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Abstract.  The semi-active optimal vibration control of nonlinear torsion-bar suspension vehicle systems 

under random road excitations is an important research subject, and the boundedness of MR dampers and 

the uncertainty of vehicle systems are necessary to consider. In this paper, the differential equations of 

motion of the coupling torsion-bar suspension vehicle system with MR damper under random road 

excitation are derived and then transformed into strongly nonlinear stochastic coupling vibration equations. 

The dynamical programming equation is derived based on the stochastic dynamical programming principle 

firstly for the nonlinear stochastic system. The semi-active bounded parametric optimal control law is 

determined by the programming equation and MR damper dynamics. Then for the uncertain nonlinear 

stochastic system, the minimax dynamical programming equation is derived based on the minimax 

stochastic dynamical programming principle. The worst-case disturbances and corresponding semi-active 

bounded parametric optimal control are obtained from the programming equation under the bounded 

disturbance constraints and MR damper dynamics. The control strategy for the nonlinear stochastic vibration 

of the uncertain torsion-bar suspension vehicle system is developed. The good effectiveness of the proposed 

control is illustrated with numerical results. The control performances for the vehicle system with different 

bounds of MR damper under different vehicle speeds and random road excitations are discussed. 
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The stochastic vibration of vehicles subjected to rough road excitations as random processes is 

an important problem, which can degrade vehicle performance. The stochastic vibration control of 

vehicles under random road excitations is a significant research subject. The vehicle vibration 

control is performed commonly by suppressing vehicle suspension vibration using smart devices 

such as magneto-rheological (MR) dampers (Tseng and Hrovat 2015, Sharp and Peng 2011, 

Spencer et al. 1997, Dyke et al. 1996, Spencer and Nagarajaiah 2003, Casciati et al. 2012, Ying et 

al. 2003, Wang and Liao 2009a, b, Li et al. 2013, Kavianipour 2017, Raheem 2018, Karami et al. 

2016). The suspension coupled with MR dampers by semi-active control is called the intelligent 

suspension. The suspension, wheel, shafts, elbows and MR dampers compose a coupling vehicle 

system. The vehicle system with vertically supported suspension is firstly studied. The linear 

active controls such as linear quadratic (LQ) control for linear vehicle suspension systems have 

been presented (Tseng and Hrovat 2015, Sharp and Peng 2011, Thompson 1976, Hac 1985, Ulsoy 

et al. 1994). The MR damper has been applied to vehicle suspension systems, and the semi-active 

controls such as sky-hook control and proportional-integral-derivative control have been presented 

(Tseng and Hrovat 2015, Sharp and Peng 2011, Zhang et al. 2006, Yu et al. 2009, Du et al. 2011, 

Cunha and Chavarette 2014, Gad et al. 2017). The certain nonlinearity has been considered for the 

large amplitude vibration of vehicle systems, and the active and semi-active controls such as LQ 

control for linearization vehicle systems have been presented (Turnip et al. 2008, Rao and 

Narayanan 2009, Balamurugan et al. 2014, Khiavi et al. 2014). The uncertainty of vehicle systems 

with MR dampers has been considered, and the adaptive control, fuzzy logic control and neural 

network control for uncertain vehicle systems have been presented, which controls differ from the 

optimal controls (Choi et al. 2002, Guo et al. 2004, Du et al. 2005, Nilkhamhang et al. 2008, 

Nguyen et al. 2015, Majdoub et al. 2015, Phu et al. 2016). 

However, those researches on the vehicle vibration control were based on the vertically 

supported suspension, and then the coupling relation between vehicle suspension and supports is 

not the large-motion nonlinearity. For special kinds of vehicles, the suspension is supported by 

rotatable inclined elbows and MR dampers due to the spatial limitation, simple and compact 

structure, which is called the torsion bar suspension. As a result of the elbow or bar rotation, the 

coupling relation between vehicle suspension and supports is the essential large-motion 

nonlinearity. The strong nonlinear vibration of vehicle systems with the torsion bar suspension and 

then the nonlinear stochastic vibration control of the vehicles are very different from that of 

ordinary vehicles. Only the structure optimization of the torsion bar suspension has been studied 

by the multi-body dynamics analysis (Fichera et al. 2004, Mun et al. 2010). Therefore, the 

nonlinear stochastic vibration control of the torsion-bar suspension vehicle systems is necessary to 

study. 

