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Abstract. This work aims to simulate three-dimensional heavy oil flow in a reservoir with heater-wells.
Mass, momentum and energy balances, as well as correlations for rock and fluid properties, are used to
obtain non-linear partial differential equations for the fluid pressure and temperature, and for the rock
temperature. Heat transfer is simulated using a two-equation model that is more appropriate when fluid
and rock have very different thermal properties, and we also perform comparisons between one- and
two-equation models. The governing equations are discretized using the Finite Volume Method. For the
numerical solution, we apply a linearization and an operator splitting. As a consequence, three algebraic
subsystems of linearized equations are solved using the Conjugate Gradient Method. The results obtained
show the suitability of the numerical method and the technical feasibility of heating the reservoir with
static equipment.

Keywords: finite volume method; heating techniques; non-isothermal flow; oil reservoir; operator split-
ting; reservoir simulation

1. Introduction

Enhanced oil recovery (EOR) or tertiary recovery is commonly applied to extract an extra amount
of oil from the reservoir, after primary (oil extracted by natural drive mechanism) and secondary
(immiscible fluid injection) recovery. EOR techniques include chemical, miscible displacement,
biological and thermal methods which aim to enhance hydrocarbons recovery by changing the fluid
properties. For example, we have heavy oil extraction using thermal methods to reduce oil viscos-
ity (Aouizerate, Durlofsky and Samier 2011). According to Eduardo (2010), the non-isothermal flow
in porous media has attracted the interest of many engineers and scientists since the rock and fluid
properties depend on pressure and temperature in a realistic process.

Nowadays there are several thermal methods used to heat hydrocarbons reservoir, for example,
heated water injection, in-situ combustion, and steam injection. Ezeuko and Gates (2018) investigated
heavy oil recovery in fractured reservoirs (Nikolic, Ibrahimbegovic and Miscevic 2016, Hadzalic,
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Ibrahimbegovic and Dolarevic 2018, Hadzalic, Ibrahimbegovic and Nikolic 2018) using steam injec-
tion and analyzed thermal recovery benefits, for example. There are also static heaters, which were
studied by Hazra (2014) considering different methodologies used by oil companies in hydrocarbon
recovery from oil shale. The static heaters category includes different mechanical structures (such as
an antenna), based onmicrowave or electricity, for example. In recent years, research and development
related to static heaters have increased, and they have been used to improve heavy oil displacement
without fluid injection. The heaters add thermal energy to a specific region of the reservoir to heat
both rock and fluid, as shown in Fig. 1.

Physical-mathematical modeling for non-isothermal flow must take into account mass, momen-
tum and energy balances and also, boundary and initial conditions. In the so-called one-equation
models (Rousset, Huang and Durlofsky 2014), a single temperature (fluid and rock average temper-
atures are supposed to be equal) or an average temperature are introduced to represent the porous
media temperature. As described by Moyne et al. (2000), when we do not assume the local thermal
equilibrium, a volume average temperature is defined as the weighted average of the fluid and rock
temperatures (from the definition of enthalpy). Therefore, both rock and oil have distinct tempera-
tures, and a source term in the macroscopic equations takes into account the heat transfer between
the fluid and solid phases (Lampe 2013, Moyne and Amaral Souto 2014a, b). Both models have been
used to simulate non-isothermal flow in porous media. The accuracy of each model depends on the
relationship between the rock and fluid thermal properties of the fluid and the rock phases. In gen-
eral, the two-equation model (although more complex) is more comprehensive than the one-equation
model (easier to implement). Therefore, one of the objectives of this work is the determination of the
pertinence of the use of both models in the considered context.

This work is concerned with the numerical simulation of non-isothermal three-dimensional heavy
oil flow in a reservoir containing static heaters. Mass, momentum and energy balances, as well as
correlations for rock and fluid properties (as a function of pressure and temperature), are used to
obtain the governing non-linear partial differential equations, considering a two-equation model to
compute the heat transfer in the reservoir. The governing equations are discretized using the Finite
Volume Method (Moukalled, Mangani and Darwish 2016), and the system of algebraic equations are
solved using the Conjugate Gradient Method along with a Picard linearization procedure (Nick et al.
2013) and an operator splitting technique (Dyrdahl 2014).

Fig. 1 Heating process using static heaters
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2. Balance equations in porous media flow

Based on mass, momentum, and energy conservation principles, we can derive macroscopic
equations that model fluid flow and energy transfer in porous media (Lampe 2013).

