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Abstract.  In this paper, we present a numerical model for fluid-structure interaction between structure built 

of porous media and acoustic fluid, which provides both pore pressure inside porous media and 

hydrodynamic pressures and hydrodynamic forces exerted on the upstream face of the structure in an unified 

manner and simplifies fluid-structure interaction problems. The first original feature of the proposed model 

concerns the structure built of saturated porous medium whose response is obtained with coupled discrete 

beam lattice model, which is based on Voronoi cell representation with cohesive links as linear elastic 

Timoshenko beam finite elements. The motion of the pore fluid is governed by Darcy’s law, and the 

coupling between the solid phase and the pore fluid is introduced in the model through Biot’s porous media 

theory. The pore pressure field is discretized with CST (Constant Strain Triangle) finite elements, which 

coincide with Delaunay triangles. By exploiting Hammer quadrature rule for numerical integration on CST 

elements, and duality property between Voronoi diagram and Delaunay triangulation, the numerical 

implementation of the coupling results with an additional pore pressure degree of freedom placed at each 

node of a Timoshenko beam finite element. The second original point of the model concerns the motion of 

the outside fluid which is modeled with mixed displacement/pressure based formulation. The chosen finite 

element representations of the structure response and the outside fluid motion ensures for the structure and 

fluid finite elements to be connected directly at the common nodes at the fluid-structure interface, because 

they share both the displacement and the pressure degrees of freedom. Numerical simulations presented in 

this paper show an excellent agreement between the numerically obtained results and the analytical 

solutions. 
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1. Introduction 
 

When the fluid-structure systems such as dam-reservoir are subjected to dynamic loading, next 

to the hydrostatic pressures, additional hydrodynamic pressures are exerted on the upstream face 

of the structure. In order to conduct the sound design of the structure, the value and the distribution 

of hydrodynamic pressure have to be computed either from analytical solutions proposed in the 

literature or with numerical methods. In everyday engineering practice the analytical solutions or 

numerical models that tend to have wider application are usually the ones that are predictive, and 

yet simple enough.  

The problem of evaluating the value and the distribution of the hydrodynamic pressure was first 

examined in the work of Westergaard (Westergaard 1933). Westergaard proposed an analytical 

solution for a rigid dam with vertical upstream face subjected to horizontal harmonic motion. Von 

Kármán proposed an analytical solution, which is very close to the Westergaard’s using linear 

momentum balance principle (Von Kármán 1933). Later, Chwang and Housner, also using 

momentum method, derived the analytical solution for the general case of an inclined upstream 

face of the dam subjected to constant horizontal acceleration (Chwang and Housner 1978). In the 

second part of his work, Chwang derived the analytical solution using two-dimensional potential 

flow theory (Chwang 1978). The computation of hydrodynamic pressure distribution exerted on 

the retaining structures due to submerged backfill soils is in close relation with computation of 

hydrodynamic pressure distribution exerted on the upstream face of the dams. For example, 

Matsuzawa et al. (Matsuzawa et al. 1985) provided generalized apparent angle of seismic 

coefficient to compute hydrodynamic pressure distribution on retaining structures, depending on 

the soil permeability, inclined wall angle and ratio of the backfill length to height.    

In the category of fluid-structure interaction problems in which fall the structures such as dam-

reservoir systems, storage tanks or water containers, the outside fluid motion can be regarded as 

small. This allows for the outside fluid to be modeled as Lagrangian, and the governing equations 

to be derived from acoustic wave theory. For evaluating the values and distribution of 

hydrodynamic pressure exerted on the upstream face of the dam, many numerical models of 

acoustic fluid-structure interaction have been proposed. Here, the structure is usually regarded as 

rigid or linear elastic and the response of the structure is obtained with continuum type of models 

in which the domain is discretized with 2D or 3D finite elements, which have displacement 

degrees of freedom per node. The numerical models of acoustic fluid-structure interaction in 

which the outside fluid motion is described with pressure based formulation can be found in 

(Zienkiewicz and Bettess 1978, Mitra and Sinhamahapatra 2008, Keivani et al. 2013, Mandal and 

