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High concentration ratio approximation of linear effective
properties of materials with cubic inclusions
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Abstract. This paper establish a high concentration ratio approximation of linear elastic properties of
materials with periodic microstructure with cubic inclusions. The approximation is derived using first
few terms of power series expansion of the solution of the equivalent eigenstrain problem with a homoge-
neous eigenstrain approximation. Viability of the approximation at high concentration ratios is proved by
comparison with a numerical solution of the homogenization problem. To this end some theoretical result
of symmetry properties of the homogenization problem are given. Using these results efficient numerical
computation on a reduced computational domain is presented.
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1. Introduction

A classical approach to find linear effective properties of composite materials is to apply the equiv-
alent inclusion method together with the assumption of uniform eigenstrains. The approach is based
on the fact, first observed by Eshelby (1957), that homogeneous macro strain applied to an infinite
elastic domain with an ellipsoidal inclusion results in homogeneous eigenstress within the inclusion.
Unfortunately, a closed form of the resulting eigenstress is known only for an elliptical inclusion
and thus numerous application of the equivalent inclusion method are mainly restricted to problems
with ellipsoidal inclusions, see Nemat-Nasser et al. (1998). Moreover, the method in its original
form usually gives good results only for materials with low concentration ratio as the assumption of
homogeneous eigenstrain precludes interaction between inclusions.

For problems with periodic microstructure lack of existence of closed form solutions of the in-
clusion problem for non-elliptical inclusions is alleviated by the Fourier type methods. Applying it
to the problem of cuboidal inclusion within the cuboidal unit cell we found that the uniform eigen-
strain approximation gives, not as one might wrongly expect good results for low concentrations,
but instead good results for high concentration ratios. For a similar observation concerning closed
cell materials that are composed of sheets see Berger et al. (2017). Since the assumption of the uni-
form eigenstrain allows determination of the effective material properties in almost closed form, its
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power series expansion at maximal concentration ratio gives, as is shown in the paper, a closed form
approximation of the effective properties at high values of concentration ratio. This has several prac-
tical applications, as some important composites are thin walled or are made of plate reinforcements.
Nowadays modern manufacturing techniques such as 3D printing allow fabrication of such structures
at relatively low cost and availability of a closed form formula that predict their effective properties
is of great interest.

On the other hand, it is well known that to determine linear elastic effective material properties of
composite materials with a periodic microstructure it suffices to solve a certain system of boundary
value problems with periodic boundary conditions, for details see Bensoussan et al. (1978). The sys-
tem can be solved numerically in principle with arbitrary precision. However, for high concentration
ratios numerical computation becomes increasingly more involved as it requires more and more fine
discretization of the boundary layer that forms around the inclusion boundary. Parametric study of
effective properties at high concentrations is thus rather difficult to perform. However, the numerical
solution is of fundamental importance in the validation of the closed form approximation as it gives
benchmark results to compare with.

The paper is organized as follows. In the first part of the paper homogenization approach with
particular attention to its symmetry properties is studied. This is important aspect not only because
discretization must preserve symmetry of the problem but also because symmetry of the problem
allows its domain reduction, see Hassani (1996) and Lukkassen et al. (2008) for a direct method and
Barbarosie et al. (2017) for a group representation method. It is showed in the paper that instead of
solving the problem in the whole cubic domain it suffices to solve a reduced problem only on one eight
of the cube. The reduced problem is of the same form but with mixed boundary conditions instead
of the periodic one. The reduction of the computational domain greatly reduce the computational
cost. In the second part of the paper determination of the effective properties on the basis of the
equivalent eigenstrain method with homogenous eigenstrain approximation is presented. A solution
in almost a closed form is obtained where only a certain function of the concentration ratio in a form
of an infinite sum requires numerical evaluation. However, at high concentration ratios, where the
equivalent eigenstrain solution is most accurate, the function is approximated by first few terms of
its power series expansion. By comparison with the homogenization solution it is shown that the
approximation is reasonably well for concentration ratios above 80%.

2. Notation preliminaries

Throughout the paper tensorial notation is used. Vectors, second and fourth order tensors are
denoted by a, a, and A. In the component notation with respect to the Cartesian basis vectors e i we
have a = ai e i, a = aij e i⊗ e j andA = Aijkl e i⊗ e j ⊗ e k ⊗ e l. Here and throughout the paper the
summation convention over the repeated indices is used. The identity second order tensor is denoted
by i and the fourth order identity tensor by I . Dot product of two tensors or single contraction is
denoted by a single dot and the double contraction by a colon.

A group of orthogonal second order tensors is denoted by O(3). Its subgroup of rotations that
rotates a cube into itself is called the octahedral or cubic group Bradley et al. (2010). The Rayleight
product, see for example Bertram (2005), of A withQ ∈ O(3) is denoted byQ ∗A and is defined by

Q ∗A = Q ∗Aijkl e i ⊗ e j ⊗ e k ⊗ e l = Aijkl Qe i ⊗Qe j ⊗Qe k ⊗Qe l.
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Similarly is defined Q ∗ a. It follows by direct computation that

Q ∗
(
A : a

)
=

(
Q ∗A

)
:
(
Q ∗ a

)
=: Q ∗A : Q ∗ a (1)

for arbitrary tensors A, a and Q ∈ O.
Evidently, Q ∗ i = i and Q ∗ I = I . Tensors with this property are called isotropic tensors. If O

is a subgroup of O(3) such that Q ∗C = C for all Q ∈ O, then O is call a material symmetry group
of C. It is also said that C posses O symmetry. In particular, if O is a cubic group, then C has cubic
symmetry.

