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Abstract.  Shape-memory alloys (SMA) have interesting behaviors and important mechanical properties 

due to the solid-solid phase transformation. These phenomena are dominated by the evolution of 

microstructures. In recent years, the microstructures in SMAs have been studied extensively and modeled 

using molecular dynamics (MD) simulations. However, it remains difficult to identify the crystal variants in 

the simulation results, which consist of large numbers of atoms. In the present work, a method is developed 

to identify the austenite phase and the monoclinic martensite crystal variants in MD results. The 

transformation matrix of each lattice is calculated to determine the corresponding crystal variant. Evolution 

of the volume fraction of the crystal variants and the microstructure in Ni-Ti SMAs under thermal and 

mechanical boundary conditions are examined. The method is validated by comparing MD-simulated 

interface normals with theoretical solutions. In addition, the results show that, in certain cases, the 

interatomic potential used in the current study leads to inconsistent monoclinic lattices compared with 

crystallographic theory. Thus, a specific modification is applied and the applicability of the potential is 

discussed. 
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1. Introduction 
 

Recently, many numerical models have been developed to reveal the detail of the microscopic 

behavior of Ni-Ti shape-memory alloys (SMA). Zhong and Zhu (2014) studied the dynamic 

microstructural evolution and twinning interfaces in Ni-Ti using the phase field method. Yang and 

Dayal (2010) also adopted this method to generate several twin microstructures. Kastner et al. 

(2011) used a molecular dynamics (MD) method to simulate the two-dimensional non-diffusive 

nucleation and growth processes of martensite phases giving distinct microstructures with a 
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Lennard-Jones potential. Sato et al. (2006) and Saitoh et al. (2006) revealed the microscopic 

mechanism of stress-induced martensitic transformation by using embedded-atom method (EAM) 

potentials. Several studies (Kastner et al. 2011, Mirzaeifar et al. 2014) have adopted 

crystallographic theory to identify martensite crystal variants in their atomistic model. However, 

particular crystal variants are typically assumed and, thus, the behavior of the microstructure may 

not be fully captured. This motivates the current study to develop a numerical procedure to 

identify the full set of crystal variants in the atomistic model. 

Ni-Ti alloys are currently the most practical SMAs owing to their high stability, strength, and 

ductility and their superior thermo-mechanical performance. Hence, this study focuses on a crystal 

system composed of nickel and titanium atoms. In general, SMAs have two phases: the austenite 

and martensite phases. The former is more stable at higher temperatures while the latter is more 

stable at lower temperatures. The solid-solid phase transition between the austenite parent phase 

and the martensite phase plays a critical role in the whole process for the most important 

phenomena: superelasticity and the shape-memory effect. In the current study, a numerical method 

is developed that can effectively reveal the configuration of crystal variants in the MD simulation 

results. The method is then applied to study the phase transition between austenite (B2) and the 

monoclinic (B19’) crystal system under various loading cases. The detailed microstructural 

evolution is revealed and the applicability of the potential used in the current work is discussed. 

 

 
2. Theory and methodology 

 
2.1 Cubic-to-monoclinic phase transition 

 
The deformation gradient describes the local characteristics of unit cell deformation during the 

phase transition. A general expression for any homogeneous deformation can be written as 

y=Fx+c, where matrix F and vector c are constants (Bhattacharya 2003). According to the polar 

decomposition theorem (Chadwick 2012), the deformation gradient F can be decomposed into a 

pure distortion U following a pure rotation Q. The stretch U is a positive-definite symmetric  
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matrix that can be determined as 
T

U = F F , which is also known as the transformation matrix 

(Hane and Shield 1999). 

In order to link the continuum theory to the lattice level, the Cauchy–Born hypothesis was 

introduced by Eriksen (1984). Consider a crystalline solid undergoing a deformation that makes 

the lattice vectors   ο

ie x  at point X deform into   ie x , with the relationship between these 

given by      ο

i ie x F x e x . Thus, by examining the lattice vectors in the unit cell, one can 

identify the corresponding phase. Here, we take the cubic-to-monoclinic phase transition as an 

example. There are twelve specific transformation matrices, given by: 

Where the components of the matrices (α, γ, δ, ε) are the material properties, and can be written 

in the form of the lattice parameters a0, a, b, c and β 
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These lattice parameters will be explained in detail in Sec. 2.2. The components of the 

transformation matrix in the monoclinic crystal system in Ni-Ti, which are obtained from 

experiment and the current MD simulation results, are listed in Table 1. 