2.1 Mass balance and momentum equation

Mass balance equation is represented by (Ertekin, Abou-Kassem and King 2001)

∂

∂t

(
φ

B

)
+∇ ·

( v
B

)
− qsc
Vb

= 0, (1)

where φ and B = ρf/ρsc are the porosity and the formation-volume-factor (FVF), respectively, qsc
is a source term in standard conditions (sc), Vb is the bulk volume, and the apparent velocity is
represented by v and it is given by the Darcy’s law (Ertekin, Abou-Kassem and King 2001)

v = −k

µ
(∇p− ρfg∇D) , (2)

where k is the porous media absolute permeability tensor, µ is the fluid viscosity, p is the pressure,
ρf is the fluid density, g is the magnitude of gravity and D represents the depth. The fluid viscosity
depends on temperature and is calculated by (Rousset, Huang and Durlofsky 2014)

µ = a exp

(
b

T − Tref,µ

)
(3)

where a, b and Tref,µ must be provided.
Considering that the porosity and the formation-volume-factor are functions of pressure and

temperature (Rousset, Huang and Durlofsky 2014)

φ = φ0
[
1 + cr

(
p− p0

)
− crT

(
Tr − T 0

r

)]
, B =

B0

1 + cf (p− p0)− cfT
(
Tf − T 0

f

) , (4)

where the superscript 0 represents the reference value, cr and cf are the compressibilities for the
rock and the oil, Tr and Tf are the temperatures of the rock and the fluid, and crT and cfT are the
coefficients of thermal expansion for the rock and the fluid respectively, it is possible to obtain

∂

∂t

(
φ

B

)
=
∂p

∂t

[
1

B

∂φ

∂p
+ φ

∂

∂p

(
1

B

)]
+
∂Tr
∂t

(
1

B

∂φ

∂Tr

)
+
∂Tf
∂t

[
φ
∂

∂Tf

(
1

B

)]
. (5)

Taking the partial derivative of φ with respect to p and Tr, and of B with respect to p and Tf ,

∂

∂t

(
φ

B

)
=

(
φ0cr
B

+
φcf
B0

)
∂p

∂t
−
(
φ0crT
B

)
∂Tr
∂t
−
(
φcfT
B0

)
∂Tf
∂t

. (6)

Replacing Eqs. (6) and (2) into Eq. (1) we obtain

Γp
∂p

∂t
− ΓTr

∂Tr
∂t
− ΓTf

∂Tf
∂t
−∇ ·

[
k

µB
(∇p− ρfg∇D)

]
− qsc
Vb

= 0 (7)

where

Γp =
φcf
B0

+
φ0cr
B

, ΓTr =
φ0crT
B

, ΓTf =
φcfT
B0

. (8)
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2.2 Energy balance

In this work, we do not assume the local thermal equilibrium hypothesis. In other words, the
average temperatures of rock and fluid are not equal, and the heat transfer between both fluid and
rock phases is modeled by macroscopic source terms (Moyne and Amaral Souto 2014a, b, Rousset,
Huang and Durlofsky 2014). Hence, the rock energy balance equation is given by (based on Lampe
(2013) and Moyne and Amaral Souto (2014a))

∂

∂t
[(1− φ)ρrcprTr]−∇ · [(1− φ)Kr∇Tr] +AH(Tr − Tf )− (1− φ)

qH
Vb

= 0 (9)

while for the fluid we have (based on Lampe (2013) and Moyne and Amaral Souto (2014a))

∂

∂t
(φρfcpfTf )−∇ · (φKf∇Tf ) +∇ · (ρfhfv)−AH(Tr − Tf )− φqH

Vb
−
ρfhfqsc
Vb

= 0, (10)

where ρr is the rock density, cpf and cpr are the specific heats of rock and fluid, respectively,
hf = cpfTf approximate the fluid enthalpy (Rousset, Huang and Durlofsky 2014), and Kf and Kr

represent the effective thermal dispersion tensors. A is the superficial specific area of the fluid-solid
interface,H is the effective heat transfer coefficient, qH/Vb represents the increase or decrease of heat
on the reservoir due to the heaters, and ρfhfqsc/Vb represents the gain or loss of energy by injection
or extraction of fluid into or from the reservoir.

We only consider here the contribution due to the thermal conductivity, and we neglect tortu-
osity and hydrodynamic dispersion contributions (Moyne et al. 2000). However, this procedure is
commonly used (Lampe 2013). Therefore, we assume that Kf = κfI and Kr = κrI, where κf
and κr are the thermal conductivities of fluid and rock, respectively. For the two-equation model,
the intrinsic volume average temperatures are then determined by directly solving the macroscopic
temperature equations for each phase (Moyne and Amaral Souto 2014a).

2.3 Initial and boundary conditions

Eqs. (7), (9) and (10), which describe the single-phase non-isothermal fluid flow in porous media
is not complete unless we specify initial and boundary conditions.

As initial conditions, we impose, in spite of the geothermal gradient (0.03 to 0.04 K/m approx-
imately), a constant temperature value for the oil and rock everywhere in the reservoir. For the oil
pressure, we impose a pre-established value at a given position (depth), and the other values are
calculated according to the hydrostatic gradient.