Maity 2015). In the pressure based formulation, only unknown degree of freedom per node of a 

fluid element is the pressure. Hence, a special treatment of the fluid-structure interface is needed 

because the structure and the fluid finite element do not share the same degrees of freedom. In 

(Hamdi et al. 1978, Chen and Taylor 1990, Pelecanos et al. 2013) the fluid motion is described 

with displacement based finite element formulation. The advantage of this formulation is that both 

the fluid and structure share the same displacement degrees of freedom. However, one has to keep 

in mind that in fluid-structure interaction problems, the outside fluid acts as a source of the 

saturation keeping the material of the structure fully saturated at each time step. Hence, we need to 

take into account the presence of the pore fluid on the response of the structure which is very 

important, for example in the case of earth dams where an increase in the pore pressure in dynamic 

setting can lead to the liquefaction phenomenon. In other words, we ought to model the structure 

as a saturated porous medium. In (Wang and Wang 2007), the structure is modeled as a saturated 

650



 

 

 

 

 

 

Fluid-structure interaction system predicting both internal pore pressure…  

porous medium and the motion of the outside fluid is described with potential based finite element 

formulation. Here, special numerical treatment of the fluid-structure interfaces is also required.  

In this paper, we present a numerical model of acoustic fluid-structure interaction for dynamic 

loading. Here, we focus on the capabilities of the proposed model for predicting hydrodynamic 

pressure and hydrodynamic forces exerted on the upstream face of the structure. Furthermore, we 

aim to provide a numerical model, which is predictive, simple and comprehensive enough to be 

accepted as an everyday tool in structural analysis. Thus, we assume that the behavior of the 

structure is governed by Hooke's linear elastic law. We consider the structure as saturated porous 

medium whose response is obtained with coupled discrete beam lattice model. The discrete beam 

lattice model of the structure is based on the Voronoi cell representation in which the cohesive 

links are modeled with linear elastic Timoshenko beam finite elements. The coupling between the 

solid phase and the pore fluid in the model is enforced through Biot’s porous media theory. For 

describing the motion of the outside fluid, we choose the mixed displacement/pressure based 

formulation (Bathe et al. 1995, Wang and Bathe 1997). In this formulation, the unknown is both 

displacement and pressure fields. Now, having the structure represented as a saturated porous 

medium in a combination with the mixed formulation for the outside fluid, we are able to directly 

connect the outside fluid and structure finite elements at the common nodes because they share 

both displacement and pressure degrees of freedom. With this unified approach, we eliminate any 

need for special numerical treatment of the fluid-structure interface and computations of all 

unknown fields can be performed in a fully monolithic manner.   

The outline of the paper is as follows: In Section 2, we provide a short overview of the 

fundamental analytical solutions for hydrodynamic pressure distribution. In Section 3, we provide 

a brief description and finite element formulation of the structure response and the outside fluid 

motion. In Section 4, we present the results of several numerical simulations. In section 5, we give 

our concluding remarks. 

  

 

2. Analytical solutions 
 

Westergaard’s solution. Westergaard is the first who studied the problem of evaluating the 

hydrodynamic pressures exerted on the upstream face of the dam. His work was focused on the 

simple two-dimensional dam-reservoir system subjected to the horizontal harmonic ground motion 

(Fig. 1). The dam was assumed to be rigid with vertical upstream face, and the length of the 

reservoir was assumed to be infinite. Westergaard derived an analytical solution for the 

hydrodynamic pressure distribution in terms of series of sine functions. Maximum hydrodynamic 

pressure distribution on the vertical upstream face of the rigid dam, according to Westergaard, is 

described with following expression  

0

2 2
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8 1
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2

n
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a H n y
p

n c H

  
=  

  
  (1) 

2

2 2

16
1n

H
c

n gKT


= −  (2) 

where a0 is the maximum horizontal acceleration of the foundation, ρ is the density of the retained 

water, H is the depth of the reservoir, K is the bulk modulus of water, and T is the period of the 
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horizontal acceleration of the foundation.   

Based on the previous solution, Westergaard proposed a simpler expression which results in a 

parabolic distribution of hydrodynamic pressure  

00.875p a Hy=  (3) 

This expression, even though represents a conservative approximation, gives satisfactory 

results and is widely used in everyday engineering practice.  