In fact, the control force produced by MR dampers is bounded due to magnetic saturation and 

MR fluid properties, and then the control boundedness needs to be considered (Ying et al. 2007, 

2015). On the other hand, there are always the uncertainties of actual control system parameters 

and the difference between actual system parameters and corresponding model parameters, which 

can make the control performance degenerated (Debbarma and Chakraborty 2015). The control 

designed for uncertain systems is frequently referred to as robust control. The minimax control 

based on the differential game theory is an optimal robust control, and it determines the optimal 

control according to the worst system to achieve robustness (Ying 2010, Basar and Bernhard 1995). 

Therefore, the bounded minimax control for the nonlinear stochastic vibration of the uncertain 

torsion-bar suspension vehicle systems needs to be studied further. 

In this paper, the semi-active bounded minimax control for the nonlinear stochastic vibration of 
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the uncertain torsion-bar suspension vehicle system with MR damper is studied. The nonlinear 

coupling vehicle system with the torsion bar suspension and MR damper under random road 

excitation is considered. First, the vehicle system is model l ed as a two-degree-of-freedom 

nonlinear stochastic system with the coupling vertical motion of vehicle body and rotation of 

inclined elbow. The differential equations of motion of the torsion-bar suspension vehicle system 

with MR damper under random road excitation are established and then transformed into strongly 

nonlinear stochastic coupling vibration equations. The optimal parametric control problem of the 

nonlinear stochastic vibration of the vehicle system is given. Second, for the optimal parametric 

control problem of the nonlinear stochastic vibration of the coupling torsion-bar suspension 

vehicle system with MR damper under random road excitation, the dynamical programming 

equation is derived based on the stochastic dynamical programming principle. The bounded 

optimal vibration control law is determined by the dynamical programming equation and the 

bounded constraint of MR damper. Then the semi-active bounded optimal control is determined 

based on the MR damper dynamics. Third, the uncertainty of system parameters including stiffness 

and damping is considered further. The optimal parametric control problem of the nonlinear 

stochastic vibration of the uncertain vehicle system is given and solved using the stochastic 

dynamical programming principle, minimax stochastic control based on the differential game 

theory and semi-active bang-bang control strategy. For the optimal parametric control problem of 

the nonlinear stochastic vibration of the uncertain coupling torsion-bar suspension vehicle system 

with MR damper under random road excitation, the dynamical programming equation is derived 

based on the minimax stochastic dynamical programming principle. Under the bounded 

disturbance constraints and MR damper dynamics, the worst-case disturbances and corresponding 

semi-active bounded optimal control are obtained by the maximization and minimization of the 

dynamical programming equation. The random road excitation is produced by filtering Gaussian 

white noise. The semi-actively and passively controlled system responses are obtained using 

numerical algorithm. The control effectiveness of the proposed strategy is evaluated using the 

relative response reduction. Finally, numerical results are given to illustrate the effectiveness of the 

semi-active bounded optimal control for the nonlinear stochastic vibration of the uncertain torsion-

bar suspension vehicle system with MR damper under random road excitation. 

 

 

2. Optimal vibration control equations of torsion-bar suspension vehicle system 
 

The coupling torsion-bar suspension vehicle system with rotatable inclined elbow and MR 

damper is simplified as a two-degree-of-freedom (yc and θz) dynamic system with control as shown 

in Fig. 1. The vehicle body and suspension are modelled by mass mc, and the wheels are modelled 

by mass mw. The suspension is supported by the rotatable inclined elbow and controlled by MR 

damper. The vertical motion of the vehicle body is considered which is described by the absolute 

coordinate yc, and the rotation is neglected. The rotation of the inclined elbow with length lz is 

considered, which is represented by the angle coordinate θz. The wheel has vertical and horizontal 

coupling motions which are determined by coordinates yc and θz. The elbow has the torsion 

stiffness kr and the pre-set angle θz0. The wheel has the support stiffness ks and the original length 

is rw0. The horizontal and vertical coordinates of the MR damper are x1d and yc+y1d, respectively, 

which determine the inclined angle θd and the distance ld between two ends. The rough road has 