Symmetric fourth order tensors have two minor symmetries, between the first and the second pair
of indices. In component notation Cijkl = Cjikl = Cijlk. They constitute an algebra where the
multiplication is understood as the double contraction. It is well known, see for example Walpole
(1981) or Jaric et al. (2008), that the subalgebra of tensors with both the cubic and major symmetry is
three dimensional. However, assumption of the major symmetry is redundant as the cubic and minor
symmetry imply the major symmetry. Symmetric fourth order tensors with the cubic symmetry are
called cubic tensors. The space of cubic tensors is thus three dimensional. Its basis tensors are denoted
by E

i
, i = 1, 2, 3. In the paper is chosen a base {E

i
, i = 1, 2, 3} such that components of a cubic

tensor A in this base are components A1111, A1122 and A1212. Thus

A = A1111E 1
+A1122E 2

+A1212E 3
. (2)

Multiplication of two cubic tensors A and B is given by

A : B = aiE i
: bj E j

= (a1b1 + 2a2b2)E 1
+ (a1b2 + a2b1 + a2b2)E 2

+ 2a3b3E 3
. (3)

Therefore the algebra of fourth order symmetric tensors with the cubic symmetry is isomorphic to
algebra (R3,+, :) with the multiplication given as

(a1, a2, a3) : (b1, b2, b3) = (a1b1 + 2a2b2, a1b2 + a2b1 + a2b2, 2a3b3) . (4)

Clearly, the algebra is commutative. In the cubic basis an isotropic tensor λ i ⊗ i + 2µ I has a
representation

(λ+ 2µ)E
1
+ λE

2
+ µE

3
. (5)

3. Homogenization theory

We begin this section with a remark that the homogenization theory is only scarcely presented in
the standard micromechanical literature, see for example Nemat-Nasser et al. (1998). The reason is
that it requires some higher mathematics and also, apart from some simple cases, that it doesn’t give
a closed form solution but only a set of boundary value problems that have to be solved to obtain
desired effective material properties. Nevertheless, the system of boundary value problems can be
reliably solved numerically and this gives benchmark results for any other method to compare with.
The aim of the present section is to show how this can be done.
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3.1 Symmetries of the effective elasticity tensor

Let Y = Ym ∪ Y i ⊂ R3 be a basic periodic cell which defines the periodic microstructure. On
Y is defined the elasticity tensor C such that it is piecewise constant with values C m and C i on
Ym and Y i, respectively. A domain Ym is called the matrix phase and Y i the inclusion phase. It is
well known Cioranescu et al. (1999), Bensoussan et al. (1978) that the effective elastic tensor of the
corresponding material with the periodic microstructure is given by

C eff
ijkh = ⟨Cijkh⟩ −

⟨
Cijlmelm(χ

kh
)
⟩
. (6)

Here ⟨•⟩ is a volume average over the basic cell Y , elm(χ
kh
) are components of the deformation

tensor of the displacement χ
kh

and χ
kh

are solutions of a set of boundary value problems:

Problem 1. For each pair of Cartesian basis vectors e k and eh find χ
kh

∈ H1
# (Y ) such that⟨

χ
kh

⟩
= 0 and

div
(
C : e

(
χ

kh

))
= div

(
C : e

(
e k ⊗ eh · y

))
. (7)

HereH1
# (Y ) is a Sobolev space of weakly differentiable functions with periodic boundary conditions

on the boundary of Y .

It is well known that the above problem has a unique solution inH1
# (Y ), Oleinik et al. (1992). Due

to the symmetry it suffices to solve the above problem only for k ≤ h. Therefore we have to solve
6 boundary value problems for 6 different right hand sides of (7). Since C is piecewise constant, the
boundary value problem has to be understood in the distributional sense.

Let O be s symmetry group. It is said that O is a geometrical symmetry if the microstructure is
invariant with respect toO. In particular,O is a geometrical symmetry of the periodic microstructure
with the base cell ifQY = Y for allQ ∈ O. Obviously, geometrical symmetry of the microstructure
and material symmetry of material phases of the composite determine symmetry of the effective
elasticity tensor. System (6) is to be solved numerically. To solve it effectively, we first inquire after
symmetry properties of its solutions χ

kh
.

Theorem 1. Let O ⊂ O(3) be geometrical and material symmetry of (7). Then for all Q ∈ O

χ(e k ⊗ eh, y) = QTχ(Qe k ⊗Qeh, Qy), (8)

where χ(e k ⊗ eh, y) = χ
kh
(y).

