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Abstract.  This paper studies the forced vibration of the hydro-elastic system consisting of the anisotropic 

(orthotropic) plate, compressible viscous fluid and rigid wall within the scope of the exact equations and 

relations of elastodynamics for anisotropic bodies for describing of the plate motion, and with utilizing the 

linearized exact Navier-Stokes equations for describing of the fluid flow. For solution of the corresponding 

boundary value problem it is employed time-harmonic presentation of the sought values with respect to time 

and the Fourier transform with respect to the space coordinate on the coordinate axis directed along the plate 

length. Numerical results on the pressure acting on the interface plane between the plate and fluid are 

presented and discussed. The main aim in this discussion is focused on the study of the influence of the plate 

material anisotropy on the frequency response of the mentioned pressure. In particular, it is established that 

under fixed values of the shear modulus of the plate material a decrease in the values of the modulus of 

elasticity of the plate material in the direction of plate length causes to increase of the absolute values of the 

interface pressure. The numerical results are presented not only for the viscous fluid case but also for the 

inviscid fluid case. 
 

Keywords:  compressible viscous fluid; anisotropic plate; interface pressure; forced vibration; hydro-

elastic system; fourier transform 

 
1. Introduction 
 

The use of composite materials in ship and submarine building, and as well as water turbine 

blades requires to study of the problems related to the interaction between the structural members 

made of composite materials (for instance, such as composite plates and shells) and fluids. It is 

evident that in these investigations as the first step may be taken the generalization of the classical 

interaction problems regarding the isotropic plates (or shells) and fluids for the anisotropic plates 

(or shells) and fluids. Namely this approach is taken in the present paper and it is made the attempt 

to investigate the forced vibration of the hydro-elastic system consisting of the anisotropic 

(orthotropic) plate compressible barotropic viscous fluid and the rigid wall. The isotropic plate 
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case in this hydro-elastic system was studied in the paper by Akbarov and Ismailov (2017).    

Now we consider a brief review of the investigations related to the subject of the present paper 

and begin this review with the paper by Lamb (1921) which is the first work in this field and 

studies the natural vibrations of a circular elastic “baffled” plate in contact with still water by 

utilizing the so-called “non-dimensional added virtual mass incremental” (NAVMI) method was 

used.  Further, this work was developed in the papers by McLachlan (1932), Kwak and Kim 

(1991), Amabili and Kwak (1996), Amabili (1996), Kwak (1997), Kwak and Han (2000) and 

many others listed therein. Note that in these works the fluid is modelled as inviscid 

incompressible one and the motion of the plate is described within the scope of the Kirchhoff 

hypothesis, and as a result of the investigations it is established the magnitude of the influence of 

the contact of the plate with the fluid on the values of the natural vibrations of the plate. Moreover, 

in the paper by Jeong and Kim (2005) it is taken the compressibility of the inviscid fluid into 

consideration under investigation natural frequencies a circular plate submerged in a bounded 

fluid. The influence of the incompressible fluid viscosity on the plate vibration is taken into 

consideration in the papers by Atkinson and Manrique de Lara (2007) and Kozlovsky (2009). The 

influence of the viscosity of the fluid is also taken into account in the paper by Sorokin and 

Chubinskij (2008) in which unlike in the previous work the infinite plate model is used, however 

the plate motion is described within the scope of the various approximate plate theories. The study 

of the wave propagation problems in “an infinite plate + compressible viscouse fluid” systems was 

also made in the papers  by Bagno et al. (1994), Bagno (2015) and others listed therein, the review 

of which is given in the papers by Bagno et al. (1997) and Guz et al. (2016) and detailed in the 

monograph by Guz (2009). However, in these works, unlike to the foregoing papers, the motion of 

the plate is described within the scope of the so-called three-dimensional linearized equations of 

wave propagation in elastic bodies with initial stresses and the flow of the fluid is described 

through the linearized Navier-Stokes equations. Note that within these equations and relations in 

recent 5 years  it was also investigated series problems on the forced vibration of the hydro-

viscoelastic and –elastic systems consisting of the viscoelastic (or elastic) plate, compressible 

viscous fluid and rigid wall the results of which, for instance, are detailed in the papers by 