 

 

 

Fig. 1 Dam-reservoir system studied by Westergaard (Westergaard 1933) 

 

 

According to Westergaard, total horizontal force exerted on the vertical, upstream face of the 

dam is equal to 

2

00.543xF F a H= =  (4) 

Von Kármán’s solution. An analytical solution very close to Westergaard’s was derived by 

von Kármán. In his work, von Kármán exploited linear momentum-balance principle and derived 

an expression for hydrodynamic pressure distribution which reads as 

00.707p a Hy=  (5) 

According to von Kármán, total horizontal force exerted on the vertical, upstream face of the 

dam is equal to 

2

00.555xF F a H= =  (6) 

Chwang’s solution. For a general case of a rigid dam with an inclined upstream face with a 

constant slope subjected to uniform horizontal acceleration a0 (Fig. 2), Chwang and Housner 

derived analytical solution using the momentum balance method proposed by von Kármán. The 

fluid in the reservoir is assumed to be incompressible and inviscid.  

In their analytical solution, as in the Westergaard’s and von Kármán’s solutions, the value of 

hydrodynamic pressures ranges from zero at the top of the reservoir to maximum at the bottom of 

the reservoir. Chwang, in the second part of his work, derived an analytical solution for 

hydrodynamic pressure distribution using two-dimensional potential flow theory. Here, except for 

the case of vertical upstream face, the maximum value of hydrodynamic pressure does not occur at 

the bottom of the reservoir but is moved up to a certain distance.  
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Fig. 2 Dam-reservoir system studied by (Chwang and Housner 1978) and (Chwang 1978) 

 

 

The hydrodynamic pressure distribution on the inclined upstream face is described with 

following expression 

0pp C a H=  (7) 

where Cp is the pressure coefficient. Total horizontal and vertical force exerted on the inclined 

upstream face of the dam are equal to  

2

0x xF C a H=  (8) 

2

0y yF C a H=  (9) 

where Cx and Cy are force coefficients. The expressions for computing the values of pressure and 

force coefficients can be found in (Chwang and Housner 1978) and (Chwang 1978).   

 

 

 

Fig. 3 Comparison of analytical solutions for vertical upstream face (θ=90°) 

 

 

For the case of the vertical upstream face, the exact method gives the value of force coefficient 

Cx =0.543 which is the same as Westergaard’s solution, and the momentum method gives the value 

Cx =0.555 which is the same as von Kármán’s solution. The comparison between the analytical 

solutions for hydrodynamic pressure distribution on the vertical upstream face of the dam is shown 

in Fig. 3. 
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3. Numerical model of acoustic fluid-structure interaction 
 

3.1 Structure built of saturated porous media 
 

For the numerical representation of the structure response we use a discrete lattice model based 

on the Voronoi cell representation of the domain. The advantage of discrete lattice models based 

on the Voronoi cell discretization is that they are able to reproduce the linear elastic part of the 

response of an equivalent continuum model (Ibrahimbegovic and Delaplace 2003). Namely, the 

main idea is to represent the structure as an assembly of Voronoi cells, where each two Voronoi 

cells are held together by cohesive links. We model the behavior of these cohesive links with finite 

elements. Thus, the macro-scale response of the structure is obtained on the mesh of 1D finite 

elements. The discrete model with truss bar elements with embedded strong discontinuity in axial 

direction (Benkemoun et al. 2010, Benkemoun et al. 2012), or with Timsohenko beam finite 

elements with embedded strong discontinuities in both axial and transverse direction have been 

successfully used in predicting the response of heterogeneous materials such as the soils, rocks and 

concrete (Nikolic et al. 2015, Nikolic and Ibrahimbegovic 2015, Hadzalic et al. 2018), both in 2D 

and 3D setting.  

