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Abstract.  Dynamic problems arising from the Euler-Bernoulli beam model with inhomogeneous elastic 

properties are considered. The method of Green’s function and perturbation theory are employed to find the 

deflection in the beam correct to the first-order. Eigenvalue problems appearing from transverse vibrations 

of inhomogeneous beams in linear and nonlinear cases are also discussed.  
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1. Introduction 
 

Beams and girders are extensively used in civil and mechanical engineering. One of the earliest 

models was Euler-Bernoulli model that was used to study the bending of beams. The derivation of 

Euler-Bernoulli beam equation has been given by Duque (2015). The model was based on small 

deflections of a beam subjected to lateral loads. We may refer to Truesdell (1983) for an account of 

development of this approach in 1750. The study of beam equation is quite important in a number 

of engineering situations, see for instance Ebrahimi and Barati (2018), Rizov (2017), Huang et al. 

(2017), Nejad et al. (2017), Mohammadimehr and Alimirzaei (2016), and Webb et al. (2008). It 

was of a little consequence in terms of applications till it became a cornerstone of engineering in 

the late 19th century. Han et al. (1999) provided a good description of different models of elastic 

beams including the Euler-Bernoulli beam. Gupta (1988) proved the existence and uniqueness of 

solution to the fourth-order equation arising from bending of an elastic beam. Abu-Hilal (2003) 

studied forced vibration of Euler-Bernoulli beam in the case of different homogenous and elastic 

boundary conditions for dynamic response due to distributed or concentrated loads. 

The use of spectral properties, Green's function and perturbation method has been an important 

tool in second-order problems arising from vibration, elastic, acoustic and electromagnetic waves. 

Discussion on these methods may be found in Lindell and Olyslager (2001), Logan (2007), and 

Stakgold and Holst (2011). Stuwe and Werner (1996) used Green's function to study potential flow 
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(linear case) in infinite cylindrical channels. Graef and Yang (1999) discussed the latter problem 

for non-linear load and established existence results advantaging the Green function approach. 

Graef et al. (2009) obtained positive solutions of nonlinear fourth-order problems using this 

approach. More recently, Pietramala (2011) used the Green function to study the beam equation 

with nonlinear boundary conditions. Furthermore, Teterina (2013) obtained the relevant results for 

the Green function of the fourth-order operator and used it to solve some boundary value problems. 

Morrison (2007) in his Master's thesis has applied Green's function to solve third-order nonlinear 

boundary value problems. Green's function has also been used in the frequency analysis of axially 

loaded stepped beams and the frequency response analysis of beams and plane frames with the 

inclusion of viscoelastic damping, see Kukla and Zamojska (2007), Burlon et al. (2016), and Failla 

(2016). Li, et al. (2014) discussed Green's functions of the forced vibration of Timoshenko beams 

with damping effect. Many authors studied the inhomogeneity in the medium using perturbation 

approach. For instance, Ghosh (1970) employed the latter approach to investigate Love waves in 

an inhomogeneous medium. Subsequently, Zaman et al. (1990) and Asghar et al. (1991) adopted 

the Green function and perturbation method to discuss the field due to a point source in an 

inhomogeneous medium, dispersion of Love waves in a stochastic layer (Zaman and Al-Zayer 

2004) and inverse scattering in multi-layer inverse problem (Zaman et al. 2006). Orucoglu (2005) 

has also valued the Green function approach to deal with a completely inhomogeneous boundary 

value problem. 

In this paper, we discuss the dynamic problems arising from some beam equations. The beam is 

considered to be inhomogeneous. This means that the elastic properties of the beam material 

change with the space variable. The focus of this study is to apply analytical approach based upon 

perturbation method and Green’s function. 

 

 

2. Eigenvalue perturbation 
 

Let 𝐿(𝜀) be a self-adjoint operator defined in a real Hilbert Space 𝐻. Assume that 𝐿(𝜀)depends 

continuously on 𝜀, i.e., 

lim
∆𝜀→∞

‖𝐿(𝜀 + Δ𝜀) − 𝐿(𝜀)‖ = 0 (2.1) 

We relate the spectrum of the perturbed operator 𝐿(𝜀) to the presumable known spectrum of the 

base operator 𝐿 =  𝐿(0).  
Theorem 2.1. Let 𝜆𝑛 ≠ 0  be simple eigenvalues of the operator 𝐿  with normalized 

eigenfunctions 𝑒𝑛. Then in some neighborhood of 𝜀 = 0, there exists an eigenpair (𝜆(𝜀);  𝑒(𝜀)) of 

Eq. (2.1) with the following properties 

lim
𝜀→0

𝜆(𝜀) = 𝜆𝑛   𝑎𝑛𝑑   lim
𝜀→0

𝑒(𝜀) = 𝑒𝑛. 