Akbarov and Ismailov (2014, 2016, 2017 and 2018). In the paper by Akbarov et al. (2017) it is 

also studied the case where plate materıal is highly elastic and pre-strained in the hydroelastic 

system under consideration. At the same time, the paper by Akbarov and Panakhli (2017) relates to 

the forced vibration of the system consisting of the moving plate, viscous compressible fluid and 

rigid wall. The review of these and other results are given in the survey paper by Akbarov (2018) 

and some of these results are also detailed in the monograph by Akbarov (2015). It should be 

noted that the results obtained in these works can also be used as qualitative information on the 

pressure distribution under dynamic loading of the fluid-structure interaction systems the studying 

of which was made in the papers by Hadzalic et al. (2018), Kelvani et al.(2013), Mandal and 

Maity (2015) and in many others which are listed in these papers.     

We recall that in all the reviewed above works it was assumed that the plate material is a 

homogeneous and isotropic one and therefore the results of these works cannot be applied for the 

cases where the plate made of composite (or anisotropic) materials is in contact with the fluid the 

examples for which is discussed in the papers by Shiffer and Tagarielli (2015), Das and Kapuria 

(2016), Kaneke et al. (2018), Gagani and Echtermeyer (2019). Therefore, it appears the need to 

develop of the foregoing investigations for the cases where the plate material is anisotropic one. 

Taking into consideration this statement in the present work it is made attempt to investigate the 

forced vibration of the hydro-elastic system consisting anisotropic (orthotropic) plate, 
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compressible viscous fluid and rigid wall.   

 
 
2. Formulation of the problem 
 

Consider hydro-elastic system consisting of orthotropic plate-layer, compressible barotropic 

viscous fluid and rigid wall the sketch of which is shown in Fig. 1. We connect the Cartesian 

coordinate system Ox1x2x3  with the upper face plane of the plate, according to which, the plate 

occupied the region {-∞<x1<+∞;-h<x2<0;-∞<x3<+∞} and the region {-∞<x1<+∞;-h−hd<x2<-h;-

∞<x3<+∞} is filled with the compressible viscous fluid, where h is the plate thickness and hd is the 

fluid depth; at the same time, the plane x2=-h−hd   is the rigid wall.  

It is assumed that the direction of the Ox3 axis is perpendicular to the Fig. 1 plane and therefore 

it is not show in this figure. Moreover, it is assumed that along to this line, i.e., under -∞<x3<+∞, 

x1=0 and x2=0 the uniformly distributed time-harmonic forces with intensity P0 act. Taking this 

statement into consideration, below we consider plane-strain state in the plate and the plane flow 

of the fluid in the Ox1x2 plane.   

We suppose that the material of the plate is the orthotropic one the elastic symmetry axes of 

which coincide with the coordinate axes Ox1, Ox2 and Ox3, and this supposing is the main one, 

according to which, the present investigation differs from the investigations carried out in the 

paper by Akbarov and Ismailov (2017). 

Thus, within the foregoing assumptions, we write the field equations and relations for the 

constituents of the hydro-elastic system under consideration. 