We also use no flow conditions (Neumann boundary condition) at the reservoir boundaries. We
apply these boundary conditions for both mass and heat flux, and they indicate that there is no mass
flow and energy transfer across the boundaries of the reservoir.

3. Numerical solution methodology

The Finite VolumeMethod (FVM) is a numerical method for solving partial differential equations
based on a volume integral formulation with a partitioning set of volumes (elements or cells) to
discretized the domain (Moukalled, Mangani and Darwish 2016). The discretized partial differential
equations give rise to a system of coupled non-linear algebraic equations.
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3.1 Spatial and time discretizations

This method ensures integral conservation of mass, momentum, and energy over any group of
control volumes and over the whole solution domain. The method consists of three steps. The
first accounts for partitioning the domain into discrete control volumes using a computational grid.
For each finite volume created, there is a corresponding associated balance equation. We introduce
now the system of notation adopted here for the finite volume, with a central node point, shown in
Fig. 2. The finite volume interfaces are represented by: (i − 1/2, j, k) = w, (i + 1/2, j, k) = e,
(i, j − 1/2, k) = n, (i, j + 1/2, k) = s, (i, j, k − 1/2) = b and (i, j, k + 1/2) = a, where w, e,
n, s, b and a stand for west, east, north, south, below and above respectively. The central node is
designated as P (i, j, k), and the neighbor nodes are represented by (i− 1, j, k) = W, (i+ 1, j, k) =
E, (i, j − 1, k) = N, (i, j + 1, k) = S, (i, j, k − 1) = A and (i, j, k + 1) = B.

The second step is the discretization of the governing equations, obtained from the integration
of the partial differential equations, in time and space, over each finite volume to yield discretized
equations for each nodal pointP , on which the unknowns are calculated. As a result of the integration,
some properties and gradients need to be evaluated at finite volume interfaces. A central-difference
scheme is an accurate way of calculating the derivatives, and the properties are approximated using
harmonic and weighted averages (Ertekin, Abou-Kassem and King 2001). After the spatial integra-
tion, we perform the time integration considering a conservative expansion of the time derivatives as
discussed by Ertekin, Abou-Kassem and King (2001).

The resultant discretized equation for the pressure is

Φx

∣∣∣n+1

i+1/2,j,k
(pi+1,j,k − pi,j,k)n+1 − Φx

∣∣∣n+1

i−1/2,j,k
(pi,j,k − pi−1,j,k)

n+1

Fig. 2 A finite volume surrounding a central node point on a mesh
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+Φy

∣∣∣n+1

i,j+1/2,k
(pi,j+1,k − pi,j,k)n+1 − Φy

∣∣∣n+1

i,j−1/2,k
(pi,j,k − pi,j−1,k)

n+1

+Φz

∣∣∣n+1

i,j,k+1/2
(pi,j,k+1 − pi,j,k)n+1 − Φz

∣∣∣n+1

i,j,k−1/2
(pi,j,k − pi,j,k−1)n+1

−
(Γp)i,j,k

∆t
(pn+1
i,j,k − p

n
i,j,k) +

(ΓTf )i,j,k

∆t
(Tn+1
fi,j,k
− Tnfi,j,k) +

(ΓTr)i,j,k
∆t

(Tn+1
ri,j,k
− Tnri,j,k)

+(Ωz)
n+1
i,j,k+1/2(Di,j,k+1 −Di,j,k)− (Ωz)

n+1
i,j,k−1/2(Di,j,k −Di,j,k+1) + qn+1

sc,i,j,k = 0 (11)

where the transmissibility terms (for x-direction) are defined as

(Φx)
∣∣∣
e

=

(
Axkx
µB∆x

)
e

, (Φx)
∣∣∣
w

=

(
Axkx
µB∆x

)
w

, (12)

while for the hydrostatic terms we have

(Ωz)
∣∣∣
a

=

(
Azkzρfg

µB∆z

)
a

, (Ωz)
∣∣∣
b

=

(
Azkzρfg

µB∆z

)
b

, (13)

and the term A represents the finite volume interface areas, in x-, y- and z- directions: Ax = ∆y∆z,
Ay = ∆x∆z and Az = ∆x∆y.