Before discussing the fourth-order equation, we give the following illustrative example. 

Consider the boundary value problem 

−𝑢′′(𝑥, 𝜀) + (1 + 𝜀𝑥2)𝑢(𝑥, 𝜀) = 𝜇𝑢(𝑥, 𝜀), 0 < 𝑥 < 1; 

𝑢(0, 𝜀) = 0, 𝑢(1, 𝜀) = 0. 
(2.2) 

When 𝜀 = 0, we have 
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−𝑢′′(𝑥, 0) = (𝜇 − 1)𝑢(𝑥, 𝜀), 0 < 𝑥 < 1; 

𝑢(0,0) = 0, 𝑢(1,0) = 0. 
(2.3) 

The eigenvalues and corresponding normalized eigenfunctions of (2.3) are given by 

𝜇𝑛 = 𝑛
2𝜇2 + 1, 𝑛 = 1, 2, … 

𝑒𝑛(𝑥) = √2 sin(𝑛𝜋𝑥) , 𝑛 = 1, 2, …, 
(2.4) 

respectively. From Theorem 2.1, for the boundary value problem (2.2), there is a branch 

(𝜇(𝜀), 𝑢(𝑥, 𝜀)) → (𝜇𝑛, 𝑒𝑛(𝑥)) as 𝜀 → 0. As the operator in (2.2) depends continuously on 𝜀, we 

can differentiate (2.2) with respect to 𝜀 to obtain the following 

−𝑢𝜀
′′(𝑥, 𝜀) + (1 + 𝜀𝑥2)𝑢𝜀(𝑥, 𝜀) − 𝜇𝑢𝜀(𝑥, 𝜀) = 𝜇𝜀𝑢(𝑥, 𝜀) − 𝑥

2𝑢(𝑥, 𝜀); 

𝑢𝜀(0, 𝜀) = 0. 
(2.5) 

Since 𝜀 = 0, we get an inhomogeneous equation for 𝑢𝜀(𝑥, 𝜀) as follows  

−𝑢𝜀
′′(𝑥, 𝜀) + 𝑢𝜀(𝑥, 𝜀) − 𝜇𝑛𝑢𝜀(𝑥, 𝜀) = 𝜇𝜀(0)𝑒𝑛(𝑥) − 𝑥

2𝑒𝑛(𝑥). (2.6) 

Eq. (2.6) cannot be solved for 𝑢𝜀(𝑥, 𝜀) unless 𝜇𝜀(0) is known and it must satisfy the following 

solvability condition 

⟨𝜇𝜀(0)𝑒𝑛(𝑥) − 𝑥
2𝑒𝑛(𝑥), 𝑒𝑛(𝑥)⟩ = 0. (2.7) 

Eq. (2.7) leads to 

𝜇𝜀(0) = ∫ 𝑥2𝑒𝑛
2(𝑥) 𝑑𝑥

1

0

 (2.8) 

and so, we have 

𝜇(𝜀) = 𝜇𝑛 + 𝜀∫ 𝑥2𝑒𝑛
2(𝑥) 𝑑𝑥

1

0

+⋯, (2.9) 

See Stakgold and Holst (2011). Furthermore, there exists a unique solution 𝑤(𝑥)  that is 

orthogonal to the eigenfunction 𝑒𝑛(𝑥) given by 

𝑤(𝑥) = − ∑
⟨𝑥2𝑒𝑛(𝑥), 𝑒𝑛(𝑥)⟩

(𝑚2 − 𝑛2)𝜋2
𝑒𝑚(𝑥)

𝑚≠𝑛

, 

where 𝑒𝑛(𝑥) = √2 sin(𝑛𝜋𝑥). Thus, using the normalization ⟨𝑢𝑛, 𝑒𝑛⟩ = 1 we obtain 

𝑢𝑛(𝑥, 𝜀) = 𝑒𝑛(𝑥) + 𝜀𝑤(𝑥). 

 
 

3. Transverse vibration of beam as an eigenvalue problem 

 

Consider the following problem 

𝜕2

𝜕𝑥2
(𝐸𝐼

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
) = 𝜌

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑡2
, 0 < 𝑥 < 1, 𝑡 > 0. (3.1) 
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When 𝐸𝐼 = 𝑞0 (constant), we have  

𝜕4𝑢(𝑥, 𝑡)

𝜕𝑥4
=
𝜌

𝑞0

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑡2
,     𝑞0 ≠ 0. (3.2) 

Assume that the vibrations are time harmonic, i.e., 

𝑢(𝑥, 𝑡) = 𝑢(𝑥)𝑒𝑖𝜔𝑡 , (3.3) 

where, 𝜔 is the angular frequency. Substituting (3.3) to (3.2) yields 

𝑑4𝑢(𝑥)

𝑑𝑥4
= −

𝜌𝜔2

𝑞0
𝑢(𝑥), 

or 

𝑑4𝑢(𝑥)

𝑑𝑥4
+ 𝜆𝑢(𝑥) = 0, 0 < 𝑥 < 1, (3.4) 

where 𝜆 = 𝜌𝜔2/𝑞0. Thus, the transverse vibration of an elastic Euler-Bernoulli beam can be cast 

into an equivalent eigenvalue problem of the type given in Eq. (3.4).  