The equations of motion for the plate 

2
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(1) 

The elasticity relation 

11 1111 12 22 ,a a= +    22 1112 22 22,a a= +     112 12 2 ,2G=   
(2) 

where  

 

(3) 

In (3) the following notation is used: E1, E2 and E3 are the modulus of elasticity of the plate 

material in the directions of the Ox1, Ox2 and Ox3 axes, respectively, G12 is the shear modulus in 

the Ox1x2 plane, vij (i;j=1,2,3) is the Poisson’s coefficient characterizing the shorting (the 

lengthening) of the material fibers in the Oxi axis direction under stretching (under compressing) in 

the Oxj axis direction; σij and εij(ij=11;22;12) are the components of the stress and strain tensor, 

respectively; u1 and u2 are the components of the displacement vector in the Ox1 and Ox2 axes 

directions, respectively.  
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Fig. 1 The sketch of the hydro-elastic system consisting of orthotropic elastic plate, compressible viscous 

fluid and rigid wall 

 

 

Finally, we write the strain-displacement relations 

 

(4) 

Thus, the equations and relations given in (1)-(4) complete the closed system of the field 

equations related to the motion of the orthotropic plate.  

Now we consider the field equations and relations related to the fluid flow. According to the 

monograph by Guz (2009), we assume that the motion of the fluid is described with the linearized 

Navier-Stokes equations which can be written as follows for the case under consideration. 

 

(5) 

where ρ0
(1) is the fluid density before perturbation, ρ(1) is the perturbation of the fluid density, p(1) is 

the perturbation of the hydrostatic pressure, v1 and v2 are the components of the fluid flow velocity 

vector in the directions of the Ox1 and Ox2 axes, respectively, Tij and eij are the components of the 

stress and strain velocity tensors in the fluid, a0 is the sound velocity in the fluid, λ(1) and μ(1) are 

the coefficients of the fluid viscosity. In (5) it is made summation with respect to the by repeating 

indices. 

As shown in the monograph by Guz (2009), for the solution to the equations in (5) it can be 

used the following presentation for the velocities v1, v2 and the pressure p(1) 

 

(6) 
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where the potentials φ and ψ satisfy the following equations. 

 

(7) 

where v(1) is the kinematic viscosity, i.e., v(1)= μ(1) ρ0
(1). 

Assuming that p(1)=-(T11+T22+T33)/3, it is obtained from the constitutive relations in (5) that 

 
(8) 

We supply the foregoing field equations with the following boundary, compatibility and 

impermeability conditions.  

The boundary conditions on the upper face plane of the plate 

 
(9) 

The compatibility conditions on the interface plane between the fluid and plate 

 

(10) 

The impermeability conditions on the rigid wall 

 

(11) 

This completes the formulation of the problem under consideration. 

 

 
3. Method of solution 
 

According to the boundary conditions in (9), we consider the time-harmonic vibration problem 

and due to this statement all the sought values can be represented with the eiωt multiplying, i.e., as 

1 2( , , )g x x t = 1 2( , ) i tg x x e  . Substituting this presentation into the foregoing equations and relations 

and replacing the derivatives ( ) t •   and 
2 2( ) t •   with ( )i •  and 

2 ( )− • , respectively, it is 

obtained the corresponding equations and boundary and contact conditions for the amplitudes of 

the sought values.  To solve these equations we employ to them the Fourier transform with respect 

to the coordinate x1 

 

1
2 1 2 1( , ) ( , )

isx
Ff s x f x x e dx

+
−

−

= 
 

(12) 
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The problem symmetry with respect to the x1=0 plane allows us to present the original of the 

sought values as follows 

 

(13) 

Now we consider the determination of the Fourier transforms which enter into the expressions 

in (13) and first we make this determination for the quantities related to the plate.  

Thus, after substituting the expressions related to the plate and given in (13) into the equations 

(1), (2) and (4), and doing some mathematical manipulations we obtain the following equations 

with respect to the u1F and u2F. 

 

(14) 

where 

 

(15) 

As in the paper by Akbarov and Ismailov (2017), introducing the notation  

 

(16) 

We can write the solution of the Eq. (14) as follows 

 

(17) 

where 
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(18) 

Substituting the expressions (17) into the Fourier transforms of the Eqs. (4) and (2) we obtain 

the following expressions for the Fourier transformations σ21F and σ22F of the corresponding 

stresses which enter the boundary conditions in (9) and contact compatibility conditions in (10).  