 

2.2 Method to identify martensite variants and austenite phase 
 

Now consider the phase transition in Ni-Ti SMAs from the cubic to monoclinic crystal system. 

For the initial austenite state, it is customary to pick the tetragonal cell (marked in dashed lines in 

Fig. 1(a)) formed inside the four adjacent cubic cells with lattice parameter a0 (Bhattacharya 

2003). After the martensitic phase transition, the tetragonal unit cell is distorted, resulting in a 

monoclinic unit cell with lattice parameters a, b, c and a non-90° angle β between edges a and c. It 

is worth noting that the monoclinic unit cell is similar to a face-centered tetragonal cell with a 

plane of atoms shifted from its original position, as shown in Fig. 1(b). Thus, it is necessary to 

describe the lattice deformation by the tetragonal cell rather than the cubic one. There are twelve 

types of unit cell distortion corresponding to the twelve monoclinic variants with the 

transformation matrices Um(m=1…12) given in Eq. (1). Thus, they can serve as the standard for 

identification of crystal variants in MD simulations. The framework of the algorithm in the current 

study is illustrated in Fig. 2 and was implemented with MATLAB. 

Consider the atom arrangement after energy minimization. An independent MD calculation is 

performed to form a pure monoclinic martensite variant. Then, the resulting position of the atoms 

 

 
Table 1 Parameters of the transformation matrices in the monoclinic crystal system 

Composition α γ δ ε Source 

Ni-49.75 at.%Ti 1.0243 0.9563 −0.058 −0.0427 (Hane and Shield 1999, Knowles and Smith 1981) 

Ni-50.00 at.%Ti 1.0003 0.9978 −0.0046 −0.0238 Current work 
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(a) (b) 

Fig. 1 The martensitic transformation in Ni-Ti alloys (only the Ti atoms are shown): (a) the cubic unit 

cells and a tetragonal unit cell marked with dashed lines and (b) the unit cell of the monoclinic 

martensite phase 

 

 
Fig. 2 Flowchart of the algorithm 

 

 
can serve as the reference configuration. A set of mean lattice parameters (a, b, c, β) can then be 

determined. Their values are listed in Table  and the standard table of monoclinic transformation 

matrices in the MD calculations can be obtained. 

Now we are ready to examine the monoclinic variants in the microstructure by extracting the 

transformation matrix from each lattice. Here, the method proposed by Shimizu et al. (2007) is 

used with a slight modification. Consider a deformation gradient Fi for each lattice i that maps 
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Fig. 3 Lattice deformation described by eight vectors from the center to corners of the lattice 

 

 

   0 0,j j ij N  d d
, 

(3) 

where dj is the vector from the center of the lattice pointing to the j
th
 Ti atom that occupies one of 

the eight corners of the lattice i (the superscript 0 indicates the reference configuration), as 

illustrated in Fig. 3. The deformation gradient iF  can be determined (Shimizu et al. 2007) by 

minimizing 

0

2
0

i

j i j

j N

 d F d

 
(4) 

Then, the transformation matrix U can be determined. Note that the transformation matrices 

correspond to the cubic basis. 

We are now ready to analyze the B19’ monoclinic variants in the microstructure generated by 

MD simulations. All atoms in the simulation box are first divided into sets of super cells with eight 

cubic unit cells, as illustrated in Fig. 4(a). The transformation matrix of the six tetragonal unit cells 

colored in Fig. 4(b)-(d) in each super cell can be determined. Each transformation matrix is a 

possible candidate for the variants in the super cell. The error σm between each calculated 

transformation matrix and the standard monoclinic transformation matrices is obtained by 

 

 

 
Fig. 4(a) A super cell formed by eight adjacent unit cells. Titanium atoms are shown as blue circles. 