Proof. Variational formulation of (7) is∫
Y
∇χ

kh
: C : ∇w dy =

∫
Y
e k ⊗ eh : C : ∇w dy, ∀w ∈ H1

# (Y ). (9)

Due to the geometrical symmetry we have QY = Y and thus we can introduction a new variable
ŷ = Qy with the same domain of integration in (9) as the original y. Let us define

ŵ(ŷ) = Qw(QT ŷ) and χ̂
kh
(ŷ) = Qχ

kh
(QT ŷ). (10)
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It follows from the chain rule that

∇yw(y) =
∂w

∂y
(y) = QT ∂ŵ

∂ŷ
(ŷ)Q = QT∇ŷ ŵ(ŷ)Q = QT

∗ ∇ŷ ŵ. (11)

A similar result holds for χ
kh
. Introducing (11) into (9) we obtain∫

Y
QT

∗ ∇ŷ χ̂ kh
: C : QT

∗ ∇ŷ ŵ dŷ =

∫
Y
e k ⊗ eh : C : QT

∗ ∇ŷ ŵ dŷ. (12)

Due to the material symmetry QT
∗ C = C. Therefore, it follows from (12) that∫

Y
∇ŷ χ̂ kh

: C : ∇ŷ ŵ dŷ =

∫
Y
Q∗e k ⊗ eh : C : ∇ŷ ŵ dŷ. (13)

Since solution of (7) is unique, it follows that

χ̂
kh
(ŷ) = χ(Qe k ⊗Qeh, ŷ). (14)

Using (14) in (10) we obtain (8) and the theorem is proved.

We can now prove that geometrical and material symmetries indeed determine symmetry of the
effective elasticity tensor.

Theorem 2. Let be O1 a material symmetry group and O2 geometrical symmetry of the microstruc-
ture. Then O = O1 ∩ O2 is the symmetry group of the effective elasticity tensor.

Proof. We first rewrite (6) into

C eff : e k ⊗ eh =
⟨
C
⟩
: e k ⊗ eh −

⟨
C : e

(
χ(e k ⊗ eh, •)

)⟩
(15)

Applying the Rayleight product Q∗ on both sides of (15), Q ∈ O and using (1) we obtain

Q∗C
eff : Q∗e k ⊗ eh =

⟨
C
⟩
: Q∗e k ⊗ eh −

⟨
C : Q∗∇y χ(e k ⊗ eh, y)

⟩
, (16)

since Q∗C = C. Using (10) in (14) it follows

Q∗C
eff : Q∗e k ⊗ eh =

⟨
C
⟩
: Q∗e k ⊗ eh −

⟨
C : ∇ŷ χ(Qe k ⊗Qeh, ŷ)

⟩
=

⟨
C
⟩
: Q∗e k ⊗ eh −

⟨
C : ∇y χ(Qe k ⊗Qeh, y)

⟩
= C eff : Q∗e k ⊗ eh. (17)

Since k and h are arbitrary, we deduce Q∗C
eff = C eff for all Q ∈ O and the proof is concluded.
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It is well known, see for example Ting (1996), that each one of eight elastic symmetry classes
has a minimal subset of its symmetry group such that invariance of C with respect to this subset
guarantees the invariance to the whole group. In particular, C has cubic symmetry provided that it
is invariant with respect to Q1 = R(e1, π/2) and Q3 = R(e3, π/2), where R(e, θ) is a rotation
of θ around e. That is, conditions Q1 ∗ C = C and Q3 ∗ C = C imply that Q ∗ C = C for all
elements of the cubic group. With this remark, it follows that material and geometrical invariance
with respect to the minimal set guarantees a material symmetry of the effective elasticity tensor.
Moreover, elastic symmetries can be also characterized by a set of planes ofmirror symmetryChadwic
et al. (2001). Assuming that the basic cell is invariant with respect to the central inversion, i.e.,
−Y = Y , geometrical symmetries of the basic cell can be also characterized by a set of planes of
mirror symmetry.

3.2 Cubic symmetry

Let us assume that Y = [−1, 1]3 is a cube and that C has at least cubic symmetry. Then it follows
from Theorem 2 that C eff is a cubic tensor. Moreover, it follows from Theorem 1 that it suffices to
know values of the auxiliary functions χ

kh
only in the first octant Y1 of Y since for any y there exists

y
1
∈ Y1 and an orthogonal transformation Q which preserves symmetry of the problem, such that

y = Qy
1
. There exist several different covers of Y . For example

Y = Y1 ∪ Z1Y1 ∪ Z2 (Y1 ∪ Z1Y1) ∪ (Y1 ∪ Z1Y1 ∪ Z2 (Y1 ∪ Z1Y1))

= Y1 ∪ (−Y1) ∪ Z1Y1 ∪ Z2Y1 ∪ Z3Y1 ∪R(e 1, π)Y1 ∪R(e 2, π)Y1 ∪R(e 3, π)Y1, (18)

where Zk denotes a reflection across the plane through the origin with the normal in the direction of
e k.