On the other hand, from Eq. (9) we obtain

(1− φ) (Λr)x

∣∣∣n+1

i+1/2,j,k
(Tri+1,j,k

− Tri,j,k)n+1 − (Λr)x

∣∣∣
i−1/2,j,k

(Tri,j,k − Tri−1,j,k
)n+1

+ (1− φ) (Λr)y

∣∣∣n+1

i,j+1/2,k
(Tri,j+1,k

− Tri,j,k)n+1 − (Λr)y

∣∣∣
i,j−1/2,k

(Tri,j,k − Tri,j−1,k
)n+1

+ (1− φ) (Λr)z

∣∣∣n+1

i,j,k+1/2
(Tri,j,k+1

− Tri,j,k)n+1 − (Λr)z

∣∣∣
i,j,k−1/2

(Tri,j,k − Tri,j,k−1
)n+1

−Vb
[

(1− φ)ρccp
∆t

]n+1

i,j,k

(Tn+1
ri,j,k
− Tnri,j,k) + Vb,i,j,kAH(Tr − Tf )n+1

i,j,k + (1− φ) qH

∣∣∣n+1

,i,j,k
= 0, (14)

and, finally, for Eq. (10),

φ(Λf )x

∣∣∣n+1

i+1/2,j,k
(Tfi+1,j,k

− Tfi,j,k)n+1 − (Λf )x

∣∣∣
i−1/2,j,k

(Tfi,j,k − Tfi−1,j,k
)n+1

+φ(Λf )y

∣∣∣n+1

i,j+1/2,k
(Tfi,j+1,k

− Tfi,j,k)n+1 − (Λf )y

∣∣∣
i,j−1/2,k

(Tfi,j,k − Tfi,j−1,k
)n+1
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+φ(Λf )z

∣∣∣n+1

i,j,k+1/2
(Tfi,j,k+1

− Tfi,j,k)n+1 − (Λf )z

∣∣∣
i,j,k−1/2

(Tfi,j,k − Tfi,j,k−1
)n+1

−(Ψz)
n+1
i,j,k+1/2(Di,j,k+1 −Di,j,k) + (Ψz)

n+1
i,j,k−1/2(Di,j,k −Di,j,k+1)−Θx,y,z

−Vb
(
φρccp

∆t

)n+1

i,j,k

(Tn+1
fi,j,k
− Tnfi,j,k) + (ρfhfqsc)

n+1
i,j,k − Vb,i,j,kAH(Tr − Tf )n+1

i,j,k + φqH

∣∣∣n+1

,i,j,k
= 0

(15)

where

Θx,y,z

ρfsc
= (hΦx)n+1

i−1/2,j,k(pi,j,k − pi−1,j,k)
n+1 − (hΦx)n+1

i+1/2,j,k(pi+1,j,k − pi,j,k)n+1

+ (hΦy)
n+1
i,j−1/2,k(pi,j,k − pi,j−1,k)

n+1 − (hΦy)
n+1
i,j+1/2,k(pi,j+1,k − pi,j,k)n+1

+ (hΦz)
n+1
i,j,k−1/2(pi,j,k − pi,j,k−1)n+1 − (hΦz)

n+1
i,j,k+1/2(pi,j,k+1 − pi,j,k)n+1, (16)

and also for the energy equations, we introduce

(Λα)
∣∣∣
w

=

(
Ax(κα)x

∆x

)
w

, (Λα)
∣∣∣
e

=

(
Ax(κα)x

∆x

)
e

α = r or f (17)

and
(Ψz)

∣∣∣
a

=

(
Azρfhgkz
µ∆z

)
a

, (Ψz)
∣∣∣
b

=

(
Azρfhgkz
µ∆z

)
b

. (18)

3.2 Linearization and operator splitting

Eqs. (11), (14) and (15) form a system of non-linear algebraic equations which must be solved
numerically. The numerical solution strategy for the single-phase non-isothermal flow considered
here predicts the calculation of each equation separately, applying an operator splitting (Dyrdahl
2014) and a Picard linearization procedure (Nick et al. 2013).

When the calculation starts, for each time step, the values of p, Tf and Tr are estimated for an
iterative level v and time n+ 1. Then, fluid and rock properties are determined. Next, the pressure is
calculated from the knowing values Tn+1,v

f and Tn+1,v
r obtained in the previous iteration. After that,

the fluid temperature equation is solved using the new pn+1,v+1 and old Tn+1,v
r (not yet updated)

values. Finally, the rock temperature is updated by solving the corresponding equation using pn+1,v+1

and Tn+1,v+1
r values recently calculated. Before a new iteration, all physical properties are updated

from the new values of p, Tf and Tr.
The main advantage of the splitting method is the reduction of the number of calculations required

for each time step. For instance, if there are N finite volumes, and we want to solve the coupled
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system using a fully implicit scheme, we must solve 9N2 equations. On the other hand, for the
uncoupled system, it can be reduced to 3N2 algebraic equations. However, it still will demand a lot
of computer memory, and the computation time might be excessive (Vennemo 2016). Maes et al.
(2016) investigated the application of operator splitting methods to the numerical modeling of in-situ
upgrading of heavy oil, where heat is applied to the reservoir to decompose the heavier oil components
into lighter, more mobile and more valuable liquid and gas components. They concluded in this study
that operator splitting methods reduce computational effort when used to solve linear systems.

Nevertheless, as point out by Maes et al. (2016), a sequential implicit method introduces an
additional error when we decouple the equations. As a result of this fact, we must use small time
steps so that we can obtain the same accuracy of the fully coupled methods, and additional work
would be necessary if we want to compare the computational times of the two approaches.