Two tetragonal cells with short axes lying on (b)  100
cubic

, (c)  010
cubic

, and (d)  001
cubic

 directions 
 

45



 

 

 

 

 

 

Jo-Fan Wu, Chia-Wei Yang, Nien-Ti Tsou and Chuin-Shan Chen 

 
3 3

2

1

, 1 ~ 13i m

m jk jk

j k j
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    U U

, 
(5) 

where i denotes the lattice number among the six tetragonal unit cells, m=1-12 stands for the 

twelve standard transformation matrices and m=13 indicates the non-deformed lattice, i.e., the 

austenite phase. The crystal variant is determined based on the tetragonal unit cell with the 

minimum error. Note that perturbation of atoms during the simulation is eliminated by applying 

the ensemble average method. 

 

2.3 Compatibility equation 
 

To validate the current method, the interfaces separating the identified crystal variants were 

examined using the compatibility equation. For any variant pair (I:J) in a twinned microstructure, 

the compatibility equation can be written as 

ˆ
I J  QU U a n , (6) 

where a is a non-zero vector and n̂  denotes the interface normal, which can be determined by 

   3 1 1 3

1 3

3 1 3 1

1 1
ˆ ˆ

   
 

   

  
  

  
 

a e e , (7) 
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n U e U e

, 
(8) 

where ˆ  ( 1,2,3)i i e  are the eigenvectors corresponding to the eigenvalues λf of the matrix QUI - 

UJ and ρ is a non-zero value to ensure ˆ 1n . The value κ=1 is chosen for one solution while κ=−1 

is chosen for the other. Note that any given pair of variants can either have two solutions for the 

twin interface normal or no solution. 

 
2.4 Molecular dynamics simulations for SMAs 

 

2.4.1 Interatomic potential 
In this work, a Finnis-Sinclair (FS) many-body interatomic potential (Finnis and Sinclair 1984) 

with the EAM is adopted for describing the Ni-Ti system. This binary potential was formerly 

constructed by Lai and Liu (2000) and then further improved by Zhong et al. (2011) with modified 

smooth interpolations around the cutoff radius. This allows an accurate and efficient prediction of 

the lattice constants and energies of different phases compared to the ab initio calculations. 

 
2.4.2 Modeling of stress-induced phase transition (model 1) 
In this work, the cases of both stress- and temperature-induced phase transition are modeled by 

using Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS). The settings of 

Model 1 for the former are detailed as follows, and those of the latter will be described in Sec. 
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2.4.3. A single-crystal austenite (B2) structure with Ni-Ti equiatomic composition consisting of 

65,536 atoms is initialized based on the cubic parent coordinate. The entire structure contains 32 

lattices (~9.6 nm long) on each side. Each single lattice is an ordered body-centered cubic (bcc) 

structure that contains one titanium atom and one nickel atom. The former is set at the corner and 

the latter at the center of the lattice. The periodic boundary condition is applied in three 

dimensions for bulk modeling. A random velocity seed is then chosen to generate a unique 

configuration of the velocity for the kinetic temperature of each atom according to the Maxwell-

Boltzmann distributions. 

After energy minimization using the conjugate gradient method at 0 K, the simulation box is 

relaxed at 150 K and zero stress with an isothermal-isobaric ensemble (NPT), at 0.5 fs/step for 

100,000 time steps. Following the thermal equilibration, the temperature is set to 450 K, about 

100 K higher than the austenite’s final temperature Af (~350 K), for another thermal equilibration. 

This two-stage thermal equilibration is to avoid the sudden temperature jump causing unstable 

perturbations. With the stable austenite structure, a shear deformation is applied in the <110> 

direction to induce the cubic-to-monoclinic phase transition. The loading shear strain rate is set as 

3×10
8
 s

−1
, which is customarily acceptable in MD simulations, owing to the computational 

limitations (Zhong et al. 2012). The deformation continues for 1,350,000 time steps, and a 20.25% 

shear strain is achieved. The whole modeling process is repeated several times to demonstrate the 

influence of different loading directions. 