 

(19) 

This completes the determination of the Fourier transforms of the quantities related to the plate. 

Consider also the determination of the values related to the fluid flow and for this purpose we 

represent the Fourier transforms φF and ψF as follows. 

 
(20) 

Substituting these expressions into the Fourier transforms of the equations in (7), we obtain 

 

(21) 

where  

 

(22) 

Note that the dimensionless numbers Nw and Ω1 in (22) characterize the influence of the fluid 

viscosity and compressibility, respectively, on the mechanical behavior of the system under 

consideration. Moreover, note that under writing the equations in (21) and the expressions in (22) 

the equality in (8) is taken into consideration. 

Thus, the solution to the equations in (21) we determine as follows. 

 
(23) 

where 

 

(24) 
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Substituting these expressions into the representation in (20) and substituting the latter ones 

into the Fourier transforms of the equations in (6) and (5), we obtain the following expressions for 

the Fourier transforms of the quantities related to the fluid flow. 

 

 

(25) 

where 

 

(26) 

Finally, substituting the expressions in (17), (19) and (25) into the Fourier transforms of the 

boundary conditions in (9), the compatibility conditions in (10) and impermeability conditions in 

(11) we obtain the following system of equations with respect to the unknowns Z1, Z2,…, Z8 which 

enter the expressions of the Fourier transforms of the sought values.  

 

(27) 
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(27) 

where   

 

(28) 

It is evident that the expressions of the coefficients αnm(n;m=1,2,..,8) in the equations in (27) 

can be easily determined from the Eqs. (17), (19) and (25), and the unknowns Z1, Z2,…,Z8 in can 

be determined via the formula  

 

(29) 

where the matrix (βk
nm) is obtained from the matrix (αnm) by replacing the k−th column of the latter 

with the column (0,-P0/G12,0,0,0,0,0,0)T. 

Now we consider calculation algorithm of the integrals in (13). For this purpose, firstly we 

discuss the following reasoning. If we take the Fourier transformation parameter s as the 

wavenumber, then the equation  

 
(30) 

coincides with the dispersion equation of the waves with the velocity ω/s propagated in the 

direction of the Ox1 axis in the system under consideration.  

It is evident that, according to the existence of the fluid viscosity, the equation (30) must have 

complex roots with respect to the unknown ω/s. However, as usual, the viscosity of the Newtonian 

fluids is insignificant in the qualitative sense and therefore in some cases within the scope of the 

necessity of the PC calculation accuracy, in general, the Eq. (30) may have “real roots” and these 

roots become singular points of the integrated expressions in (13) and in such cases the algorithm 

for calculation was discussed in monograph by Akbarov (2015) and other works listed in this 

monograph. According to this algorithm, in the mentioned cases the wavenumber integrals (13) 

may be evaluated along the Sommerfeld contour examples for which is shown in the monograph 

by Akbarov (2015). However, in the present investigations under calculation of the integrals in 

(13) it was not arise the aforementioned “real roots” cases and using the representation

1 2( , , )g x x t = 1 2( , ) i tg x x e  , the sought values are determined through the following two types of 

relations 
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(31) 

Note that under calculation procedures, the improper integrals 1
0

( )cos( )dsf s sx


  and 

1 1
0

( )sin(( ) )df s s x s


  in (31) are replaced by the corresponding definite integrals 
*
1

1
0

( )cos( )ds
S

f s sx  and 

*
1

1
0

( )sin(( ) )d
S

f s s x s , respectively. The values of S*
1 are determined from the convergence 

requirement of the numerical results.  

Under calculation of the mentioned definite integrals, the integration interval [0, S*
1] is further 

divided into a certain number of shorter intervals, which are used in the Gauss integration 

algorithm. The values of the integrated expressions at the sample points are calculated through the 

equations (17), (19) and (25). All these procedures are performed automatically with the PC 

programs constructed by the authors in MATLAB.  