the horizontal baseline represented by axis x. The road roughness is described by the coordinate 

yr(x) as a function of x. If the vehicle with wheel moves at speed v, the yr(vt) becomes the time 
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function or random road excitation. According to the Lagrangian equations, the differential 

equations of motion of the coupling torsion-bar suspension vehicle system with MR damper are 

obtained as 
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where g is the acceleration of gravity, and Fd is the force produced by the MR damper. Based on 

the Bingham model, Fd is expressed as 
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where C0 is the viscous damping coefficient, fy is the yield force, and U is the semi-active control 

force. The force fy or U can be adjusted by applied external voltages. However, its value is 

bounded due to magnetic saturation, for example, fy[0, Ua], where Ua is a constant. The distance 
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Fig. 1 Simplified model of torsion-bar suspension vehicle system 
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By uncoupling the second-order derivative terms and using Eqs. (3)-(5), Eqs. (1) and (2) are 

converted into the differential equations for coordinate yc and θz 
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The equilibrium equations can be obtained from Eqs. (6) and (7). By eliminating the 

equilibrium relation, Eqs. (6) and (7) are transformed into the vibration equations 
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where the line displacement u=yc−y0, the angular displacement =θz−θ0, y0 and θ0 are the line and 

angular coordinates in static equilibrium, respectively. Eqs. (8) and (9) are the strong nonlinear 

coupling differential equations, which describe the nonlinear vibration of the coupling torsion-bar 

suspension vehicle system with MR damper under random road excitation. The semi-active 

vibration control is performed by the MR damper with U. 

To determine the control U, introduce the system state vector T],,,[  uu=Z . Eqs. (8) and (9) 

are rewritten as 

)()()( tyU rFZBZAZ ++=
 (10) 

where vectors A(Z), B(Z) and F are determined by Eqs. (8) and (9). The control U is a parameter 

coupled with the system state Z, and then system (10) determines the parametric control problem. 

The control aim is to minimize system response Z. The performance index of the stochastic 

optimal control is expressed as 

U
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where E[] is the expectation operator, gc(Z,U)≥0, tf is the terminal time, and  is the terminal 

value of the control. Eqs. (10) and (11) construct the optimal parametric control problem of the 

nonlinear stochastic vibration of the vehicle system. 

 

 

3. Bounded vibration control law 
 

For the optimal parametric control problem of the nonlinear stochastic vibration of the coupling 

torsion-bar suspension vehicle system with MR damper under random road excitation, the 

vibration control law can be determined based on the stochastic dynamical programming principle 

and semi-active bang-bang strategy (Ying et al. 2007, 2015). According to the stochastic 

dynamical programming principle, the dynamical programming equation for system (10) and 

index (11) is obtained as 
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where V(Z,t) is the value function, Dy is the intensity of random excitation yr as filtering Gaussian 

white noise, and tr() is the trace operator. The control force U produced by the MR damper is 

bounded due to magnetic saturation, and the bounded constraint is expressed as 

aUU   (13) 

where Ua is the control bound. For the bounded optimal control, the function gc can be chosen as 

independent of U. The bounded optimal vibration control law is determined by minimizing the 

second term on the left side of Eq. (12) under constraint (13) as 
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Substituting the optimal control (14) into Eq. (12) yields the value function equation 
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The value function V is obtained by solving Eq. (15). Then the optimal control force U* can be 

obtained by substituting V into Eq. (14). However, the semi-active optimal control force has to 

conform with the dynamics of the MR damper as given by Eq. (3). Thus, the semi-active bounded 

optimal control is further determined as 
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4. Minimax optimal control law for uncertain system 

 

The uncertainty of actual control system parameters can make the above control performance 

degenerated. Then the uncertain system needs to be considered and the minimax control based on 

the differential game theory can be used. For the torsion-bar suspension vehicle system with MR 

damper, the stiffness and damping (kr, ks, C0) are considered as uncertain parameters. Based on Eqs. 