Covering of Y by rigid transformation of Y1 implies that it is enough to solve systems (7) only
for functions defined on Y1. However, functions χ kh

have boundary conditions prescribed on the
boundary of Y and thus in order to transform (7) to the boundary value problem on Y1 we have to
transform also the boundary conditions from Y to Y1. To this end, let us choose y+ ∈ Y1. Using (8)
for y− = Zk y

+, k ∈ {1, 2, 3} it follows that

χ
ij
(y−) = χ(ei ⊗ ej , Zk y

+) = Zkχ(Zk ei ⊗ Zk ej , y
+). (19)

Now, for i = j or i ̸= k and j ̸= k it follows that Zk ei ⊗ Zk ej = ei ⊗ ej and Zk ei ⊗ Zk ej =
−ei ⊗ ej for all other pairs of i and j. Therefore

i = j ∨ (i ̸= k ∧ j ̸= k) =⇒ χ
ij
(y−) = Zk χ ij

(y+),

(i = k ∧ j ̸= k) ∨ (j = k ∧ i ̸= k) =⇒ χ
ij
(y−) = −Zk χ ij

(y+). (20)

On the symmetry plane y+ = y−. Denoting by Σk the symmetry plane of Zk we obtain from (20)
the boundary conditions on Σ0

k = Σk ∩ Y1:

χk(e i ⊗ e i, y) = 0 for i ∈ {1, 2, 3},
χk(e l ⊗ e k, y) = 0 for l ̸= k, l ∈ {1, 2, 3},
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χk(e i ⊗ e j , y) = 0 for i ̸= k ∧ j ̸= k, i, j ∈ {1, 2, 3}, (21)

no summation over repeated i and l. From (20) we obtain also boundary conditions on the faces
Σ+
k = {(y1, y2, y3) : yk = 1} ∩ Y1 of the same form as (21) since due to the periodicity of χ

ij
, we

have χ
ij
(y+) = χ

ij
(y−) for y+ ∈ Σ+

k . Summarizing, boundary conditions for the restriction χ̂ of
χ to Y1 are

χk(e i ⊗ e i, y) = 0 for y ∈ Σ0
k ∪ Σ+

k and i ∈ {1, 2, 3},
χk(e l ⊗ e k, y) = 0 for y ∈ Σ0

k ∪ Σ+
k and l ̸= k, l ∈ {1, 2, 3},

χk(e i ⊗ e j , y) = 0 for y ∈ Σ0
k ∪ Σ+

k and i ̸= k ∧ j ̸= k, i, j ∈ {1, 2, 3}. (22)

no summation over i and l. Dirichlet boundary conditions (22) are complimented with Neumann
boundary conditions on components of χ

kh
which are free of Dirichlet boundary conditions. Since

they don’t appear explicitly in the variational formulation of Problem 1, we shall not write them down
here.

Let us now denote by χ̂
kh
, 1 ≤ k ≤ h ≤ 3 a set of functions defined onY1 such that transformation

rules (8) apply. Using the covering (18) and (8) functions χ̂
kh

can be extended from Y1 to functions
χ

kh
defined on the whole cube Y . In Problem 1 it is required thatχ

kh
have the zero average. We shall

now show that due to the construction of χ
kh

the zero average condition is automatically satisfied
without further requirements on χ̂

kh
. Indeed,∫

Y
χ

kh
dy =

∫
Y1

χ
kh

dy +

∫
−Y1

χ
kh

dy +

∫
Z1Y1

χ
kh

dy +

∫
Z2Y1

χ
kh

dy +

∫
Z3Y1

χ
kh

dy +∫
R(e 1,π)Y1

χ
kh

dy +

∫
R(e 2,π)Y1

χ
kh

dy +

∫
R(e 3,π)Y1

χ
kh

dy. (23)

Using (8) and taking into account that Q ∈ O(3) we have∫
QY1

χ
kh
(y) dy =

∫
Y1

χ(e k ⊗ eh, Qy) dy = Q

∫
Y1

χ̂(QT e k ⊗QT eh, y) dy. (24)

Considering a case k = h = 1 it follows for i ∈ {1, 2, 3} that∫
−Y1

χ
11
(y) dy = −

∫
Y1

χ̂
11
(y) dy,∫

ZiY1

χ
11
(y) dy = Zi

∫
Y1

χ̂
11
(y) dy,∫

R(e i,π)Y1

χ
11
(y) dy = R(e i, π)

∫
Y1

χ̂
11
(y) dy (25)

Inserting (25) into (23) we obtain∫
Y
χ

11
dy = ((Z1 + Z2 + Z3) + (R(e 1, π) +R(e 2, π) +R(e 3, π))

∫
Y1

χ̂
11
dy = 0. (26)

For all other cases k ≤ h a similar computation holds and thus we have proved that the extensions
χ

kh
have the zero average.

We are now in position to formulate:
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Problem 2. For each pair of Cartesian basis vectors e k and eh find χ̂
kh

∈ H1(Y1) such that χ̂
kh

satisfies boundary conditions (22) and

div
(
C : e

(
χ̂

kh

))
= div

(
C : e

(
e k ⊗ eh · y

))
. (27)

It is clear from our discussion that restriction of a solution of Problem 1 to Y1 is also a solution of
Problem 2. Moreover, as it was shown, solutions of Problem 2 can be extended to functions defined
on Y . It is not difficult to show that in this way the solution of Problem 1 is obtained and this proves
that Problem 2 is unequally solvable.