In the following examples, we solve the eigenvalue problem (3.4) in the following three cases: 

beam with hinged, with clamped and clamped-free boundary conditions. 

Example 3.1 (Beam with Both Ends Hinged). In this case, we have the following eigenvalue 

problem  

{
 

 
𝑑4𝑢

𝑑𝑥4
+ 𝜆𝑢 = 0,   0 < 𝑥 < 1;                            

with hinged boundary condition                

  𝑢(0) = 0, 𝑢′′(0) = 0, 𝑢(1) = 0, 𝑢′′(1) = 0.

 (3.5) 

Observe that 𝜆 = 0 is not an eigenvalue of the problem, which gives the trivial solution 𝑢 = 0. 
Since all eigenvalues are real and positive, we assume that 𝜆 =  𝛼4  for some 𝛼 ∈ ℝ.  The 

characteristic equation is given by 

𝑚4 + 𝛼4 = 0. 

We have 

𝑚1 =
𝛼

√2
(1 + 𝑖), 𝑚2 =

𝛼

√2
(−1 + 𝑖), 

𝑚3 =
𝛼

√2
(−1 − 𝑖), 𝑚4 =

𝛼

√2
(1 − 𝑖). 

(3.6) 

The general solution of (3.5) is 

𝑢(𝑥) = 𝑒𝛼𝑥/√2 [𝑐1 cos (
𝛼𝑥

√2
) + 𝑐2 sin (

𝛼𝑥

√2
)] + 𝑒−𝛼𝑥/√2 [𝑐3 cos (

𝛼𝑥

√2
) + 𝑐4 sin (

𝛼𝑥

√2
)]. 

Using the given boundary conditions, we obtain 

𝜆𝑛 = 𝛼𝑛
4 = 4𝑛4𝜋4, 𝑛 = 1, 2, … ,  
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which are the eigenvalues of the supply-supported beam (hinged beam with both ends). Hence, the 

corresponding normalized eigenfunctions are 

𝑢𝑛(𝑥) = √2 sin(𝑛𝜋𝑥) , 𝑛 = 1, 2, … . 

Example 3.2 (Beam with Both Ends Clamped). In this case, we have the following eigenvalue 

problem  

{
 

 
𝑑4𝑢

𝑑𝑥4
+ 𝜆𝑢 = 0,   0 < 𝑥 < 1;                            

with clamped boundary condition            

  𝑢(0) = 0, 𝑢′(0) = 0, 𝑢(1) = 0, 𝑢′(1) = 0.

 (3.7) 

We can easily check that 𝜆 = 0 is not an eigenvalue of the problem, which gives the trivial 

solution 𝑢 = 0. As all eigenvalues are real and positive, we assume that 𝜆 =  𝛽4 for some 𝛽 ∈ ℝ. 
The characteristic equation is given by 

𝑚4 + 𝛽4 = 0. 

We obtain the general solution of (3.7) 

𝑢(𝑥) = 𝑒𝛽𝑥/√2 [𝑐1 cos (
𝛽𝑥

√2
) + 𝑐2 sin (

𝛽𝑥

√2
)] + 𝑒−𝛽𝑥/√2 [𝑐3 cos (

𝛽𝑥

√2
) + 𝑐4 sin (

𝛽𝑥

√2
)]. 

Imposing the given boundary conditions, we obtain the smallest positive value 

𝜆 = 𝛽4 = (4.7300407)4 = 500.56655. 

Example 3.3 (Beam with Ends Clamped-Free). In this case, we have the following eigenvalue 

problem  

{
 

 
𝑑4𝑢

𝑑𝑥4
+ 𝜆𝑢 = 0,   0 < 𝑥 < 1;                            

with clamped − free boundary conditions,

  𝑢(0) = 0, 𝑢′(0) = 0, 𝑢′′(1) = 0, 𝑢′′′(1) = 0.