(8) and (9), the nonlinear vibration equations of the uncertain torsion-bar suspension vehicle 

system with MR damper under random road excitation are expressed as 
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where 
rk , sk , 

0C  are respectively the nominal torsion stiffness, support stiffness and viscous 

damping, and 
rk

~
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C  are the corresponding parameter disturbances. It is assumed that the 

uncertain parameter disturbances are bounded and expressed as ],[
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Eqs. (17) and (18) are converted into the system state equation 
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where vectors )(ZA , )(ZB , F  and matrix f(Z) are determined by Eqs. (17) and (18). System 

(20) determines the uncertain parametric control problem. The performance index of the stochastic 

minimax optimal control is expressed as 

ζ
ZζZZζ maxmin)}]({d},),({[),,(

0 U
f

t

c ttUtgEUJ f →+= ∫  (21) 

Eqs. (20) and (21) construct the minimax optimal parametric control problem of the nonlinear 

stochastic vibration of the coupling torsion-bar suspension vehicle system with MR damper under 

random road excitation. The vibration control law can be determined based on the minimax 

stochastic dynamical programming principle and semi-active bang-bang strategy (Ying 2010, 

Basar and Bernhard 1995). According to the minimax stochastic dynamical programming principle, 

the dynamical programming equation for system (20) and index (21) is obtained as 
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ζZfZBZA
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FF

ζ
 (22) 

The bounded control constraint of the MR damper is given by Eq. (13), and the bounded 

disturbance constraints are given by Eq. (19). The worst-case disturbances are determined by 

maximizing the left side of Eq. (22) under constraints (19) as 

ipii

V
bζ )sgn( T*

Z
f




=  (23) 

Submitting the worst-case disturbances (23) into Eq. (22) yields the dynamical programming 

equation for the worst case 
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The bounded optimal vibration control law is determined by minimizing the left side of Eq. (24) 

under constraint (13) as 

)sgn( T*

Z
B




−=

V
UU a  (25) 

Substituting the optimal control (25) into Eq. (24) yields the value function equation 
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The value function V is obtained by solving Eq. (26). Then the worst-case disturbances * and 

the corresponding optimal control force U* can be obtained by substituting V into Eqs. (23) and 

(25), respectively. Further, the semi-active bounded optimal control for uncertain torsion-bar 

suspension vehicle system with MR damper is determined based on the MR damper dynamics (3) 

as 
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
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(27) 

The optimally controlled system with uncertain parameters is determined by substituting the 

control (27) and disturbances (23) into Eq. (20), and the controlled system responses are obtained 

by solving the equation. According to the minimax strategy, the response of the optimally 

controlled system with non-worst-case disturbances is smaller than that of the optimally controlled 

system with the worst-case disturbances. Thus the minimax semi-active bounded control for the 

uncertain vehicle system is robust. 

 
 
5. Numerical results and discussions 
 

To illustrate the application and effectiveness of the proposed semi-active bounded minimax 

control strategy, consider the uncertain torsion-bar suspension vehicle system with parameters 

mc=3000 kg, mw=105 kg, lz=0.35 m, kr=14.5 kNm/rad, ks=2×104 kN/m, θz0=1 rad, rw0=0.295 m, 

x1d=0.621 m, y1d=0.312 m, C0=1500 kg/s, kr
0=500 Nm/rad, ks

0=6×102 kN/m, C0
0=50 kg/s and 

Ua=15 kN. The random road excitation yr(t) is modelled by filtering Gaussian white noise, and its 

differential equation is 

)()(π2π2 0000 tWvnGnvyny qrr =+  (28) 

where n00=0.01 m-1 is the spatial cut-off frequency, n0=0.1 m-1 is the reference space frequency, v is 

the vehicle speed, W(t) is the Gaussian white noise with unit intensity, and Gq(n0) is the power 

spectral density of road surface under the reference space frequency n0, which is called the road 

roughness coefficient. According to different values of Gq(n0), the road roughness can be classified 

into different grades such as grade C. The semi-actively (U*) and passively (U*=0) controlled 

system responses are obtained by solving Eq. (10) or (20) using the Runge-Kutta algorithm. The 

semi-active bounded optimal control effectiveness is evaluated by the relative response reduction 

%100
passive

activesemipassive


−
=

−




K  (29) 

where semi-active and passive are the standard deviations of the semi-actively and passively 

controlled system responses, respectively. A larger value of K indicates a better control 

effectiveness. 