Here, our goal is to numerically determine the values of hydrodynamic pressure exerted on the 

upstream face of the structure, and to compare the results against analytical solutions with the aim 

to validate the numerical model of acoustic fluid-structure interaction for everyday use in 

structural analysis. Thus, for cohesive links we choose linear elastic Timoshenko beam finite 

elements. The mesh and cross sectional properties of Timoshenko beam finite elements are 

obtained from Delaunay triangulation and Voronoi diagram (Fig. 4). The end result of Delaunay 

triangulation performed on a certain domain is a mesh of triangles. We place a cohesive link along 

every edge of triangle. This is made possible by exploiting the duality property between Delaunay 

triangulation and Voronoi diagram. This property implies that every cohesive link connects the 

centers of two adjacent Voronoi cells, and that each cohesive link is perpendicular to the edge 

shared between two adjacent cells. Thus, the height of the cross section of the finite element, 

which model the behavior of the cohesive link, is equal to the length of the shared edge. 

 

 

 

Fig. 4 Voronoi diagram and Delaunay triangulation 
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To take into account the influence of the pore fluid, Biot’s porous media theory is introduced in 

the model. We assume that the pore fluid flow is spread across the mesh of CST finite elements, 

which coincide with triangles obtained with Delaunay triangulation. By exploiting Hammer 

quadrature rule for numerical integration on CST elements (Zienkiewicz and Taylor 2005), which 

positions each integration point at the center of each edge of triangle, and duality property between 

the Voronoi cell and Delaunay triangle representations, we are able to simplify the problem of the 

numerical implementation of the coupling. Namely, the positions of the integration points for 

triangular finite elements coincide with the positions of integration points for Timoshenko beam 

finite elements (Fig. 4). Note that for Timoshenko beam finite element we choose only one Gauss 

integration point located at the center of the beam, and that center of each beam is located at the 

edge shared between two adjacent Voronoi cells. Thus, we can treat the pore pressure as an 

additional degree of freedom placed at each node of Timoshenko beam finite element, and assume 

that the coupling between the mechanics and the pore fluid flow occurs through axial direction of 

Timoshenko beam finite element, (Nikolic et al. 2016, Hadzalic et al. 2018).    
 

3.1.1 Finite element formulation of the coupled problem in dynamic setting 
The problem of interaction of the solid phase and the pore fluid in Biot’s porous media theory 

(Biot 1941) is described with equilibrium and continuity equations. Here, we refer to the equation 

of motion instead of equilibrium equation. In the formulation of the coupled problem, Biot’s 

theory exploits Terzaghi’s principle of effective stresses that states that the total normal stress is 

equal to the sum of effective stress σ’ and pore pressure p 

'σ σ bp= −  (10) 

where b is Biot’s coefficient. Here, σ’ is assumed to be positive in tension, and p positive in 

compression.  

This principle is exploited in the formulation of the equation of motions for Timoshenko beam. 

The strong form of equations of motion is derived based on the d’Alambert principle 

(Ibrahimbegovic 2009) and is written as 

( )
2

2
, 0

u N
A n x t

t x


 
− + + =

 
 (11) 

( )
2

2
, 0

v V
A q x t

t x


 
− + + =

 
 (12) 

( )
2

2
, 0

M
I V m x t

t x


  
− + + + =

 
 (13) 

where ρ is the mass density, A is the area of the cross section of the Timoshenko beam, I is the 

second moment of inertia of the cross section, u=[u, v, θ] is the displacement vector, F=[N, V, M] 

=[N’-bpA, V’, M’] is the internal force vector, and f=[n, q, m] is the vector of distributed loads.  

The pore fluid flow in the coupled discrete model is spread across the mesh of CST finite 

elements, and is governed by Darcy’s law. The coupling between the mechanics and pore fluid 

flow occurs in axial direction of Timoshenko beam finite elements. The continuity equation for 

pore fluid flow is written as 

( ) ( )
1

0
f

k
p b u p

M γ
+  −   =  

(14) 
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where p is the pore pressure, M is Biot’s modulus, k is the coefficient of permeability of isotropic 

porous medium, and γf is the specific weight of the fluid.  

Following the standard finite element discretization procedure and introducing finite elements 

approximations we obtain following system of equations governing the discrete problem, for a 

typical finite element written as 

,

, ,

'

' '

e e e e ext

e T e e e ext

M u + K u - Q p = f

Q u + S p + H p = q
 (15) 

where u  is the vector of unknown nodal displacements, p  is the vector of unknown nodal pore 

pressures, fe.ext and qe,ext are the external load vectors, Me is the mass matrix, Ke is the stiffness 

matrix, Qe is the coupling matrix, Se is the compressibility matrix, and He is the permeability 

matrix given as 
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 (16) 

where E is Young’s modulus, G=E /2(1+ν) is the shear modulus with ν as Poisson’s ratio, and ks is 

the shear correction factor. 