 (3.8) 

Observe that 𝜆 = 0 is not an eigenvalue of the problem, which gives the trivial solution 𝑢 = 0. 
Since all eigenvalues are real and positive, we may assume that 𝜆 =  𝛾4  for some 𝛾 ∈ ℝ. The 

characteristic equation is given by 

𝑚4 + 𝛾4 = 0. 
The general solution of (3.8) is 

𝑢(𝑥) = 𝑒𝛾𝑥/√2 [𝑐1 cos (
𝛾𝑥

√2
) + 𝑐2 sin (

𝛾𝑥

√2
)] + 𝑒−𝛾𝑥/√2 [𝑐3 cos (

𝛾𝑥

√2
) + 𝑐4 sin (

𝛾𝑥

√2
)]. 

Imposing the given boundary conditions, we obtain the smallest positive value 

𝜆 = 𝛾4 = (1.8751)4 = 12.3623. 

 
 
4. Vibration of inhomogeneous beams 
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In this section, we consider the free vibration of inhomogeneous Euler-Bernoulli Beam. We 

assume that the variation of elastic properties is small, so that we can write  

𝐸𝐼(𝑥) = 𝑞(𝑥) = 𝑞0 + 𝜀𝑞1(𝑥) + ⋯, (4.1) 

where 𝑞0 is a nonzero constant and 𝑞1(𝑥) is a differentiable function of 𝑥. The equation of the 

vibrating beam can be written as 

𝑑2

𝑑𝑥2
[(𝑞0 + 𝜀𝑞1(𝑥))

𝑑2𝑢(𝑥, 𝜀)

𝑑𝑥2
+⋯] = 𝜆(𝜀)𝑢(𝑥, 𝜀), 0 < 𝑥 < 1; (4.2) 

with appropriate boundary conditions. 

Suppose that the beam is hinged at both ends. We have the conditions 

𝑢(0) = 0, 𝑢′′(0) = 0, 𝑢(1) = 0, 𝑢′′(1) = 0. (4.3) 

Note that for 𝜀 = 0, Eq. (4.2) is reduced to the one studied in Section 3. The eigenvalues are 

𝜆𝑛 = 4𝑛
4𝜋4, 𝑛 = 1, 2, … with corresponding normalized eigenfunctions  

𝑒𝑛 = √2 sin(𝑛𝜋𝑥) , 𝑛 = 1,2, … . 

Eq. (4.2) can be written as 

𝑢(4)(𝑥, 𝜀) + 𝜀 [
𝑞1(𝑥)

𝑞0
𝑢(4)(𝑥, 𝜀) + 2

𝑞1′(𝑥)

𝑞0
𝑢′′′(𝑥, 𝜀) +

𝑞1
′′(𝑥)

𝑞0
𝑢′′(𝑥, 𝜀)] + ⋯

= 𝜆(𝜀)𝑢(𝑥, 𝜀), 

0 < 𝑥 < 1 

(4.4) 

with hinged boundary conditions 

𝑢(0, 𝜀) = 0, 𝑢′′(0, 𝜀) = 0, 𝑢(1, 𝜀) = 0, 𝑢′′(1, 𝜀) = 0. 

Assume that we can differentiate both sides of Equation (4.4) with respect to 𝜀. We obtain  

𝑢𝜀
(4)(𝑥, 𝜀) + [

𝑞1(𝑥)

𝑞0
𝑢(4)(𝑥, 𝜀) + 2

𝑞1′(𝑥)

𝑞0
𝑢′′′(𝑥, 𝜀) +

𝑞1
′′(𝑥)

𝑞0
𝑢′′(𝑥, 𝜀)] 

+ 𝜀 [
𝑞1(𝑥)

𝑞0
𝑢𝜀
(4)(𝑥, 𝜀) + 2

𝑞1′(𝑥)

𝑞0
𝑢𝜀
′′′(𝑥, 𝜀) +

𝑞1
′′(𝑥)

𝑞0
𝑢𝜀
′′(𝑥, 𝜀)] 

+⋯ = 𝜆𝜀(𝜀)𝑢(𝑥, 𝜀) + 𝜆(𝜀)𝑢𝜀(𝑥, 𝜀). 

(4.5) 

The eigenvalues 𝜆(𝜀)  and normalized eigenfunctions 𝑢(𝑥, 𝜀)  for 𝜀 → 0  are 𝜆(0) = 𝜆𝑛 =

4𝑛4𝜋4  and 𝑢(𝑥, 0) = 𝑢𝑛(𝑥) = √2 sin(𝑛𝜋𝑥)  respectively, where 𝑛 = 1, 2, … . Thus, Eq. (4.5) 

reads 

𝑢𝜀
(4)(𝑥, 0) + 𝜆𝑛𝑢𝜀(𝑥, 0) = √2𝜆𝜀(0) sin(𝑛𝜋𝑥) − 4√2 𝑛

4𝜋4
𝑞1(𝑥)

𝑞0
sin(𝑛𝜋𝑥)                           

+8𝑛3𝜋3
𝑞1
′(𝑥)