Hence, we are concerned with the numerical solution of three subsystems of linear algebraic
equations, one for the pressure and two for the temperatures (oil and rock). Thus, for the pressure
equation we have

Φx

∣∣∣n+1,v

i−1/2,j,k
pn+1,v+1
i−1,j,k + Φy

∣∣∣n+1,v

i,j−1/2,k
pn+1,v+1
i,j−1,k + Φz

∣∣∣n+1,v

i,j,k−1/2
pn+1,v+1
i,j,k−1

+Φx

∣∣∣n+1,v

i+1/2,j,k
pn+1,v+1
i+1,j,k + Φy

∣∣∣n+1,v

i,j+1/2,k
pn+1,v+1
i,j+1,k + Φz

∣∣∣n+1,v

i,j,k+1/2
pn+1,v+1
i,j,k+1

−

[
Φ
n+1,v
x,y,z +

(Γp)
n+1,v
i,j,k

∆t

]
pn+1,v+1
i,j,k =

(Γp)
n+1,v
i,j,k

∆t
pni,j,k

+
(ΓTf )n+1,v

i,j,k

∆t

[
(Tf )n+1,v

i,j,k − (Tf )ni,j,k

]
+

(ΓTr)
n+1,v
i,j,k

∆t

[
(Tr)

n+1,v
i,j,k − (Tr)

n
i,j,k

]

−(Ωz)
n+1,v
i,j,k+1/2(Di,j,k+1 −Di,j,k) + (Ωz)

n+1,v
i,j,k−1/2(Di,j,k −Di,j,k−1)− qn+1

sc,i,j,k (19)

where

Φ
n+1,v
x,y,z = Φx

∣∣∣n+1,v

i+1/2,j,k
+Φx

∣∣∣n+1,v

i−1/2,j,k
+Φx

∣∣∣n+1,v

i,j+1/2,k
+Φx

∣∣∣n+1,v

i,j−1/2,k
+Φx

∣∣∣n+1,v

i,j,k+1/2
+Φx

∣∣∣n+1,v

i,j,k−1/2
. (20)

For the temperature of the fluid, the following equation is considered

(Λf )x

∣∣∣
i−1/2,j,k

Tn+1,v+1
fi−1,j,k

+ (Λf )y

∣∣∣
i,j−1/2,k

Tn+1,v+1
fi,j−1,k

+ (Λf )z

∣∣∣
i,j,k−1/2

Tn+1,v+1
fi,j,k−1

+(Λf )x

∣∣∣
i+1/2,j,k

Tn+1,v+1
fi+1,j,k

+ (Λf )y

∣∣∣
i,j+1/2,k

Tn+1,v+1
fi,j+1,k

+ (Λf )z

∣∣∣
i,j,k+1/2

Tn+1,v+1
fi,j,k+1
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−
[
(Λf )x,y,z + VbAH + Vb

(ρccp
∆t

)n+1,v

i,j,k

]
Tn+1,v+1
fi,j,k

= −Vb
(ρccp

∆t

)n+1,v

i,j,k
Tf

n
i,j,k

+(Ψz)
n+1,v
i,j,k+1/2(Di,j,k+1 −Di,j,k)− (Ψz)

n+1,v
i,j,k−1/2(Di,j,k −Di,j,k+1)

+Θ
n+1,v
x,y,z − (ρfhqsc)

n+1
i,j,k − VbAHT

n+1,v
ri,j,k

− φqH
∣∣∣n+1

i,j,k
. (21)

where

Θ
n+1,v
x,y,z

ρfsc
= (hΦx)n+1,v

i−1/2,j,k(pi,j,k − pi−1,j,k)
n+1,v+1 − (hΦx)n+1,v

i+1/2,j,k(pi+1,j,k − pi,j,k)n+1,v+1

+ (hΦy)
n+1,v
i,j−1/2,k(pi,j,k − pi,j−1,k)

n+1,v+1 − (hΦy)
n+1,v
i,j+1/2,k(pi,j+1,k − pi,j,k)n+1,v+1

+ (hΦz)
n+1,v
i,j,k−1/2(pi,j,k − pi,j,k−1)n+1,v+1 − (hΦz)

n+1,v
i,j,k+1/2(pi,j,k+1 − pi,j,k)n+1,v+1 (22)

and

(Λf )x,y,z = (Λf )x

∣∣∣
i,j+1/2,k

+ (Λf )x

∣∣∣
i−1/2,j,k

+ (Λf )y

∣∣∣
i,j+1/2,k

+ (Λf )y

∣∣∣
i,j−1/2,k

+ (Λf )z

∣∣∣
i,j,k+1/2

+ (Λf )z

∣∣∣
i,j,k−1/2

. (23)