The Timoshenko beam finite element has two nodes, and three degrees of freedom per node: 

axial displacement, transverse displacement and rotation of cross section. The displacement fields 

are interpolated with standard, linear interpolation functions. The pore pressure field is 

approximated with CST finite elements  

, ps s

u pp= =u N u N  (17) 
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Here, A is the area of CST element, x, y are global coordinates and xi, yi are nodal coordinates 

of CST element. For simplicity, we assume that Timoshenko beam finite element is placed along 

global x axis, which can be easily generalized by using local element frame.  

The strain fields for standard Timoshenko beam finite element, and pore pressure gradient are 

written as 

, ps s

u pp=  =B u N  (20) 

where  

 
1 2

1 1 2 2

1 2

0 0 0 0

, , , 0 0
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T s

u

B B

ε γ κ B N B N

B B

 
 

= = − −
 
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B
 

(21) 

The time discretizations of the displacement and pore pressure fields are written as 

, p, , ps s s s

u p u pp p= = = =u N u N u N u N  (22) 

 

3.2 Outside fluid model 
 

For the structures such as dam-reservoir systems, storage tanks or water containers we can 

assume that the contained fluid undergoes small motion which allow us to describe the fluid 

motion with Lagrangian formulation, and to derive governing equations from the acoustic wave 

theory. Here, we can assume that the fluid is incompressible, inviscid and homogeneous with the 

constant density. For finite element discretization of the fluid motion we choose mixed 

displacement/pressure based finite element formulation. The system of equations governing the 

discrete problem can be derived from variational formulation proposed in (Bathe et al. 1995, 

Wang and Bathe 1997), written as    

( ) ( )
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2 2e
f

bp
p d

 


 
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(23) 

where u is the displacement vector, p is the pressure, Λ is the ‘vorticity moment’, β is the bulk 

modulus of the outside fluid, α is the penalty parameter enforcing zero vorticity and f b  is the 

external load vector, which among body forces includes inertia force –ρü as well. 

By performing standard finite element procedure, and introducing finite element 

approximations in the weak form, obtained from the first variation of Eq. (23), we obtain 

following system of equations governing the discrete problem, written as  
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For a typical finite element, we have 

( )
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(26) 

where f

uN , f

pN , f

N  are interpolation matrices, u  is the vector of unknown displacements, p is the 

vector of unknown pressures, and λ  is the vector of unknown ‘vorticity moments’.  

The strong form of governing equations follows from (23), and can be written as  

- 0bp + =Λ f  (27) 

0
p


  =u +  (28) 

- 0


 =
Λ

u  (29) 

Here, for the discretization of the fluid domain we choose Q4-P1-Λ1 finite elements (Fig. 5). 

These elements provide linear interpolation for the displacement fields, and constant 

approximations for the pressure and the ‘vorticity moment’.  

 

 

 

Fig. 5 Outside fluid finite element Q4-P1-Λ1 

 

 

For solving global system of equations (Eq. (25)), we perform static condensation procedure 

where we statically condense the pressure and the ‘vorticity moment’ at the element level. The 

unknown values of the pressure and ‘vorticity moment’ are obtained from computed values of 

nodal displacements. In order to connect the fluid and structure finite elements at the fluid-

structure interface we need to have a finite element that has both displacement and pressure 

degrees of freedom per node. To obtain ‘Q4-P4’ type of finite element, we reconstruct the pressure 

field. Namely, we extrapolate the pressure computed inside each finite element to the nodes of Q4 

finite elements used for displacement approximations. The value of pressure at each node in the 

mesh of Q4 finite elements is evaluated as an average value of the pressures computed in the finite 

elements that share that node. 
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4. Numerical results 
 

In this section we present the results of numerical simulations which illustrate the capabilities 

of the proposed numerical model of acoustic fluid-structure interaction. First, we validate the 

numerical model of the pore-saturated structure and the outside fluid in dynamic setting, 

separately. Second, we observe a linear elastic separator wall with vertical upstream face subjected 

to horizontal ground acceleration. Here, we investigate and compare computed results against 

analytical solutions. Finally, we observe an inclined dam-reservoir system. All numerical 

computations are performed with a research version of the computer code FEAP, developed by 

R.L. Taylor (Zienkiewicz and Taylor 2005). In all numerical simulations, the meshing of the 

structure domain is carried out in GMSH using Delaunay triangulation (Geuzine and Remacle 

2009). 