 

5.1 Bounded vibration control 
 

A field road is considered usually as grade C for the vehicle vibration analysis. Fig. 2 shows a 

sample of the displacement yr of C-grade road under the vehicle speed of v=50 km/h, the power 

spectral density of which is shown in Fig. 3. Fig. 4 shows the vehicle body displacement (u) by 

using the proposed semi-active bounded optimal control for the C-grade road and vehicle speed of  
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Fig. 2 Displacement excitation (yr) of C-grade road under vehicle speed 50 km/h 

 

 

Fig. 3 Power spectral density of C-grade road under vehicle speed 50 km/h 

 

 

Fig. 4 Semi-actively and passively controlled vehicle body displacements for C-grade road and vehicle 

speed 50 km/h 

Time (s) 
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Fig. 5 Power spectral densities of semi-actively and passively controlled vehicle body displacements for C-

grade road and vehicle speed 50 km/h 

 

 
Fig. 6 Semi-active control force for vehicle under C-grade road and vehicle speed 50 km/h 

 

 
Fig. 7 Standard deviations (SD) of semi-actively and passively controlled vehicle body displacements under 

C-grade road for different vehicle speeds 
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Fig. 8 Effectiveness of semi-actively controlled vehicle body displacement under C-grade road for different 

vehicle speeds 

 

 

Fig. 9 Effectiveness of semi-actively controlled vehicle body displacement for different road grades and 

vehicle speeds 

 

 
Fig. 10 Effectiveness of semi-actively controlled vehicle body displacement for different road grades and 

control bounds 
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50 km/h, compared with the passively controlled vehicle body displacement. The passive control is 

for the MR damper with viscous damping force (
dlC 

0
) and semi-active control force U=0. The 

corresponding power spectral densities of the semi-actively and passively controlled vehicle body 

displacements are shown in Fig. 5. The semi-active bounded optimal control force is shown in Fig. 

6. The standard deviation of the vehicle body displacement is reduced from passively controlled 

0.053 m to semi-actively controlled 0.013 m. The control effectiveness (K) or the relative response 

reduction of the displacement standard deviation is 74.9%. Thus, the vehicle body vibration is 

suppressed largely by using the proposed semi-active bounded optimal control. 

Fig. 7 shows the standard deviation of the semi-actively controlled vehicle body displacement 

(u) under the C-grade road for different vehicle speeds (v), compared with the standard deviation 

of the passively controlled vehicle body displacement. The control effectiveness (K) or the relative 

response reduction of the displacement standard deviation is shown in Fig. 8. It is seen that the 

control effectiveness of the vehicle body vibration increases with the vehicle speed. For road 

grades A, B and C, Fig. 9 shows the control effectiveness (K) or the relative response reductions of 

the standard deviations of the semi-actively controlled vehicle body displacements (u) for different 

vehicle speeds (v). The control effectiveness of the vehicle body vibration is insensitive to the road 

grade. Fig. 10 shows the control effectiveness (K) or the relative response reductions of the 

standard deviations of the semi-actively controlled vehicle body displacements (u) under the 

vehicle speed of 50 km/h for different control force bounds (Ua). The control effectiveness of the 

vehicle body vibration increases with the control force bound. However, the control effectiveness 

is improved significantly by increasing smaller control bound, and the improvement of the control 

effectiveness is limited for larger control bound (for example, Ua>150 kN). It is obtained that the 

proposed semi-active bounded control strategy can achieve the good control effectiveness for the 

nonlinear stochastic vibration of the torsion-bar suspension vehicle system. 
 

5.2 Minimax bounded vibration control for uncertain system 
 

Further, consider the uncertain torsion-bar suspension vehicle system with the uncertain 

stiffness and damping (kr, ks, C0). The nominal torsion stiffness, support stiffness and viscous 

damping are rk =14.5 kNm/rad, sk =2×104 kN/m, 0C =1500 kg/s, and the disturbance bounds of 

the uncertain parameters (kr
0, ks

0, C0
0) are given as above. The uncertainty of the torsion-bar 

suspension vehicle system can make the control (16) performance degenerated. Then the semi-

active minimax bounded optimal control (27) for the worst-case disturbances is used for the 

uncertain torsion-bar suspension vehicle system under random road excitation. Fig. 11 shows the 

vehicle body displacement (u) with the worst-case disturbances by using the semi-active minimax 