Finally, for the rock temperature,

(Λr)x

∣∣∣
i−1/2,j,k

Tn+1,v+1
ri−1,j,k

+ (Λr)y

∣∣∣
i,j−1/2,k

Tn+1,v+1
ri,j−1,k

+ (Λr)z

∣∣∣
i,j,k−1/2

Tn+1,v+1
ri,j,k−1

+(Λr)x

∣∣∣n+1

i+1/2,j,k
Tn+1,v+1
ri+1,j,k

+ (Λr)y

∣∣∣
i,j+1/2,k

Tn+1,v+1
ri,j+1,k

+ (Λr)z

∣∣∣
i,j,k+1/2

Tn+1,v+1
ri,j,k+1

−

{
(Λr)x,y,z + VbAH + Vb

[
(1− φ)ρccp

∆t

]n+1,v

i,j,k

}
Tn+1,v+1
ri,j,k

= −VbAHTn+1,v+1
fi,j,k

−Vb
[

(1− φ)ρrccp
∆t

]n+1,v

i,j,k

Tr
n
i,j,k − (1− φ)qH

∣∣∣n+1

i,j,k
(24)

where,

(Λr)x,y,z = (Λr)x

∣∣∣n+1

i,j+1/2,k
+ (Λr)x

∣∣∣n+1

i−1/2,j,k
+ (Λr)y

∣∣∣n+1

i,j+1/2,k
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+ (Λr)y

∣∣∣n+1

i,j−1/2,k
+ (Λr)z

∣∣∣n+1

i,j,k+1/2
+ (Λr)z

∣∣∣n+1

i,j,k−1/2
. (25)

3.3 Numerical solution of the linear subsystems

The third step of the FVM consists of the solution of the set of algebraic equations, Eqs. (19),
(21) and (24). Here we chose the Conjugate Gradient Method, a well known and efficient iterative
algorithm, to solve the three subsystems of linear equations (Ertekin, Abou-Kassem and King 2001),
knowing that the coefficient matrices are symmetric.

Fig. 3 depicts the main steps performed by the numerical code to obtain the values of p, Tf and Tr
using the linearization, the operator splitting, and the Conjugate Gradient Method (CG).

Fig. 3 Flowchart of the numerical solution of the subsystems
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4. Results and discussions

This section is dedicated to present and discuss the numerical results. The first subsection
introduces our default case. The following three subsections contain a sensibility analysis considering
the influence of the heaters and different values for heat transfer coefficient and porosity. The last
subsection is devoted to the comparison between the one- and two-equation models.

4.1 Default case

All pressure and temperature fields are obtained having as start point our default case. So we have
a vertical production well positioned in the middle of the xy-plan of the reservoir, and oil is produced
at a prescribed flow rate given by Qsc =

∑nz
1 qsc (nz is the cell numbers in z direction). The static

heaters are placed around the production well in a specific arrangement. We decided to place four
heaters (two in the x-direction and two in the y-direction, all parallel to z- direction) whose distance
to the producing well is equal to LT . In Tab. 1 we find the properties (porosity and permeability),
distance from each heater to the well, the lengths (Lx, Ly and Lz) of the reservoir, the flow rate, the
electric power of the heaters (QH =

∑nz
1 qH ), and the effective heat transfer coefficient.

Table 1 Properties of the reservoir

Parameter Unit Value Parameter Unit Value
φinit = φ0 - 0.3 Lz m 120
kx = ky = kz m2 1.0 10−15 Qsc STB/day -10.0
LT m 40 QH kW 320
Lx = Ly m 1.840 103 H W/m2K 2,000

Other important parameters are given in Table 2: initial time step (∆tinit), final time step
(∆tmax), time step increase rate (F∆t), maximum simulation time (tmax), initial pressure (Pinit),
initial temperatures for fluid (Tfini) and rock (Trini), and the number of cells (nx, ny and nz) in the
three spatial directions.

Table 2 Parameters for the numerical simulation

Parameter Unit Value Parameter Unit Value
∆tinit day 1.0 10−1 Trini K 330
∆tmax day 1.0 Tfini K 330
F∆t - 1.1 nx - 185
tmax day 200 ny - 185
Pinit kPa 1.0 104 nz - 5

Table 3 presents the properties with respect to the fluid (oil): standard and reference pressures,
standard temperature, reference temperature to determine the fluid viscosity, density and formation-
volume-factor of reference, a and b parameters for Eq. (3), coefficient of compressibility, coefficient
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of thermal expansion, heat capacity, and thermal conductivity.