 

4.1 Saturated poro-elastic column subjected to sinusoidal loading 
 

In this example, we perform a validation computation of the proposed discrete model of 

saturated porous media in dynamic setting. We observe a saturated poro-elastic column subjected 

to sinusoidal loading (Fig. 6), defined with following expression 

( ) 2 13 1 cos ; 75F t kN m s− =  −   =   
 

 

 

 

Fig. 6 Saturated poro-elastic column: Geometry and boundary conditions 

 

 

We compare the computed results against the reference values provided in (De Boer et al. 

1993), which are obtained with continuum model. The computation in continuum model in (de 
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Boer et al. 1993) is carried out for the values of Lame’s parameters equal to λ=5.5833 MPa and 

μ=8.3750 MPa, which correspond to Young’s modulus and Poisson’s ratio equal to E=20.10 MPa 

and ν=0.2. The linear elastic parameters of the Timoshenko beam finite element are identified by 

exploiting the property that the linear elastic macro-scale response computed with discrete lattice 

model based on Voronoi cell representation of the domain matches the linear elastic response of an 

equivalent continuum model (Ibrahimbegovic and Delaplace 2003). Hence, the corresponding 

Young’s modulus of Timoshenko beam finite element is E=23.71 MPa, and the Poisson’s ratio is 

selected as ν=0. The mass density of the porous medium is ρ=1670 kg/m3, and the coefficient of 

permeability is k=10-2 m/s. 

 

 

 

 

(a) Vertical displacement of column top (b) Pore pressure at y= 6 m 

Fig. 7 Saturated poro-elastic column, computed results 

 

 

The computed vertical displacement of the column top and the pore pressure at the depth y=6 

m (measured from the column top), shown in Fig. 7(a) and 7(b), show an excellent agreement with 

the reference values provided in (de Boer et al. 1993). We can conclude that the coefficient 

permeability of the coupled discrete beam lattice model matches the coefficient of permeability of 

an equivalent continuum model. Hence, it can be easily identified form standard experimental 

tests. 

 

4.2 Modal analysis of rigid cavity problem 
 

In this example, we perform the modal analysis of the rigid cavity problem in order to validate 

the proposed outside fluid model, which is based on Q4-P1-Λ1 finite elements. The geometry and 

the boundary conditions of the problem are shown in Fig. 8. The density of the fluid is ρf =1000 

kg/m3, the bulk modulus is β=115.6 MPa, and the penalty parameter is α=103β. We compare the 

computed values of the first four frequencies against those provided in (Hamdi et al. 1978) and 

(Wang and Bathe 1997), which were computed from analytical frequency solution defined with 

following expression 

2 2
n m

c
a b

   
 =  +   

   
 (30) 
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where n, m are integers and c is the acoustic wave speed.  

 

 

 

Fig. 8 Rigid cavity problem: Geometry and boundary conditions 

 

 

The computed values of the first four frequencies are shown in Table 1. We can conclude that 

by increasing the mesh density, the results obtained with Q4-P1-Λ1 finite elements approach the 

analytical solution.   

 

 
Table 1 Rigid cavity problem: Computed frequencies 

Mesh density Frequency [Hz] 

4×3 174.4 374.9 444.6 463.0 

8×6 171.1 348.8 429.9 459.3 

32×24 170.1 340.5 425.3 457.8 

64×48 170.0 340.1 425.1 457.8 

Analytical solution 170.0 340.0 425.0 457.7 

 

 

4.3 Linear elastic separator wall  
 

In this example we present the results of the first numerical simulation of acoustic fluid-

structure interaction. We observe a linear elastic separator wall 12 m high, and 1.2 m thick. The 

configuration of the problem is shown in Fig. 9. The Young’s modulus of the wall is E=104 MPa, 

the Poisson’s ratio is ν=0.3, the mass density is ρs =2000 kg/m3, and the coefficient of 

permeability is k=10-6 m/s. The mass density of the outside fluid is ρf =1000 kg/m3 and the bulk 

modulus is β=105 MPa.  