It now only remains to show how to compute the effective elasticity tensor by means of χ̂
kh
. Let

us denote in accordance with the covering (23)

Q1 = I,Q2 = −I,Q3 = Z1, Q4 = Z2, Q5 = Z3, Q6 = R(e 1, π), Q7 = R(e 2, π), Q8 = R(e 3, π).

Now,

⟨
C : e

(
χ(e k ⊗ eh, •)

)⟩
=

1

|Y |

8∑
i=1

∫
QiY1

C :
∂

∂y
χ(e k ⊗ eh, y) dy

=
1

8 |Y1 |

∫
Y1

C :

8∑
i=1

Qi ∗
∂

∂y
1

χ̂(QT
i e k ⊗QT

i eh, y1) dy1. (28)

Direct computation shows that

1

8

8∑
i=1

Qi ∗
∂

∂y
1

χ̂(QT
i e k ⊗QT

i eh, y1) = A
kh

∂

∂y
1

χ̂(e k ⊗ eh, y1), (29)

where

A
ii
=

3∑
j=1

e j ⊗ e j ⊗ e j ⊗ e j ,

A
12

= e 1 ⊗ e 2 ⊗ e 1 ⊗ e 2 + e 2 ⊗ e 1 ⊗ e 2 ⊗ e 1,

A
13

= e 1 ⊗ e 3 ⊗ e 1 ⊗ e 3 + e 3 ⊗ e 1 ⊗ e 3 ⊗ e 1,

A
23

= e 2 ⊗ e 3 ⊗ e 2 ⊗ e 3 + e 3 ⊗ e 2 ⊗ e 3 ⊗ e 2. (30)

Since C eff has cubic symmetry, it suffices to evaluate only C eff
1111, C eff

1122 and C eff
1212. Using (6),

(28-30) and cubic symmetry of C it follows

C eff
1111 = ⟨C1111⟩ −

1

|Y1 |

∫
Y1

e 1 ⊗ e 1 : C : A
11

:
∂

∂y
1

χ̂(e 1 ⊗ e 1, y1) dy1

= ⟨C1111⟩ −
1

|Y1 |

∫
Y1

3∑
j=1

C11jj

(
∇y

1
χ̂

11

)
jj

dy
1
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= ⟨C1111⟩ −
⟨
C11kl e

(
χ̂

11

)
kl

⟩
Y1

, (31)

where ⟨•⟩Y1
denotes average over Y1. Similarly,

C eff
1122 = ⟨C1122⟩ −

⟨
C11kl e

(
χ̂

22

)
kl

⟩
Y1

,

C eff
1212 = ⟨C1212⟩ −

⟨
C12kl e

(
χ̂

12

)
kl

⟩
Y1

. (32)

Thus, we have established:

Theorem 3. Nonzero effective coefficients of the periodic homogenization problem with cubic sym-
metry are

C eff
ijkh = ⟨Cijkh⟩Y1

−
⟨
Cijlmelm(χ̂

kh
)
⟩
Y1

, (33)

where χ̂
kh

are solutions of the boundary value Problem 2.

3.3 Finite element discretization

We have succeeded to reduce a domain of the boundary value problems for the auxiliary functions
from the whole cube to one eight of it. Since both Problems 1 and 2, apart from some special cases,
don’t admit a closed form solution, reduction of the domain is of great computational advantage.
Moreover, Problem 1 has prescribed periodic boundary conditions while Problem 2 has Dirichlet
boundary conditions, which are much easier to apply. Also Problem 1 has an additional constraint
of the zero average. Within the context of the finite element computation the periodic boundary
conditions, as well as the zero average condition, are usually imposed by using multipliers which
spoil positive definiteness of the stiffness matrix. Problem 2 is thus not only considerably smaller but
is also free of the above mentioned nuisances.

In order to consistently discretize determination of the effective material properties discretization
of the problem has to conserve symmetry of the problem. Therefore, the finite element mesh has
to possess the same symmetry as the problem. A finite element mesh with cubic symmetry can be
generated by discretization of the polyhedral angle of the first octant and then by rotation of it around
the symmetry axes of the cube, see Fig. 1 of a FEM mesh with 12531 tetrahedral elements. In order
to obtain a valid finite element mesh, faces of the polyhedral angle have to be consistently discretized.
Alternatively, it suffices to generate a finite element mesh which is invariant only with respect to the
defining minimal set of the symmetry, see the last paragraph in Section 3.1. We remark that it is even
possible to reduce the computational domain from the octant to the polyhedral angle of the cube.
However, in this reduction boundary value problems for the auxiliary functions are not separated and
thus the reduction is of minor importance.