This completes the consideration of the algorithm which is employed for calculation of the 

wave-number integrals in (13). 

Finally, note that after some obvious changes the foregoing solution method can also be applied 

for the case where the fluid is inviscid. 

 
 
4. Numerical results and discussions 
 

For obtaining concrete numerical results we assume that the material of the fluid is Glycerin 

with viscosity coefficient μ(1)=1,393 kg/(m∙s), density ρ0
(1)=1260 kg/m3 and sound speed a0=1927 

m/s (Guz ( 2009)) and introduce the notation  

(1)
10 k=    , 2 0 2c a k= , 

2
12 2( )G c=   (32) 

through which we determine the density and shear modulus of elasticity in the Ox1x2 plane of the 

plate material. Consequently, if we know the density of the fluid, then giving the values for the k1 

we determine the density of the plate material, as well as if we know the sound speed in the fluid, 

then giving the values for the k2 we determine the values for the shear modulus G12.  

In other words selecting the values for the constants k1 and k2 we determine the density and shear 

modulus of the plate material through the density and sound speed of the fluid material, and an 

increase in the values of the k1 (of the k2) means an increase in the values of the density ( of the 

shear modulus) of the plate material and under fixed value of the fluid density (under fixed sound 

speed in the fluid). 

Moreover, we introduce the following ratios which characterize the anisotropy of the plate 

material. 

 
(33) 

and assume that  
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(34) 

Moreover, assume that 

E1=E3 (35) 

and in this way we have two ratios E1/G12 and E1/E2 through which we characterize the influence 

of the anisotropy of the plate material on the values of the stresses and velocities appearing as a 

result of the dynamic loading of the plate with the time-harmonic forces acting on the plate.  

In the present investigations we will consider the numerical results illustrating the influence of 

the k1, k2, E1/G12 and E1/E2 on the frequency response of the interface dimensionless stress T22h/P0. 

Note that, according to the convergence investigations carried out in the paper by Akbarov and 

Ismailov (2017), under obtaining numerical results it is assumed that S*
1=9 the interval [0, S*

1] is 

divided into 2000 shorter subintervals in each of which it is used the Gauss integration algorithm 

with ten sample points.  

The convergence of the numerical results in the selected numbers of the subintervals and in the 

selected length of the integration interval was illustrated not only in the paper by Akbarov and 

Ismailov (2017) but also in the papers by Akbarov and Ismailov (2016, 2018) and in others listed 

therein. Therefore, we do not consider here results illustrated the convergence of the numerical 

results. The trustiness of the used PC programs which are used under obtaining the numerical 

results which will be discussed below is tested with obtaining in the particular cases the known 

results and with agreeing the obtained results with the physico-mechanical consideration. After 

establishing the mentioned testing procedure (we do not give here examples for such testing) we 

obtain numerical results for the case under consideration.   

Thus, we consider and analyze numerical results illustrating the influence of the k1, k2, E1/G12 

and E1/E2 on the frequency response of the interface dimensionless stress T22h/P0 at point x1/h=0 

which acts on the interface plane between the plate and fluid. Note that under this consideration we 

will distinguish two cases with respect to the vibration phase ωt, i.e., we will consider separately 

the cases where ωt=0 and ωt=π/2. The selection of these two cases for consideration is in 

connection with the following situation. The investigations carried out in the papers by Akbarov 

and Ismailov (2016, 2017 and 2018) show that in the inviscid fluid case with respect to the 

vibration phase ωt the stress T22 has its absolute maximum (zero) value under ωt=0+nπ (under 

ωt=π/2+nπ). However, in the viscous fluid case the stress T22 has its absolute maximum (zero) 

value under ωt=(ωt)'+nπ (under ωt=(ωt)''+nπ) where the value of the (ωt)' (the value of the (ωt)'') 

is very near to the 0 (to the π/2) and the values of (ωt)' and of (ωt)'' depend on the problem 

parameters. If we considered the stress value at ωt=(ωt)' and ωt=(ωt)'' then there would be many 

confusions for describing the values of the (ωt)' and (ωt)'' for each selected values of the problem 

parameters. Taking the foregoing discussions into consideration we decide to calculate the values 

of the stress T22 for values of the ωt=0 (under which the values of the T22 become is very near to its 

absolute maximum ones) and of the ωt=π/2 (under which the values of the T22 become is very near 

to its zeroth).  