Table 3 Fluid Properties

Parameter Unit Value Parameter Unit Value
psc kPa 101.3 a Pa.s 8.0 10−4

p0 kPa 69 103 b K 333.33
Tsc K 277.78 cf kPa−1 7.25 10−7

Trefµ K 277.7 cfT K −1 9.2 10−4

ρ0 kg/m 3 1,034 cpf J/kg.K 3 2,100
B0 RB/STB 1.3 κf W/m K 0.1225

Lastly, the properties of the rock are shown in Table 4: density, superficial specific area of the
fluid-rock interface, heat capacity, coefficient of compressibility, coefficient of thermal expansion,
and thermal conductivity.

Table 4 Rock properties

Parameter Unit Value Parameter Unit Value
ρr kg/m 3 2,500 cr kPa−1 4.35 10−7

A m −1 200 crT K −1 1.8 10−3

cpr J/kg.K 1,200 κr W/m K 4.5

The mesh we used in all simulations was chosen after a numerical convergence study, considering
the same flow and physical properties of the default case, but without heater-wells (see Fig. 4).

4.2 Static heaters

Our main goal is the study of the effect of static heating on heavy oil recovery. Hence, we
compare pressure and temperature curves calculated with and without heating considering that
H=2,000 W/m2K.

In Fig. 5, we can see the pressure distribution along the x-axis. There is a significant reduction
of the pressure gradient, near the producing well, when we use static heaters. It is mainly due to
oil viscosity reduction, which reduces the resistance to flow according to Darcy’s law. Therefore, a
lower pressure gradient is required to produce the same amount of oil (remind that the flow rate is
kept fixed).

Fluid and rock temperatures (Figs. 6 and 7) increase near the heaters as consequence of the extra
energy supply by them. We can also observe a temperature reduction for both fluid and rock where
the producing well is positioned due to the energy being withdrawn from the reservoir at that region.
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Fig. 4 Numerical convergence study for different nx × ny × nz meshes

4.3 Heat transfer coefficient

We now investigate the influence of the coefficient of heat transfer H . This parameter appears
explicitly in the source terms in the macroscopic energy equations for both fluid and rock phases,
and it takes into account the macroscopic heat exchanged between the fluid and the rock when there
is a temperature gradient. This coefficient is usually estimated experimentally, and its determination
is a difficult task when describing the heat transfer process (Lampe 2013). Typical values of this
coefficient range from 100-20,000 W/m2K and according to Lampe (2013) it may be defined as a
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Fig. 5 Pressure in the reservoir for H=2,000 W/m2K

Fig. 6 Fluid temperature for H=2,000 W/m2K

harmonic average of thermal conductivities.
Another possible approach to calculate this coefficient uses the Nusselt number to approximate

the H value. Hsieh and Lu (2000) consider that the Reynolds number plays a key role and as a
consequence velocity and viscosity are important parameters to determine H . Therefore, when the
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Fig. 7 Rock temperature for H=2,000 W/m2K

fluid velocity is low (or the viscosity is high), the H value tends to be low. The opposite applies
when the fluid velocity is high, or the viscosity is low. However, in the present work, we only
consider a range of values to verify the effect that the coefficient has on the temperature and pressure
distributions.

In Fig. 8, we represent |Tf −Tr| as a function of the position x for four different values ofH: 200,
400, 800 and 1,600W/m2K.We note that the higher the coefficient value, the smaller the temperature
difference between the fluid and rock. As the H coefficient increases, more energy is transferred
between the phases, and the phases will tend to the local thermal equilibrium. Otherwise, when the
coefficient of heat transfer decreases each phase will store more energy and the temperature difference
will be higher.

Furthermore, the temperature difference is greater near the heaters and producing well, where
there are an energy source and a heat sink. As the thermal properties of the fluid and rock are different
so are the temperatures, since, near the heaters (energy sources) accumulation, advection (only for
oil) and heat conduction are different depending on the phase considered. On the other hand, on the
producing well more energy is being withdrawn from the fluid as it is produced.

4.4 Porosity

Next, the objective is to evaluate the influence of porosity on pressure and temperature. In
Fig. 9 we can verify that the pressure gradient increases when porosity decreases, with respect to the
reservoir pressure far away from the producing well. For the three values, the lower the porosity, the
lower is the pressure at the producing well. If we want to recover the same amount of oil, for a fixed
flow rate, it is necessary a greater pressure gradient for a lower porosity.

With regard to temperatures, Fig. 10 shows the fluid temperature as a function of the porosity
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Fig. 8 Temperature difference |Tf − Tr| for H=200, 400, 800 and 1,600 W/m2K

(φ=0.2, 0.3 and 0.4). In the regions near the heaters the higher is the porosity, the higher is the
fluid temperature. This happens because the fluid heat capacity is high and, therefore, its capacity to
store energy and vice-versa. The rock temperature presents the same fluid temperature pattern as we
can see in Fig. 11. We can explain this behavior by considering that the heat transfer coefficient is
relatively high, H=2,000 W/m2K, and there is an important transfer of energy between both phases
(fluid and rock) leading to a thermal equilibrium.