Finite element discretization of the problem results in a large linear system. To solve it we used
a direct linear solver from the HSL Mathematical Software Library, A collection of Fortran codes
for large scale scientific computation (2016). The solver was found to be very effective with good
parallel performance. Correctness of the results was confirmed by comparison with results from
the literature Heitkam et al. (2016) for a spherical inclusion and by comparing results for different
meshes, basis functions and also material properties. Note that the homogenization problem has for



70 G. Mejak

composites with a constant shear modulus of phases a closed form solution for an arbitrary shape of
the inclusion, see Hill (1964), what gives an ideal benchmark problem for certifying the code. On
the basis of performed tests it is concluded that our finite element computation gives correct results
with high accuracy. Results are presented later in the paper together with the comparison with results
obtained by the equivalent eigenstrain method. Tetrahedral elements with quadratic basis functions
with a fine mesh consisting of around 12000 elements per the polyhedral angle of the cube was used.

4. Fourier representation of Eshelby operator

After obtaining a finite element solution for the effective elasticity tensor we now proceed to a
completely different method which gives an approximate solution in almost a closed form. A range of
applicability of the approximation will be determined by comparison with the finite element solution.

Since Fourier series expansion is used, it is convenient to use Ω = [−π, π]3 for the basic periodic
cell instead of Y = [−1, 1]3. The inclusion problem amounts to solve the following boundary value
problem: for a given ϵ∗ ∈ Sym2 find e ∈ Sym2 with periodic boundary conditions on ∂Ω such that

divC : (e− ϵ∗) = 0 in Ω and
⟨
e
⟩
Ω
= 0. (34)

Here Sym2 is the space of second order symmetric tensors, C is the elasticity tensor and
⟨
e
⟩
Ω
is

Fig. 1 Finite element mesh of the polyhedral angle. Nodes at inclusion face are coloured blue, at the cell face
red
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the average over Ω. It is well known that the solution of the problem is given by

e(x) =
∑

|m |≠0

K(m) : ϵ∗(m)eim·x, (35)

wherem ∈ Z3 is a multi index, ϵ∗(m) ism-nth Fourier coefficient of ϵ∗ and

K(m) =
2

|m |2
m ⊗̂ i ⊗̂m+

ν

1− ν
· 1

|m |2
m⊗m⊗ i− 1

1− ν
· 1

|m |4
m⊗m⊗m⊗m. (36)

Here ⊗̂ is the symmetric dyadic product, i is the identity second order tensor and ν is the Poisson
ratio. Eq. (34) defines Eshelby operator S which maps ϵ∗ to e = S ϵ∗ while (36) gives its Fourier
form.

Usually ϵ∗ is nonzero only on a part of the domain Ω. The support of ϵ∗ is called the inclusion and
is denoted by Ω i. In the language of composite materials the compliment Ωm = Ω \Ω i is called the
matrix.

5. Equivalent eigenstrain equation

Let Ω represents a composite material with a piecewise constant elasticity tensor with values C
on the matrix and C i on the inclusion. Equivalent eigenstrain equation says that for the prescribed
homogeneous macro strain e b there exists an equivalent eigenstrain such that

C m : (e+ e b) = C : (e+ e b − ϵ∗). (37)

Evidently, the mapping e b 7→ ϵ∗ is linear and is denoted by ϵ∗ = Z e b. Equation (37) is solved by
the means of variational formulation, Mejak (2014). Assuming homogeneous eigenstrain approxima-
tion ϵ∗ = χ(Ω i)ϵ

∗
0
, here χ(Ω i) is the indicator function of Ω i, the corresponding Lagrange equation

is
ϵ∗
0
− Ĉ :

⟨
e
⟩
Ω i

= Ĉ : e b, (38)

where Ĉ = C−1 :
(
C − C i

)
. Putting (35) into (38) it followsI − π3

|Ω i |
Ĉ :

∑
|m |≠0

K(m)ϵ∗(m)ϵ∗(−m)

 ϵ∗
0
= Ĉ : e b. (39)

It is known form Mejak (2014) that (39) has a unique solution that can be expressed in a form
ϵ∗
0
= Z : e b, where Z is a fourth order tensor with minor symmetries.
A crucial step to solve (39) is to compute the infinite sum. To this end, althoughmore general cases

can be treated, let us assume that Ω i is a centrally placed cube with the side length 2δπ, δ ∈ [0, 1]. It
follows then that

ϵ∗(m) =
sin(m1πδ) sin(m2πδ) sin(m3πδ)

π3m1m2m3
. (40)
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Therefore, ϵ∗(m) is an even function ofm and is invariant to cyclic permutations ofm. The triple
sum in (39) is also invariant to the inversions and cyclic permutations and thus

∑
|m |≠0K(m)ϵ∗(m)2

is a cubic tensor with minor symmetries. It follows then, see (2), that∑
|m |≠0

K(m)ϵ∗(m)2 =
1

3

∑
|m |≠0

ϵ∗(m)2
(
E

1
+

ν

1− ν
E

2
+ E

3

)
+

1

3(1− ν)

∑
|m |≠0

m2
1m

2
2 +m2

1m
2
3 +m2

2m
2
3(

m2
1 +m2

2 +m2
3

)2 ϵ∗(m)2
(
2E

1
− E

2
− E

3

)
. (41)