𝑞0
cos(𝑛𝜋𝑥) + 2√2 𝑛2𝜋2

𝑞1
′′(𝑥)

𝑞0
sin(𝑛𝜋𝑥), (4.6) 

with boundary conditions  
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𝑢𝜀(0,0) = 0, 𝑢𝜀
′′(0,0) = 0, 𝑢𝜀(1,0) = 0, 𝑢𝜀

′′(1,0) = 0. (4.7) 

Since 𝜆𝜀(0)  is unknown, we cannot solve (4.6) directly. The corresponding homogenous 

problem has the non-trivial solution 𝑒𝑛(𝑥). Thus, Eq. (4.6) with boundary conditions in (4.7) has a 

unique solution if the following solvability condition is satisfied 

⟨√2𝜆𝜀(0) sin(𝑛𝜋𝑥)

− (4√2 𝑛4𝜋4
𝑞1(𝑥)

𝑞0
sin(𝑛𝜋𝑥) − 8𝑛3𝜋3

𝑞1
′ (𝑥)

𝑞0
cos(𝑛𝜋𝑥)

− 2√2 𝑛2𝜋2
𝑞1
′′(𝑥)

𝑞0
sin(𝑛𝜋𝑥)) , √2 sin(𝑛𝜋𝑥)⟩ = 0. 

(4.8) 

We obtain  

2 𝜆𝜀(0) ∫ sin2(𝑛𝜋𝑥)𝑑𝑥
1

0

−
4𝑛2𝜋2

𝑞0
∫ (2𝑛2𝜋2𝑞1(𝑥) sin(𝑛𝜋𝑥) − 2√2𝑛𝜋𝑞1

′(𝑥) cos(𝑛𝜋𝑥)
1

0

 

−𝑞1
′′(𝑥) sin(𝑛𝜋𝑥)) sin(𝑛𝜋𝑥) 𝑑𝑥 = 0. 

(4.9) 

This gives  

𝜆𝜀(0) =
2𝑛2𝜋2

𝑞0
∫ (2𝑛2𝜋2𝑞1(𝑥) sin

2(𝑛𝜋𝑥) − 2√2𝑛𝜋𝑞1
′ (𝑥) sin(2𝑛𝜋𝑥)

1

0

 

−𝑞1
′′(𝑥) sin2(𝑛𝜋𝑥)) 𝑑𝑥 

(4.10) 

Therefore, the general form of the eigenvalue for the vibrating inhomogeneous beam with 

hinged boundary conditions is 

𝜆(𝜀) = 𝜆𝜀 + 𝜀𝜆𝜀(0) + ⋯. 

Hence, 

𝜆(𝜀) = 4𝑛4𝜋4 + 𝜀
2𝑛2𝜋2

𝑞0
∫ [2𝑛2𝜋2𝑞1(𝑥) sin

2(𝑛𝜋𝑥) − 2√2𝑛𝜋𝑞1
′ (𝑥) sin(2𝑛𝜋𝑥)

1

0

 

−𝑞1
′′(𝑥) sin2(𝑛𝜋𝑥)] 𝑑𝑥 +⋯ 

(4.11) 

The smallest eigenvalue is when 𝑛 = 1 

𝜆(𝜀) = 4𝜋4 + 𝜀
2𝜋2

𝑞0
∫ [2𝜋2𝑞1(𝑥) sin

2(𝜋𝑥) − 2√2 𝜋𝑞1
′ (𝑥) sin(2𝜋𝑥)

1

0

 

−𝑞1
′′(𝑥) sin2(𝜋𝑥)] 𝑑𝑥 +⋯ 

(4.12) 

Eq. (4.6) with the given hinged boundary conditions can be solved for 𝑢𝜀(𝑥, 0). The unique 

solution 𝑤(𝑥) that is orthogonal to 𝑒𝑛(𝑥) is given by 
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𝑤(𝑥) = ∑ (
−2 sin(𝑚𝜋𝑥)

(𝑚4 − 𝑛4)𝜋4
⟨𝑛4𝜋4

𝑞1(𝑥)

𝑞0
sin(𝑛𝜋𝑥) − 2𝑛3𝜋3

𝑞1
′(𝑥)

𝑞0
cos(𝑛𝜋𝑥)

𝑚≠𝑛

− 𝑛2𝜋2
𝑞1
′′(𝑥)

𝑞0
− 𝑛2𝜋2

𝑞1
′′(𝑥)

𝑞0
sin(𝑛𝜋𝑥) , √2 sin(𝑚𝜋𝑥)⟩), 

(4.13) 

compare Stakgold and Holst (2011). 

In Table 1, we present eigenvalues of the perturbed problem (concrete beam) with hinged both 

ends. Table 2 gives eigenvalues of the perturbed problem (steel beam) with hinged both ends. Note 

that in each case, we take 𝑞1(𝑥)  =  10
18𝑥 as a linear variation. 