Now we begin to analyze the numerical results and first, we assume that k1=k2=1, E1/E2=1.5 

and consider the influence of the ratio E1/G12 on the frequency response of the T22h/P0 in the case 

where ωt=0. The graphs of this response are given in Fig. 2 in the cases where hd/h=2 (Fig. 2(a)), 
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(a) (b) 

 
(c) 

Fig. 2 The influence of the ratio E1/G12 on the frequency response of the dimensionless interface stress 

T22h/P0 in the case where ωt=0, k1=k2=1, E1/E2=1.5 under hd/h=2 (a), 3 (b) and 6 (c) 
 

 

3 (Fig. 2(b)) and 6 (Fig. 2(c)). Simultaneously, in Fig. 2 it is given the mentioned frequency 

response for the case where the selected fluid (Glycerin) is modelled as a Newtonian viscous fluid, 

but also for the case where this fluid is modelled as a Newtonian inviscid fluid and the graphs 

related to this inviscid fluid case are drawn with the dashed lines.  

Thus, it follows from the results given in Fig. 2 that an increase in the values of the ratio E1/G12 

causes a decrease in the absolute values of the interface normal stress T22h/P0. This means that an 

increase in the values of the modulus of elasticity E1 of the plate material in the Ox1 axis direction 

(this is because, according to the relations in (32), the shear modulus G12 has a fixed value under 

k1=k2=1 for the fixed values of the fluid density and fluid’s sound velocity) causes to decrease of 

the absolute values of the pressure acting on the interface plane. The comparison of the results 

given in Fig. 2(a), Fig. 2(b) and Fig. 2(c) between each other shows that an increase in the fluid 

depth causes to decrease in the absolute values of the stress T22h/P0. Note that this conclusion is in 

agreement in the qualitative sense with the corresponding one obtained in the paper by Akbarov 

and Ismailov (2017) and with the well-known mechanical considerations. Moreover, the 

comparison of the results obtained for the viscous fluid case (solid lines) with the corresponding 

ones obtained for the inviscid fluid cases (dashed lines) shows that the fluid viscosity also causes 

to increase the absolute values of the interface pressure between the plate and fluid and the  
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(a) (b) 

 
(c) 

Fig. 3 The influence of the ratio E1/G12 on the frequency response of the dimensionless interface stress 

T22h/P0 in the case where ωt=π/2, k1=k2=1, E1=E2=1.5 under hd/h=2 (a), 3 (b) and 6 (c) 
 

 

magnitude of this increase becomes more considerable with decreasing of the fluid depth, i.e., with 

decreasing of the ratio hd/h. At the same time, it follows from the results given in Fig. 2 that an 

increase in the values of the ratio E1/G12 causes to decrease of the difference between the results 

obtained for the viscous and inviscid fluid cases.  

Now we consider the results obtained under ωt=π/2 within the scope of the assumptions which 

accepted under calculating of the results illustrated in Fig. 2. Note that these results are given in 

Fig. 3 for the cases where hd/h=2 (Fig. 3(a)), 3 (Fig. 3(b)) and 6 (Fig. 3(c)). 

Note that in Fig. 3 the results related to the inviscid fluid case do not illustrated because in the 

inviscid fluid case, as it has noted above, in the case where ωt=π/2 the values of the stress T22 are 

equal to zero. It follows from the results in Fig. 3 that the character of the influence of the ratio 

E1/G12 on the values of the stress under consideration in the qualitative sense is the same as in the 

case considered in Fig. 2. Moreover, it follows from the Fig. 3 that in the considered change range 

of the frequency ω the character of the dependence between the stress T22 and ω becomes non-

monotonic with the ratio hd/h.   

