal source) 

 

  

Fig. 9 Variation of stress component 𝑡𝑧𝑧  with 

displacement x (thermal source) 

Fig. 10 Variation of stress component 𝑡𝑥𝑥  with 

displacement x (thermal source) 

 

  

Fig. 11 Variation of stress component 𝑡𝑧𝑥  with 

displacement x (thermal source) 

Fig. 12 Variation of conductive temperature 𝜑 with 

displacement x (thermal source) 
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respectively. The behavior followed is oscillatory in both figures. Non-locality is clearly playing its 

part. Fig. 9 depicts the variations of values of stress component  𝑡𝑧𝑧 . The behavior followed is 

oscillatory and the effects of non-local parameter can be clearly noticed. Fig. 10 describes the 

variations of stress component 𝑡𝑥𝑥. Nonlocality is visibly causing the differences for all frequencies. 

Fig. 11 illustrates the variation of stress component 𝑡𝑧𝑥 . Nonlocality is clearly causing differences 

in variations. Fig. 12 shows the variation of conductive temperature  𝜑 . As the trend goes the 

variations are oscillatory with difference for local and non-local parameter values.  

 

 
8. Conclusions 
 

In the present discussion the numerical results showing the effects of nonlocal parameter on the 

components of displacements, stresses and conductive temperature have been shown graphically. 

From above discussion it is observed that nonlocality is playing a significant effect on all the 

components viz. displacements, stresses and conductive temperature. It is observed from the figures 

(1-12) that the trends in the variations of the characteristics mentioned are similar with difference in 

their magnitude when the mechanical forces or thermal sources are applied. The results of this paper 

can be helpful for the researchers working in the field of material engineering, geophysics, marine 

engineering, acoustics etc., for analysis of deformation field around mining tremors and for the 

theoretical considerations of volcanic and seismic sources. Further, the results can play a role for 

those scientists and researchers who are working on the development of the theory of nonlocal 

thermoelasticity. 
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