 

 

Table 1 Eigenvalues of vibrating inhomogeneous hinged concrete beam 

Values of 𝜀 Eigenvalue 𝜆(𝜀) 

𝜀 = 0 𝜋4 

𝜀 = 0.1 1.3719 × 1010 

𝜀 = 0.2 2.75037 × 1010 

𝜀 = 0.3 4.12556 × 1010 

 

Table 2 Eigenvalues of vibrating inhomogeneous hinged steel beam 

Values of 𝜀  Eigenvalue 𝜆(𝜀) 

𝜀 = 0    𝜋4 

𝜀 = 0.1 1.11325 × 109 

𝜀 = 0.2 2.22649 × 109 

𝜀 = 0.3 3.33974 × 109 

 
 

4.1 An unperturbed nonlinear problem 
 

In this subsection, we apply the Green’s function obtained from the fourth-order operator 

𝑑4/𝑑𝑥4 to a non-linear eigenvalue problem.  

Consider the following problem 

{
 

    
𝑑4𝑢(𝑥)

𝑑𝑥4
= 𝛼 sin(𝑢(𝑥)) ,   0 < 𝑥 < 1;                            

with hinged boundary conditions                            

  𝑢(0) = 0, 𝑢′′(0) = 0, 𝑢(1) = 0, 𝑢′′(1) = 0.             

 (4.14) 

For 𝛼 = 0, the translation of (4.14) of an interareal equation is simple, because (4.14) has a 

non-trivial solution. Note that (4.14) has the trivial solution 𝑢 = 0. The linearization of (4.14) 

about 𝑢 = 0 is given by 

{
 

    
𝑑4𝑢(𝑥)

𝑑𝑥4
= 𝛼𝑢(𝑥),   0 < 𝑥 < 1;                            

with hinged boundary conditions                

  𝑢(0) = 0, 𝑢′′(0) = 0, 𝑢(1) = 0, 𝑢′′(1) = 0.

 (4.15) 
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In fact, we have found the eigenvalues and normalized eigenfunctions for (4.15) in the previous 

section given by 𝛼𝑛  =  4𝑛
4𝜋4, 𝑒𝑛(𝑥) =  √2 sin(𝑛𝜋𝑥) , 𝑛 = 1, 2, … respectively. Since zero is not 

an eigenvalue of (4.15), we can construct Green’s function 𝐺(𝑥, 𝜉) satisfying 

{
 

    
𝑑4𝐺(𝑥, 𝜉)

𝑑𝑥4
= 𝛿(𝑥 − 𝜉), 𝑥 ≠ 𝜉, 0 < 𝑥 < 1;                            

with hinged boundary conditions                                                  

  𝐺(0, 𝜉) = 0, 𝐺′′(0, 𝜉) = 0, 𝐺(1, 𝜉) = 0, 𝐺′′(1, 𝜉) = 0.                 

 (4.16) 

The Green’s function of (4.16) is 

𝐺(𝑥, 𝜉) = {

1

6
𝜉(1 − 𝜉)𝑥 +

1

6
𝜉(1 − 𝜉)𝑥3,   0 ≤ 𝑥 < 𝜉 ≤ 1;       

  
1

3
𝜉(1 − 𝜉)(1 − 𝑥) +

1

6
𝜉(1 − 𝑥)3,   0 ≤ 𝜉 < 𝑥 ≤ 1.

 (4.17) 

Now Problem (4.14) can be written as the following equivalent integral equation 

𝜆𝑢(𝑥) = ∫ 𝐺(𝑥, 𝜉) sin(𝑢(𝜉)) 𝑑𝜉
1

0

= 𝐴𝑢(𝑥) (4.18) 

where 𝜆 = 1/𝛼 and 𝐴 is a nonlinear Hammerstain integral operator whose linearization at 𝑢 = 0 is 

a linear operator 𝐵 with kernel 𝐺(𝑥, 𝜉). Hence, the problem 

𝐵𝑢(𝑥) = 𝜆𝑢(𝑥) (4.19) 

which can be written as  

𝜆𝑢(𝑥) = ∫ 𝐺(𝑥, 𝜉)𝑢(𝜉)𝑑𝜉
1

0

, 

has eigenvalues 𝜆𝑛  = 1/𝛼𝑛, 𝑛 = 1, 2, …  and eigenfunctions 𝑒𝑛(𝑥) =  √2 sin(𝑛𝜋𝑥) , 𝑛 = 1, 2, …. 
Taking norm of Eq. (4.19) gives 

|𝜆|‖𝑢(𝑥)‖ = ‖𝜆𝑢(𝑥)‖ = ‖𝐵𝑢(𝑥)‖ ≤ ‖𝐵‖‖𝑢(𝑥)‖. 