Now we consider the results illustrated the influence of the ratio E1/E2 on the frequency 

response under consideration and looking ahead note that this influence is insignificant. This 

conclusion is also proven with the results given in Fig. 4 which show the graphs of the frequency 

response constructed for various values of the ratio E1/E2 in the case where k1=k2=1, E1/G12=5  
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(a) (b) 

 
(c) 

Fig. 4 Examples on the influence of the ratio E1/E2 on the frequency response of the dimensionless 

interface stress in the case where k1=k2=1, E1/G12=5 under ωt=0, hd/h=2 (a); ωt=π/2, hd/h=2 (b) and 

ωt=π/2, hd/h=3 (c) 
 

 

under ωt=0, hd/h=2 (a); ωt=π/2, hd/h=2 (b) and ωt=π/2, hd/h=3 (c). It follows from the analyzes of 

these graphs that despite the fact that the mentioned influence is insignificant nonetheless an 

increase in the values of the ratio E1/E2, i.e., a decrease in the values of the modulus of elasticity of 

the plate material in the Ox2 axis direction causes to decrease in the absolute values of the pressure 

acting on the interface plane between the plate and fluid.  

Now we consider numerical results illustrated the influence of the coefficient k1 under k2=1 (the 

influence of the coefficient k2 under k1=1) on the frequency response under consideration and for 

this purpose we consider the graphs given in Figs. 5 and 6 (given in Figs. 7 and 8) which are 

constructed in the cases where ωt=0 and ωt=π/2 respectively. Note that in these figures the graphs 

grouped by the letters a, b and c relate to the cases where E1/G12=5, 10 and 50 respectively. 

Moreover, under obtaining the results given in these figures it is assumed that E1/E2=5 and hd/h=2.   

According to the relations in (32), a decrease (an increase) in the values of k1 under fixed k2, 

ρ0
(1) and a0 means a decrease (an increase) in the values of the plate material density ρ. However, 

as in this change the shear wave velocity in the plate material must remain constant therefore shear 

modulus G12 of the plate material must also decrease (increase) proportionally to ρ or 

proportionally to k1. Thus, it follows from the results illustrated in Figs. 5 and 6 that within the  
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(a) (b) 

 
(c) 

Fig. 5 The influence of the values k1 on the frequency response of the dimensionless interface stress 

T22h/P0 in the cases where E1/G12=5 (a), 10 (b) and 50 (c) under k2=1, ωt=0, hd/h=2 and  E1/E2=5 
 

 

framework of the foregoing statements, a decrease in the density of the plate material with respect 

to the density of the fluid causes to increase of the absolute values of the interface pressure which  
 

 

  
(a) (b) 

Fig. 6 The influence of the values k1 on the frequency response of the dimensionless interface stress 

T22h/P0 in the cases where E1/G12=5 (a), 10 (b) and 50 (c) under k2=1, ωt=π/2, hd/h=2 and E1/E2=5 
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(c) 

Fig. 6 Continued 

 

  
(a) (b) 

 
(c) 

Fig. 7 The influence of the values k2 on the frequency response of the dimensionless interface stress 

T22h/P0 in the cases where E1/G12=5 (a), 10 (b) and 50 (c) under k1=1, ωt=0, hd/h=2 and E1/E2=5 

 

 

appear between the plate and fluid. Moreover, from these results follows that in the cases where 

k1<1 the magnitude of the mentioned decrease becomes more considerable than that in the cases 

where k>1. 
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(a) (b) 

 
(c) 

Fig. 8 The influence of the values k2 on the frequency response of the dimensionless interface stress 

T22h/P0 in the cases where E1/G12=5 (a), 10 (b) and 50 (c) under k1=1, ωt=π/2, hd/h=2  and E1/E2=5 