bounded optimal control for the C-grade road and vehicle speed of 50 km/h, which is compared 

with the passively controlled vehicle body displacement. Fig. 12 shows the corresponding power 

spectral densities of the semi-actively minimax-controlled and passively controlled vehicle body 

displacements. The semi-active minimax bounded optimal control force is shown in Fig. 13. The 

standard deviation of the vehicle body displacement is reduced from passively controlled 0.053 m 

to semi-actively minimax-controlled 0.016 m. The control effectiveness (K) or the relative 

response reduction of the displacement standard deviation is 69.1%. The vehicle body vibration is 

also suppressed largely by using the proposed semi-active minimax bounded optimal control. 

Fig. 14 shows the standard deviation of the semi-actively minimax-controlled vehicle body 

displacement (u) under the C-grade road for different vehicle speeds (v), which is compared with  
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Fig. 11 Semi-actively minimax-controlled and passively controlled vehicle body displacements for C-grade 

road and vehicle speed 50 km/h 

 

 
Fig. 12 Power spectral densities of semi-actively minimax-controlled and passively controlled vehicle body 

displacements for C-grade road and vehicle speed 50 km/h 

 

 

Fig. 13 Semi-active minimax control force for vehicle under C-grade road and vehicle speed 50 km/h 
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Fig. 14 Standard deviations (SD) of semi-actively minimax-controlled and passively controlled vehicle body 

displacements under C-grade road for different vehicle speeds 

 

 

the standard deviation of the passively controlled vehicle body displacement. Fig. 15 illustrates the 

control effectiveness (K) or the relative response reduction of the displacement standard deviation. 

The control effectiveness of the uncertain vehicle body vibration increases nonlinearly with the 

vehicle speed, but decreases for larger vehicle speed, because the minimax control has a 

complicated dependence on random road excitation or vehicle speed and the passively controlled 

displacement increases correspondingly. For road grades A, B and C, Fig. 16 shows the control 

effectiveness (K) or the relative response reductions of the standard deviations of the semi-actively 

minimax-controlled vehicle body displacements (u) for different vehicle speeds (v). The control 

effectiveness of the uncertain vehicle body vibration for grade A or B is better than that for grade C, 

in particular, for larger vehicle speed. Fig. 17 shows the control effectiveness (K) or the relative 

response reductions of the standard deviations of the semi-actively minimax-controlled vehicle 

body displacements (u) under the vehicle speed of 50km/h for different control force bounds (Ua). 

The control effectiveness of the uncertain vehicle body vibration increases with the control force 

bound. Similarly, the control effectiveness is improved remarkably by increasing smaller control 

bound, and the improvement of the control effectiveness is limited for larger control bound. 

Figs. 18 and 19 show the control effectiveness (K) or the relative response reductions of the 

standard deviations of the semi-actively minimax-controlled vehicle body displacements (u) under 

the C-grade road and vehicle speed of 50km/h for different damping disturbance bounds (C0
0) and 

torsion-stiffness disturbance bounds (kr
0), respectively. It is seen that the control effectiveness of 

the uncertain vehicle body vibration is insensitive to the damping and torsion-stiffness disturbance 

bounds as given. Fig. 20 illustrates that the control effectiveness (K) or the relative response 

reduction of the standard deviations of the semi-actively minimax-controlled vehicle body 

displacement (u) decreases nonlinearly as the support-stiffness disturbance bound (ks
0) increases. 

Thus, the support stiffness needs to be determined accurately or the support-stiffness disturbance 

bound needs to be reduced to obtain better semi-active minimax control effectiveness for the 

uncertain vehicle body vibration. However, the proposed semi-active minimax bounded control 

strategy can also achieve the good control effectiveness for the nonlinear stochastic vibration of 

the uncertain torsion-bar suspension vehicle system. 
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Fig. 15 Effectiveness of semi-actively minimax-controlled vehicle body displacement under C-grade road 

for different vehicle speeds 

 

 
Fig. 16 Effectiveness of semi-actively minimax-controlled vehicle body displacement for different road 

grades and vehicle speeds 

 

 