 

 

 

Fig. 9 Linear elastic separator wall: Geometry, boundary conditions and loading program 
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We subject the separator wall and the contained fluid to a horizontal ground acceleration 

reaching its maximum value of a0 =0.1 g at t=1 s, after which is kept constant (Fig. 9). According 

to (Chopra 2012), we model the horizontal ground movement in terms of equivalent horizontal 

forces acting on the system with fixed base. We compare the computed values of hydrodynamic 

pressure exerted on the wall against those provided in (Chwang 1978) with the aim to validate the 

proposed model for predicting hydrodynamic pressures and hydrodynamic forces exerted on the 

upstream face of the structure. 

We present the results in terms of the pressure coefficient Cp. We compare the computed results 

against reference values provided by (Chwang 1978). Computed values of pressure coefficient for 

different values of L/H ratio are shown in Fig. 10(a). We can conclude that the values of 

hydrodynamic pressure depend on the length of the outside fluid domain, because of the influence 

of boundary effects at the infinity. For values of L/H ratio greater than 3, results do not differ 

significantly and approach the analytical solution. 

 

  

 

 

(a) Cp for different L/H ratio (b) Horizontal force for L/H= 8 

Fig. 10 Linear elastic separator wall, computed results 

 

 

Fig. 11 Pressure and pore pressure distribution, L/H=4 

 

 

We also investigate the influence of the fluid acting as a source of additional forces on the 

structure. The reference value of total horizontal force exerted on the vertical upstream face of the 

structure is given in (Chwang 1978). We compare this reference value against the computed value 

of horizontal force exerted on the upstream face of the separator wall. The value of horizontal 
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force is computed on a numerical model of acoustic fluid-structure interaction, in which only the 

reservoir was subjected to horizontal ground acceleration. The results are shown in Fig. 10(b). We 

can conclude that as the oscillations of the separator wall are being damped, the computed results 

approach the reference value. This confirms that with the proposed model we are able to ensure the 

direct transfer of both forces and pressures at the fluid-structure interface. It should be noted that 

no artificial damping (e.g., Rayleigh damping) is added in the numerical model of the fluid-

structure interaction. The damping in the numerical model results solely from the equations 

governing the coupled problem. The hydrodynamic pressure distribution in the fluid domain, and 

pore pressure distribution in the separator wall for L/H=4 are shown in Fig. 11. 

 

4.4 Inclined dam-reservoir system 
 

In this example, we observe a dam-reservoir system. The geometry and boundary conditions 

are shown in Fig. 12. The faces of the dam are inclined with a constant angle of θ=45°. The height 

of the fluid in the reservoir is H=7.9 m, and the length of the reservoir is L=60 m. The length of 

the reservoir is chosen so that the influence of boundary effects on the computed results is 

eliminated. The mechanical properties of the dam are: Young’s modulus E=50 MPa, Poisson’s 

ratio ν=0.3, the mass density ρs=2000 kg/m3, and the coefficient of permeability k=10-5 m/s. The 

mechanical properties of the outside fluid are: the mass density ρf =1000 kg/m3, and the bulk 

modulus β=1000 MPa. The loading program consists of two phases. We first apply hydrostatic 

loading. Next, we subject the dam-reservoir system to horizontal ground acceleration a0 =0.1 g. 

We compare the computed results against analytical solution provided by (Chwang 1978).  

 

 

 

Fig. 12 Inclined dam-reservoir system: Geometry and boundary conditions 

 

 

Fig. 13 Pressure and pore pressure distribution in inclined dam-reservoir system 

 

 

The distribution of pressures in the fluid domain, and the pore pressures in the body of the dam 

are shown in Fig. 13. The comparison of the computed values of hydrodynamic pressure and the 

analytical solution are shown in Fig. 14. We can conclude that a good match between the 
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compared values is obtained. With the proposed numerical model of acoustic fluid-structure 

interaction, we are able to predict the hydrodynamic pressure distribution on the upstream face of 

the dam and also to trace the values of the pore pressure in the body of the dam at each time step. 