 

 

Also, it follows from the relations in (32) that, under fixed values of the k1, ρ0
(1) and a0 a 

decrease (an increase) in the values of the coefficient k2 means a decrease (an increase) in the 

values of the shear wave propagation velocity c2. However, in this case as the density remain 

constant and is equal to the density of the fluid therefore the change in the values of the k2 means 

the change in the values of the shear modulus G12 proportionally to (k2)2. Thus, within these 

frameworks, it follows from the Figs. 7 and 8 that, an increase (a decrease)in the values of the k2 

causes a decrease (an increase) in the absolute values of the interface pressure.  

This completes the consideration analyses of the numerical result and the concrete conclusions 

which follow from these results will be given in the following section. 
 
 

5. Conclusions 
 

Thus, in the present paper the time-harmonic forced vibration of the hydro-elastic system 

consisting of the orthotropic plate, compressible (barotropic) viscous fluid and rigid wall is studied 

and this study is made by employing the exact equations of elastodynamics for anisotropic bodies 

under describing the motion of the plate and the linearized Navier-Stokes equations under 

describing the fluid flow. The main aim in the present investigation is the study of the influence of 
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the anisotropy of the plate material on the pressure appearing on the interface plane between the 

fluid and plate. As fluid is taken Glycerin and the shear modulus and the density of the plate 

material are determined by the density of this fluid and by the sound speed of that through 

introducing the coefficients k1 and k2. Numerical results on the frequency response of the interface 

normal stress acting on the interface plane between the plate and fluid are presented and discussed. 

These results are presented not only viscous fluid case but also for the inviscid fluid case, i.e. for 

the cases where the Glycerin is modelled as compressible inviscid fluid. The analyses of these 

numerical results allow us to make some concrete conclusions on the character of the influence of 

the plate material anisotropy on the aforementioned frequency response.  

-An increase in the values of the modulus of elasticity E1 of the plate material in the direction of 

plate length under constant values of the shear modulus G12 of this material causes to decrease of 

the absolute values of the interface pressure; 

-Under fixed values of the G12, the influence of the change of the ratio E1/E2 (where E2 is the 

modulus of elasticity of the plate material in its thickness direction) on the interface pressure is 

insignificant, nonetheless, an increase in the values of the ratio E1/E2 causes a decrease in the 

absolute values of the mentioned pressure; 

-Under constant value of the ratios G12/ρ, G12/E2 and E1/E2 (where ρ is the density of the plate 

material) a decrease in the values of the plate material density ρ, i.e., a decrease in the values of the 

coefficient k1 causes an increase in  the absolute values of the interface pressure mentioned above;  

-Under fixed values of the plate material density ρ and under fixed values of the ratios G12/E2 

and E1/E2 a decrease in the values of the shear modulus G12 of the plate material, i.e., a decrease in 

the values of the coefficient k2 causes an increase in the values of the interface pressure;  

-The foregoing conclusions occur not only for the viscous fluid case but also for the inviscid 

fluid case; 

-The foregoing conclusions hold not only for the values of the interface pressure calculated for 

the vibration phase ωt=0 near to which this pressure has its absolute maximum with respect to ωt 

but also for the values of the pressure calculated for the vibration phase ωt=π/2 near to which the 

pressure has its zero;  

-A decrease of the fluid depth causes to increase significantly the magnitude of the influence of 

the fluid viscosity on the values of the interface pressure. 

It follows from the foregoing results and conclusions that the anisotropy of the plate material 

which is in contact with fluid can change significantly the vibration behavior of this plate and 

therefore, investigations of the influence of the plate material anisotropy on the forced or natural 

vibration of the corresponding hydro-elastic systems must be developed for the other type dynamic 

problems and for the more high change range of the frequency of the vibration of the external 

forces which in the present paper is selected as 4(1/ ) 500(1/ )sek sek  ≤ .  
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