 
2.4.3 Modeling of temperature-induced phase transition (models 2 and 3) 
The settings of Model 2 for temperature-induced phase transition are detailed as follows. The 

size of the initial structure is twice that of Model 1. The box consists of 524,288 atoms, i.e., 64 

austenite lattices (~19.3 nm long) on each side. Similarly, the periodic boundary condition in three 

dimensions and a random velocity seed are also applied. 

After energy minimization at 0 K, the simulation temperature is set to 100 K for the first 

thermal equilibration, and then is set to 450 K for another. Finally, the system is cooled down 

instantly to 100 K for equilibration. At each of the three non-zero temperature stages, the structure 

is relaxed at zero stress with an NPT ensemble for 100,000 time steps. It takes 50 ps for each 

equilibration stage, as in the previous section. The entire modeling process is repeated several 

times to demonstrate the influence of different velocity configurations. 

Model 3 adopts the same settings as Model 2, with the difference that the temperature increases 

instantly from 0 K to 100 K immediately after energy minimization of the initial austenite 

structure. Although the process may not be physically feasible, these settings can provide 

numerical boundary conditions giving equal possibilities for the presence of each martensite phase 

in the simulation box. Thus, the competition between all twelve monoclinic martensite variants can 

be observed in the Model 3 simulation. 

 

 
3. Results and discussion 
 

3.1 Model validation 
 

To validate the current method, the results of the stress-induced phase transition at 450 K with a 

twinning microstructure (Model 1) are compared with the theoretical solution. The model is 

identified by the current method, as shown in Fig. 6. Note that the six applied loading cases only 
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Table 2 The interface normals obtained by the compatibility equation, and identified by the current method 

Shear applied Twin pair Theoretical solution MD Twin pattern 

 

(2:3) (0.984, −0.179, 0) or (001) (001) Fig. 5(a) 

 

(1:4) (001) or (0.984, −0.179, 0) (001) Fig. 5(b) 

 

(6:8) (0, 0.984, −0.179) or (100) (100) Fig. 5(c) 

 

(5:7) (100) or (0, 0.984, 0.179) (100) Fig. 5(d) 

 

(2:4) (010) or (0.984, 0, −0.179) (010) Fig. 5(e) 

 

(1:3) (0.984, 0, 0.179) or (010) (010) Fig. 5(f) 

 

 

 
Fig. 5 Stress-induced twinning configurations at 450 K 
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Fig. 6 The variation of the volume fraction of each variant in model 2 

 

 

favor the rational solutions among the two normals and, thus, only the interfaces with a rational 

normal can be observed. They are validated by the compatibility equation, Eq. (6), and the results 

are listed in Table 2. The consistency has been ensured in each of these six cases. 

 

3.2 Evolution of microstructure and volume fraction of variants 
 

3.2.1 Phase transition Induced by cooling from 450 K to 100 K 
In this section, the phase transition driven by cooling from 450 K to 100 K (Model 2) is 

simulated. Interestingly, two types of microstructural evolution are generated. In the first type, the 

microstructure reaches the equilibrium state quickly within 13 ps. This can be observed in the 

variation of the volume fraction of all the variants present in the simulation box, as shown in Fig. 

6. It is worth mentioning that the transformation matrix of the martensite lattices simulated by the 

FS potential in the case of the temperature-induced phase transition gives a relatively large error in 

Eq. (5). Here, we found that a 45° rotation applied on the reference axes can minimize this error, 

and the martensite variants can still be identified. This issue will be discussed in more detail in 

Sec. 3.2.3. 

In Fig. 6, the vertical axis is the volume fraction of the twelve variants and the horizontal axis 

denotes the time in ps. The legends on the right-hand side denote the colors of variants 1-12 and 

the austenite lattice. At the 2
nd

 ps, the temperature drops and induces a phase transformation, 

resulting in the variation of the volume fraction of variants. The instant decrease of austenite 

triggers the growth of variants 3, 4, 7, and 8. Four variants grow rapidly from the 2
nd

 to the 5
th
 ps. 