The first sum is evaluated using the Parseval’s theorem∑
|m |≠0

ϵ∗(m)2 =
1

|Ω i |

∫
Ω
χ(Ω i)

2 dΩ− lim
m→0

ϵ∗(m)2 = δ3(1− δ3). (42)

To evaluate the second sum we first observe that it suffices to compute the sum

β(δ) =
1

π6

∑
|m |≠0

sin2(m1πδ) sin2(m2πδ) sin2(m3πδ)

m2
3

(
m2

1 +m2
2 +m2

3

)2 . (43)

Using the residue theorem Henric (1977), summation overm1 gives

β(δ) =

∞∑
m2,m3=−∞

b(m2,m3) =

1

8π5

∞∑
m2,m3=−∞

−2 coth γ − 2 sinh(γδ) +B(γ)

m2
3

(
m2

2 +m2
3

)3/2 sin2(m2πδ) sin2(m3πδ), (44)

where γ = π
√

m2
2 +m2

3 and

B(γ) =
sinh(2γ(1− δ)) + sinh(2γ(δ + 1))

cosh(2γ)− 1
+

4(γδ cosh(2γ(δ − 1))− γδ cosh(2γδ) + γ cosh(2γδ)− γ)

cosh(2γ)− 1
. (45)

Note that limγ→∞ (B(γ)− 2 sinh(γδ)) = 0 and thus the sum is absolutely convergent. To the
best author knowledge the sum (44) is not analytically summable and is thus approximated by a finite
sum

β(δ)
.
= 4

N1∑
m2,m3=1

b(m2,m3) + 2

N2∑
m2=1

lim
m3→0

b(m2,m3) (46)

for sufficiently large N1 and N2.
Putting (42-43) into (41) we have∑
|m |≠0

K(m)ϵ∗(m)2 =
1

3
δ3(1− δ3)

(
E

1
+

ν

1− ν
E

2
+ E

3

)
+

β(δ)

1− ν

(
2E

1
− E

2
− E

3

)
.

(47)
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6. Effective material properties

The effective material properties C eff are given by

C eff = C + c(C i − C) : P , (48)

where c is a concentration ratio c = |Ω i | / |Ω | = δ3 and P is the concentration tensor which relates
the prescribed macrostrain with the averaged inclusion strain, i.e. e b +

⟨
e
⟩
Ω i

= P : e b. Using
(38) it follows that C eff = C : (I − cZ), where Z = Z(δ) gives solution of (39). Since the cubic
symmetry of the problem has been assumed, C eff is a cubic tensor. Its material moduli are the bulk
modulus κ, the shear modulus µ and the second shear modulus µ̂ = C1111 − C1122 − 2C1212. Their
values are, after solving (39) and (48), expressed in a nondimensional form as

κ = 1 +
3c(1− κr)(1− ν)

(ν + 1)(c(κr − 1)− κr) + 4ν − 2
,

µ = 1− 96c2(µr − 1)(ν − 1)

∆
,

µ̂ =
192c2(µr − 1)2(1− ν)(5β(δ) + 64(c− 1)c)

∆ ((1− µr) (3β(δ) + 64c2(2ν − 1)) + 64c(µr(2ν − 1) + ν − 2))
, (49)

where κr and µr are the quotients of the inclusion versus the matrix moduli and

∆ =
(
64c2(ν − 1)− β(δ)

)
(µr − 1)− 32c(2µr + 1)(ν − 1). (50)

As can be seen the homogeneous eigenstrain approximation gives κ that is independent upon
β(δ) and agrees with the well known Hashin (1960) result. One can show that the reason that κ is
independent upon β(δ) stems from the fact that whenever the eigenstrain is approximated in such a
way that ϵ∗(Qx) = ϵ∗(x), here Q is a rotation from the cubic symmetry group, the isotropic macro
strain e b results in the isotropic eigenstrain and this automatically imply Hashin’s formula for the
bulk modulus.
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Fig. 2 Relative error in percentage of the effective elasticity coefficients with respect to the concentration ratio
of the cubic glass epoxy inclusion



74 G. Mejak

To find out how good is the homogeneous eigenstrain approximation, comparison between it and
the results computed by the FEM solution of the periodic homogenization is made. Figure 2 shows
the relative error of the comparison in percentage with respect to c for the glass epoxy composite,
Ei = 3GPa, νi = 0.35, Em = 70GPa, νm = 0.2, (κr = 11.67 and µr = 26.25). Results are
given for the effective κ, µ, µ̂ and the anisotropy index AU = 6

5

(√
Z − 1/

√
Z
)2
, where Z =

2C1212/(C1111 − C1122) is the Zener anisotropy index. For definition and importance of AU see
Ranganathan et al. (2008). Note that the relative error for µ̂ and AU is large for small values of c
since their values are small. Their values µ̂ and AU are shown in Fig. 3.