4.5 Thermal equilibrium hypothesis

In general, we can use a one- or two-equation models to simulate heat transfer in porous media.
For the one-equation model we can assume (Tf = Tr) (Rousset, Huang and Durlofsky 2014) or not
(Tf 6= Tr) the hypothesis of local thermal equilibrium (Moyne et al. 2000). Although simpler, the
one-equation model is not suitable to be applied to all heat transfer problems, depending on the order
of magnitude of the thermal properties of the fluid and rock (Moyne and Amaral Souto 2014a, b).
In this work, to investigate the feasibility of the use of the two models, simulations were performed
employing both models: a one-equationmodel as proposed byMoyne et al. (2000) and a two-equation
model (similar to that used by Lampe (2013)).

In the two-equation model, as already stated, there are two macroscopic energy equations, one for
each phase (fluid and rock). On the other hand, the one-equation model considered here introduces an
average temperature (for the reservoir) that is obtained from the fluid and rock temperatures (Moyne
et al. 2000)

ρcp T = φρfcpfTf + (1− φ)ρrcprTr (26)

where ρcp = φρfcpf + (1− φ)ρrcpr is the average heat capacity of the reservoir.
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Fig. 9 Pressure in the reservoir for φ=0.2, 0.3 and 0.4

Fig. 10 Fluid temperature for φ=0.2, 0.3 and 0.4

The energy governing equation for this model is given by (Moyne et al. 2000)

∂

∂t
(ρcp T ) +∇ · (ρfhfv)−∇ · (K∇T )− qH

Vb
−
ρfhfqsc
Vb

= 0. (27)

Without considering neither tortuosity nor hydrodynamic dispersion, the thermal dispersion tensor is



164 J. D. S. Heringer, J. G. S Debossam, G. Souza and H. P. Amaral Souto

Fig. 11 Rock temperature for φ=0.2, 0.3 and 0.4

reduced to
K = [φκf + (1− φ)κr] I. (28)

As there is a source term in the two-equation model, in both equations, that depends on the
specific area A, the heat transfer coefficient H , and the temperature difference between the fluid and
rock, a set of tests was carried out to determine the influence of the heat transfer coefficient. As we
know, this source term is responsible for estimating the energy transfer from the fluid to the rock and
vice-versa.

Now, to compare the temperatures of the reservoir issue from the two-models, a new average
temperature (T2) is calculate according to Eq. (26) using Tr and Tf values determined with Eqs. (9)
and (10) respectively. Thus, Figs. 12, 13, 14 and 15 contain the temperature distribution along the
x-axis for Tr, Tf , T1 = T (temperature of the reservoir determined with the one-equation model,
Eq. (27)) and T2 for four different H values.

We realize that forH=200 W/m2K (Fig. 12) the average temperatures T1 and T2 are different and
the results do not match for the one- and two-equation models and Tf 6= Tr. As we increase the heat
transfer coefficient, we observe that the temperature T2 tends to converge to the values predicted by
the one-equation model (T1). For example, in Fig. 13 there is only a slight difference between the
temperatures T1 and T2, and still Tf 6= Tr. With H=800 and 1,600 W/m2K, Figs 14 and 15, we can
consider that the system has attained the local thermal equilibrium and Tf = Tr = T1 = T2, Fig. 15.
However, the one-equation model does not directly provide fluid and rock temperatures when they
are different, but rather the average reservoir temperature.

We emphasize that these conclusions apply only to the variation of the heat transfer coefficient
(see Lampe (2013) for the range of H). However, properties such as the relationship between thermal
diffusivity and thermal conductivity play a fundamental role in the accuracy of the twomodels (Moyne
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and Amaral Souto 2014a, b).

Fig. 12 Temperature distribution in the reservoir considering H=200 W/m2K

Fig. 13 Temperature distribution in the reservoir considering H=400 W/m2K
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Fig. 14 Temperature distribution in the reservoir considering H=800 W/m2K

Fig. 15 Temperature distribution in the reservoir considering H=1, 600 W/m2K

5. Conclusions

In this work, we investigated an enhanced oil recovery thermal method, and a set of tests were
performed to verify the feasibility of this recovery method using static heaters.

The sensibility analysis shows that significant gain can be achieved in oil recovery using static
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heaters, due to the decrease in heavy oil viscosity as well as of the resistance to flow through the
reservoir. Therefore, for a fixed flow rate, the same amount of oil can be produced with a lower
pressure gradient as a result of this reduction.

The heat transfer coefficient, besides the thermal properties, has an important role since for
higherH values both one- and two-equation models tend to provide the same results for the reservoir
temperature. Moreover, in these cases, even the local thermal equilibrium can be attained and the
equality between fluid and rock temperatures can be a good approximation. Otherwise, for lower
values the two-equation model is best suited to be used in practice. In this work the determination of
this coefficient was not studied in depth, but for future works it will be investigated.
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