Fig. 17 Effectiveness of semi-actively minimax-controlled vehicle body displacement for different road 

grades and control bounds 
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Fig. 18 Effectiveness of semi-actively minimax-controlled vehicle body displacement for different damping 

disturbance bounds 

 

 
Fig. 19 Effectiveness of semi-actively minimax-controlled vehicle body displacement for different torsion-

stiffness disturbance bounds 

 

 
Fig. 20 Effectiveness of semi-actively minimax-controlled vehicle body displacement for different support-

stiffness disturbance bounds 
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6. Conclusions 
 

The stochastic optimal semi-active control problem of the strongly nonlinear vibration of the 

uncertain coupling vehicle system with rotatable inclined supports and MR damper under random 

road excitation has been studied. The two-degree-of-freedom nonlinear stochastic system with the 

coupling vertical motion of vehicle body and rotation of inclined elbow has been modelled for the 

torsion-bar suspension vehicle system. The differential equations of motion of the nonlinear 

torsion-bar suspension vehicle system with MR damper under random road excitation have been 

derived. For the optimal parametric control problem of the nonlinear stochastic vibration of the 

uncertain torsion-bar suspension vehicle system with MR damper under random road excitation, 

the dynamical programming equation has been obtained based on the minimax stochastic 

dynamical programming principle. The semi-active bounded optimal vibration control law has 

been determined by the dynamical programming equation and MR damper dynamics. The control 

effectiveness has been evaluated using the relative response reduction of the semi-actively 

optimal-controlled vehicle body vibration compared with the passively controlled vehicle body 

vibration. 

Numerical results illustrate that: (1) the proposed semi-active bounded optimal control strategy 

has the good control effectiveness for the nonlinear stochastic vibration of the torsion-bar 

suspension vehicle system; (2) the semi-active optimal control effectiveness of the nonlinear 

stochastic vehicle system increases with the control force bound of MR damper, especially for 

small control force; (3) the semi-active optimal control effectiveness of the nonlinear stochastic 

vehicle system increases with the vehicle speed, but it can decrease for the uncertain vehicle 

system and higher road grade; (4) the semi-active optimal control effectiveness of the uncertain 

nonlinear stochastic vehicle system is insensitive to the damping and torsion-stiffness disturbance 

bounds and then is robust, but it decreases nonlinearly as the support-stiffness disturbance bound 

increases and then the support stiffness needs to be determined accurately. In a word, the proposed 

semi-active bounded optimal control can effectively suppress the nonlinear stochastic vibration of 

the uncertain vehicle system with MR damper under random road excitation. 
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Nomenclature 

 

A system vector 

A  uncertain system vector 

B parameter vector related to control 

B  uncertain system parameter vector related to control 

bpi parameter disturbance bound of i 

C0 viscous damping coefficient of MR damper 

0C  nominal value of C0 
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0

~
C  disturbance of C0 

C0
0 disturbance bound of C0 

Dy intensity of random excitation 

f parameter matrix related to disturbance 

F parameter vector related to excitation 

F  uncertain system parameter vector related to excitation 

Fd force produced by MR damper 

fy yield force of MR damper 

g acceleration of gravity 

gc function in performance index 

Gq power spectral density of road surface 

kr torsion stiffness 

rk  nominal value of kr 

rk
~

 disturbance of kr 

kr
0 disturbance bound of kr 

ks support stiffness 

sk  nominal value of ks 

sk
~

 disturbance of ks 

ks
0 disturbance bound of ks 

ld distance between two ends of MR damper 

lz support elbow length 

mc vehicle body mass 
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mw wheel mass 

n0 reference space frequency of random road 

n00 spatial cut-off frequency of random road 

rw0 original length of wheel radius 

tf control terminal time 

u displacement corresponding to yc 

U semi-active control force of MR damper 

Ua upper bound of U 

v vehicle speed 

V value function of control 

W Gaussian white noise 

x1d horizontal coordinate of upper MR damper end 

y1d height difference of two connected points of vehicle body 

yc vertical coordinate of vehicle body 

yr vertical coordinate of rough road or excitation 

Z system state vector 

 displacement corresponding to θz 

 control effectiveness or relative response reduction 

 standard deviation of system response 

θd inclined angle of MR damper 

θz angle coordinate of support elbow 

θz0 pre-set angle of θz 

 parameter disturbance vector 
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