As can be seen, the relative error is rather large for µ̂ and AU for small concentrations but it is
reasonably small for c > 0.8. This is true not only for the particular glass epoxy composite but
also for the whole range of materials having a simple cubic microstructure with a cubic inclusion.
The equivalent eigenstrain approximation worst performs in the case of voids where strictly speaking
theory of variational eigenstrain approximation does not apply, see Mejak (2014). Nevertheless the
approximation is again good, see Figure 4 and thus the approximation is also valid for thin walled
structures. In particular, it is valid for cubic foam and thus in conjunction with the forthcoming Taylor
series approximation of β(δ) its effective elastic properties in a closed form have been obtained.

Since equivalent eigenstrain approximation gives good results for c > 0.8, a Taylor series expan-
sion of β(δ) around δ = 1 is proposed as a good approximation of the material properties. Hence,
β(δ) is approximated as

β(δ)
.
= β1(1− δ)2 + β2(1− δ)3, β1 = 21, β2 = −39. (51)

Putting (51) into (49-50) an asymptotic expansion of the effective material properties is obtained.
For c ∈ [0.7, 1] it is practically indistinguishable from the original approximation (49) and thus it
gives reasonable approximation of the effective properties.

We note that the asymptotic expansion at δ = 0 is not of interest as the homogeneous eigenstrain
approximation is of pure quality for small concentration ratios c for a cubical inclusion. The reason
that the homogeneous eigenstrain approximation is good approximation for an ellipsoidal inclusion
and bad for a cubical inclusion at small c is that only an ellipsoidal inclusion results in homogeneous
eigenstress within the inclusion, see for example Liu (2008), and thus in this case the homogeneous
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0.4
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Fig. 3 The effective second shear modulus µ̂ and the anisotropy indexAU for the glass epoxy composite. Solid
curves are computed by (49-50) while the crosses are obtained by the finite element computation
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Fig. 4 Relative error, µ̂ and AU for the cubic foam with ν = 0.3.

eigenstrain is a good approximation at low concentration ratio where interactions between inclusions
are of minor importance. Using a piecewise homogeneous eigenstrain approximation a better agree-
ment can be obtained. However, it this case formulae (49) as well as the asymptotic expansions are
more involved. Note also that (49-50) is valid only for a cubic inclusion and not, for example, for a
spherical inclusion or any other inclusion.

Having obtained the closed form solution a brief parametric study of Poisson’s ratio is presented
as an illustration of applicability of the closed form solution. Poisson’s ratio ν = ν(n,m) is defined
as the ratio of the lateral contraction in the direction m to the axial extension in the direction n
due to a uniaxial tension in the direction n. For cubic symmetry one usually apply tension in [110]
direction and measures lateral contraction for [11̄0] and [001] directions, see Baughman et al. (1998),
although it is known ( Ting et al. (2005)) that in certain directions, which depend on material moduli,
Poisson’s ratio can be unbounded. Here we used crystallography notation [...] for giving directions.
Using formulae (1-2) from Baughman et al. (1998) it turns out that ν([110], [11̄0]) and ν([110], [001])
depend upon νm, νi, κr and the concentration ratio c. Figure 5 gives results for νm = 0.4 and νi = 0.3.
As expected, ν([110], [001]) is much smaller than ν([110], [11̄0]). In the limit κr → 0 or κr → ∞,
the Poisson’s ratios are independent upon νi. For the incompressible matrix κr = 0 and

lim
c→1

ν([110], [11̄0]) =
7

11
and lim

c→1
ν([110], [001]) =

1

11
. (52)

Fig. 5 demonstrates that Poisson’s ratio can be grater that 1/2. However, if the inclusion and matrix
are isotropic, it is always bounded between 0 ≤ ν ≤ 1 for any directions n andm.

7. Conclusions

A viable approximation in a closed form of effective elasticity moduli of composites with cubic
inclusions with a high volume ratio was established. This is of potential great interest as many com-
posite structures are thin walled or are made of plate reinforcements. In particular, the octet foam and
their combination Isomax have nearly uniform strain energy distribution (Berger et al. (2017)) what
guarantee good homogeneous eigenstrain approximation that allows, as demonstrated in the paper, a
closed form approximation of the effective properties. In the cases where the homogeneous eigen-
strain approximation fails, piecewise homogeneous eigenstrain approximation is a good alternative
which is again capable of giving a closed form approximation.

In the future work, the approximation can be extended to structures with orthotropic microstruc-
ture. The first part of the paper actually already applies, while the equivalent eigenstrain approxima-



76 G. Mejak

0 50 100 150 200
0.80

0.85

0.90

0.95

1.00

κr

c

0.372

0.434

0.496

0.558

0.620

0.682

0.744

0.806

0 50 100 150 200
0.80

0.85

0.90

0.95

1.00

κr

c

0.035

0.070

0.105

0.140

0.175

0.210

0.245

0.280

Fig. 5 Density plot of Poisson’s ratio ν([110], [11̄0]) at left and ν([110], [001]) at right with respect to κr and
concentration ratio c

tion can be readily extended to the orthotropic case. With combination of piecewise homogeneous
eigenstrain approximation effective properties of many interesting structures, for example infilled
frame structures (Senthil et al. (2016)), can be analysed.
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