Thus, ‖𝐵‖ is the largest eigenvalue 𝜆1 = 1/4𝜋
4 of the linear operator 𝐵. Therefore, Problem 

(4.18) can have a non-trivial solution if 0 < 𝜆 ≤ 1/(4𝜋4), i.e., 𝛼 ≥  4𝜋4. 
 

4.2 A Perturbed nonlinear problem 
 

Consider the following problem 

{
 
 

 
    
𝑑4𝑢

𝑑𝑥4
+ 𝜀

𝑑2

𝑑𝑥2
(
𝑞1(𝑥)

𝑞0

𝑑2𝑢

𝑑𝑥2
) = 𝛼 sin 𝑢 ,   0 < 𝑥 < 1;                            

with hinged boundary conditions                                                     

  𝑢(0) = 0, 𝑢′′(0) = 0, 𝑢(1) = 0, 𝑢′′(1) = 0.                                    

 (4.20) 

We put a small perturbation on the left-hand side of the first equation in Problem (4.14). It is 

assumed that the variation of elastic properties is small. When 𝛼 = 0, the translation of (4.20) of 

an interareal equation is simple, because (4.20) has a non-trivial solution. Observe that (4.20) 
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possesses the trivial solution 𝑢 = 0. The linearization of (4.20) about 𝑢 = 0 yields 

{
 
 

 
    
𝑑4𝑢

𝑑𝑥4
+ 𝜀 [

𝑞1(𝑥)

𝑞0

𝑑4𝑢

𝑑𝑥4
+ 2

𝑞1
′ (𝑥)

𝑞0

𝑑3𝑢

𝑑𝑥3
+
𝑞1
′′(𝑥)

𝑞0

𝑑2𝑢

𝑑𝑥2
] = 𝛼𝑢,   0 < 𝑥 < 1;                            

with hinged boundary conditions                                                                                        

  𝑢(0) = 0, 𝑢′′(0) = 0, 𝑢(1) = 0, 𝑢′′(1) = 0.                                                                        

 (4.21) 

In fact, we have found the eigenvalues and eigenfunctions for (4.21) in the previous section 

given by 

𝛼𝑙𝑖𝑛𝑒𝑎𝑟 = 4𝑛
2𝜋2 + 𝜀𝛼𝜀(0), 𝑛 = 1, 2, … 

and  

𝑢𝑛(𝑥, 𝜀) = 𝑒𝑛(𝑥) + 𝑤(𝑥) 

respectively, where 𝛼𝑛(𝜀)  and 𝑤(𝑥)  are written in (4.11) and (4.13). Since zero is not an 

eigenvalue of (4.21), we can construct Green’s function 𝐺𝜀(𝑥, 𝜀) satisfying 

{
 
 

 
 𝑑

4𝐺(𝑥, 𝜉)

𝑑𝑥4
+ 𝜀 [

𝑞1(𝑥)

𝑞0

𝑑4𝐺(𝑥, 𝜉)

𝑑𝑥4
+ 2

𝑞1
′ (𝑥)

𝑞0

𝑑3𝐺(𝑥, 𝜉)

𝑑𝑥3
+
𝑞1
′′(𝑥)

𝑞0

𝑑2𝐺(𝑥, 𝜉)

𝑑𝑥2
] = 𝛿(𝑥 − 𝜉),

𝑥 ≠ 𝜉, 0 < 𝑥 < 1;  with hinged boundary conditions                                             

  𝐺(0, 𝜉) = 0, 𝐺′′(0, 𝜉) = 0, 𝐺(1, 𝜉) = 0, 𝐺′′(1, 𝜉) = 0.                                                         

 (4.22) 

The Green’s function of (4.22) is 

𝐺𝜀(𝑥, 𝜉) = −𝜀∫ [
𝑞1(𝑥)

𝑞0

𝑑4𝐺(𝑥, 𝜉)

𝑑𝑥4
+ 2

𝑞1
′ (𝑥)

𝑞0

𝑑3𝐺(𝑥, 𝜉)

𝑑𝑥3
+
𝑞1
′′(𝑥)

𝑞0

𝑑2𝐺(𝑥, 𝜉)

𝑑𝑥2
]

1

0

𝐺(𝑥, 𝜉)𝑑𝜉, (4.23) 

where 𝐺(𝑥, 𝜉) is the Green’s function of  

𝑑4𝐺(𝑥, 𝜉)

𝑑𝑥4
= 𝛿(𝑥 − 𝜉), 𝑥 ≠ 𝜉, 0 < 𝑥 < 1. 