This is very important in the case of earth dams, where an increase in pore pressures in dynamic 

setting can lead to the liquefaction where soil completely loses its strength and begins to flow like 

a fluid.  

 

 

 

Fig. 14 Dam-reservoir system: comparison of computed and reference values of pressure coefficient Cp 

 

 

The outside fluid acts also as a source of additional forces on the structure. The total horizontal 

and vertical reaction at the bottom of the dam are shown in Fig. 15(a) and 15(b). We can conclude 

that the proposed model ensures the direct transfer of both the forces and pressures, without any 

special numerical treatment of the fluid-structure interface. 

  

 

 

 

(a) Horizontal reaction (b) Vertical reaction 

Fig. 15 Dam-reservoir system, computed results 

 

 

To validate our results, we compare the computed value of the horizontal force exerted on the 

upstream face of the dam that results from the outside fluid acting as a source of the loading, 

against the analytical value of the horizontal force exerted on the inclined dam (Fig. 16(a)). The 
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value of horizontal force is computed in the same manner as for the case of separator wall, by only 

subjecting the outside fluid to horizontal ground acceleration. The computation is performed 

without first subjecting the dam-reservoir system to hydrostatic loading phase. We can conclude 

that a good match between the computed and reference values is obtained. The horizontal 

displacements of the tip of the dam (point A) are shown in Fig. 16(b). 

 

 

  

(a) Horizontal force (b) Horizontal displacement at point A 

Fig. 16 Dam-reservoir system, computed results 

 

 

With the proposed numerical model of acoustic fluid-structure interaction, in which the 

structure response is obtained on the mesh of one-dimensional Timoshenko beam finite elements, 

it becomes relatively simple to implement any other constitutive model that is capable of 

reproducing different kind of phenomena observed in structures. Here, we provide an illustrative 

example of one such model. Namely, we assume that the response of the Timoshenko beam finite 

element is governed by plasticity with linear isotropic hardening (Ibrahimbegovic 2009). We 

introduce yield limits in tension, compression and shear are: σy,t =0.01 MPa, σy,c =0.1 MPa, and 

σy,s =0.01 MPa. The computed horizontal displacements at point A are shown in Fig. 17. The 

plastic zones formed in the body of the dam are shown in Fig. 18(a) and 18(b).  

 

 

 

Fig. 17 Nonlinear dam-reservoir system, computed results: Horizontal displacement at point A 
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(a) Plastic axial deformation (b) Plastic shear deformation 

Fig. 18 Nonlinear dam-reservoir system, computed results: Plastic zones 

 

 

5. Conclusions 
 

In this paper, we presented a numerical model of acoustic fluid-structure interaction in dynamic 

setting. In the proposed model, the structure is modeled as a saturated porous medium whose 

response is obtained with coupled discrete beam lattice model based on Voronoi cell 

representation with cohesive links as linear elastic Timoshenko beam finite elements. The motion 

of the outside fluid is described with mixed displacement/pressure based formulation.   

Based on the results presented in this paper, we can conclude that the proposed numerical 

model is able to predict the values and the distribution of the hydrodynamic pressure for the 

general case of an inclined upstream face of the structure in close agreement with analytical 

solutions, and also to predict the total values of the horizontal and vertical force exerted on the 

structure subjected to combined static and dynamic loading. The main strength of the proposed 

model is that the outside fluid and structure finite elements share both the displacement and 

pressure degrees of freedom which eliminates any need for special numerical considerations of the 

fluid-structure interface. The proposed model is predictive and simple enough, and thus can be 

used as an everyday tool in structural analysis.   

The proposed model could also serve as a powerful tool for analyzing the liquefaction 

phenomena in earth dams, since we are able to track the pore pressure evolution in the body of the 

dam throughout the loading program. Here, any other constitutive model that is able to reproduce 

the failure modes for different materials can be easily implemented because of the use of one-

dimensional finite elements in the numerical model of the structure.  
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