Problem (4.20) can be written as follows as an equivalent integral equation 

𝜆𝑢(𝑥) = ∫ 𝐺𝜀(𝑥, 𝜉) sin(𝑢(𝜉)) 𝑑𝜉
1

0

= 𝐴𝑢(𝑥), (4.24) 

where 𝜆𝑁𝐿  = 1/𝛼𝑁𝐿  and 𝐴 is a nonlinear Hammerstain integral operator whose linearization at 

𝑢 = 0 is a linear operator 𝐵 with kernel 𝐺𝜀(𝑥, 𝜉). The equation 

𝐵𝑢(𝑥) = 𝜆𝑢(𝑥) (4.25) 

can be written as 

𝜆𝑢(𝑥) = ∫ 𝐺𝜀(𝑥, 𝜉) sin(𝑢(𝜉)) 𝑑𝜉
1

0

. 

Problem (4.25) has the eigenvalues 

𝜆𝐿 =
1

𝛼𝐿
=

1

4𝑛4𝜋4 + 𝜀𝛼𝜀(0)
, 𝑛 = 1,2,… 
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and the normalized eigenfunctions 

𝑢𝑛(𝑥, 𝜀) = 𝑒𝑛(𝑥) + 𝜀𝑤(𝑥), 

where 𝛼(𝜀) and 𝑤(𝑥) are given in (4.11) and (4.13), respectively. Taking norm of both sides of 

(4.25) yields 

|𝜆|‖𝑢(𝑥)‖ = ‖𝜆𝑢(𝑥)‖ = ‖𝐵𝑢(𝑥)‖ ≤ ‖𝐵‖‖𝑢(𝑥)‖. 

Thus, ‖𝐵‖ is the largest eigenvalue 𝜆𝐿 . We can conclude that (4.24) has a nontrivial solution 

only if 

0 < 𝜆𝑁𝐿 ≤
1

4𝜋4 + 𝜀𝛼𝜀(0)
 

and  

𝛼 = 𝛼𝑁𝐿 =
1

𝜆𝑁𝐿
⟹ 4𝜋4 + 𝜀𝛼𝜀(0) ≤ 𝛼. 

As an illustrative example, let 𝑞1(𝑥)  =  10
18𝑥 be a linear variation. In Tables 3 and 4, we 

present eigenvalues of perturbed nonlinear problem in cases of concrete and steel beams with 

hinged both ends, respectively. 

 

 
Table 1 Eigenvalues of vibrating nonlinear concrete beam with hinged ends  

Values of 𝜀 
Eigenvalue of Problem (4.20) 

𝜆 = 𝜆𝑁𝐿 ≤ 

Eigenvalue of Problem (4.24) 

𝛼 = 𝛼𝑁𝐿 ≥ 

𝜀 = 0 1/(4𝜋4) 4𝜋4 

𝜀 = 0.1 7.2892 × 10−11 1.3719 × 1010 

𝜀 = 0.2 3.6359 × 10−11 2.75037 × 1010 

𝜀 = 0.3 2.4239 × 10−11 4.12556 × 1010 

 

Table 2 Eigenvalues of vibrating nonlinear steel beam with hinged ends 

Values of 𝜀 
Eigenvalue of Problem (4.20) 

𝜆 = 𝜆𝑁𝐿 ≤ 

Eigenvalue of Problem (4.24) 

𝛼 = 𝛼𝑁𝐿 ≥ 

𝜀 = 0 1/(4𝜋4) 4𝜋4 

𝜀 = 0.1 8.9827 × 10−10 1.1325 × 109 

𝜀 = 0.2 4.4914 × 10−10 2.22649 × 109 

𝜀 = 0.3 2.9942 × 10−10 3.33974 × 109 

 

 

5. Conclusions 
 

In this study, we considered the fourth-order boundary value problem arising from the Euler- 

Bernoulli model of an elastic beam held under deferent supports. We described some basic spectral 

properties of the resulting fourth-order operator and constructed Green’s function for three sets of 

boundary conditions. We also considered dynamic problems of transverse vibrations and obtained 

the eigenvalues and corresponding eigenfunctions. 
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This paper focused on the study of dynamic problems for Euler-Bernoulli beam with variable 

elastic properties. We used the perturbations formulation to discuss both elastic and dynamic 

models. The eigenvalue problem arising from transverse vibrations of inhomogeneous beams has 

been studied using perturbation approach. The smallest eigenvalue representing the 

eigenfrequency of the vibrating beam was obtained. A non-linear eigenvalue problem for 

inhomogeneous elastic properties of beam has been studied to find the variation in eigenfrequency 

due to inhomogeneity. 

Three sets of boundary conditions were used to solve our fourth-order unperturbed and 

perturbed boundary value problems. More sets of boundary value problems can be considered. 

Also, non-homogeneous boundary conditions, such as a force being applied at one end, may be 

considered. 
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