Then the variant pair 3 and 4 dominates at the 6
th
 ps, and keeps growing until the equilibrium state 

is reached at the 13
th
 ps. At the end of the simulation, variants 3 and 4 both have a high fraction of 

volume and only a small portion of austenite phase remains. The corresponding microstructural 

evolution is visualized in intervals of 3 ps, as shown in Fig. 7. It is worth mentioning that there are 

some lattices located at the twinning interfaces of variants 3 and 4, identified as the austenite phase 

(colored in white) in Fig. 7(f). This may be due to the symmetry of distortion across the twinning 

interfaces, resulting in lattices at the interface with less distortion. This causes their transformation 

matrix to be very close to unity, and hence, they are identified as austenite lattices. 
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Fig. 7 Microstructural evolution in model 2 at (a) 3, (b) 6, (c) 9, (d) 12, (e) 15, and (f) 18 ps 

 

 
Fig. 8 The variation of volume fraction of each variant in model 2 along the alternative evolution path 

 

 

The second type of results generated by Model 2 reveals an alternative path of microstructural 

evolution due to the choice of the random seed of the initial velocity. Fig. 8 shows the variation of 

the volume fraction of the variants present, and Fig. 9 shows the corresponding microstructural 

evolution. In the beginning of the process, two pairs of variants, 1 and 2 and 7 and 8 are nucleated 

and identified in the microstructure after the temperature drop from 450 K to 100 K at the 2
nd

 ps  
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Fig. 9 Microstructural evolution in model 2 along the alternative path at (a) 5, (b) 10, (c) 15, (d) 20, (e) 

25, (f) 30, (g) 40, and (h) 50 ps 

 

 

(Fig. 9(a) and (b)). Then, variant 1 dissipates while variants 2, 7, and 8 grow, gradually forming 

the crossing twin structure, as shown in Fig. 9(c). It is remarkable that the current method can 

identify and illustrate the detail of the crossing twins. They have two types of interfaces: relatively 

sharp interfaces inside the variant pairs, and the irregular, watermark-like interfaces between the 

variant pairs. 

Next, a new trend appears after 15 ps. The volume fraction of the variant pair 7 and 8 

decreases, while variants 1 and 2 gradually increase through the rest of the simulation. However, 

the competition between these two pairs persists much longer compared with the previous result. 

Fig. 9(e)-(h) show a slow propagation of interfaces, and the volume fraction of the austenite phase 

remains at around 20% without significant changes. 
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3.2.2 Phase transition Induced by heating from 0 K to 100 K 
In Model 3, the temperature increases instantly from 0 K to 100 K immediately after the energy 

minimization stage. A remarkable phenomenon is captured where the twelve monoclinic 

martensite variants nucleate simultaneously with a similar volume fraction at the beginning of the 

process, as shown in Fig. 10. This confirms that the twelve monoclinic martensite variants have 

equal energy states in the current simulation. A complex microstructure is formed after the 

perturbation of atoms given by the non-zero temperature, which breaks the metastable austenite 

state at 0 K, as shown in Fig. 11(a). Then, the competition between all twelve variants progresses 

slowly, similar to the second type of results in Model 2. A similar pattern of variations is also 

observed in Fig. 11(b) and (c), where the interfaces are relatively sharp inside, but irregular 

between the variant pairs. The propagation of these interfaces is slow, and, at the end of the 

simulation, martensite variants 6 and 11 and the austenite phase dominate the microstructure (Fig. 

11(d)). However, equilibrium is not achieved even after the 45
th
 ps. This result demonstrates the 

power of the current method, which can identify all twelve variants at the same time. 

 

 

 
Fig. 10 The variation of volume fraction of each variant in model 3 

 

 
Fig. 11 Microstructural evolution in model 3 at (a) 0, (b) 15, (c) 30, and (d) 45 ps 
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(a) (b) 

Fig. 12 Lattice structures corresponding to (a) the temperature-driven and (b) stress-induced phase 

transformations 

 
 

3.2.3 The applicability of the interatomic potential 
The evolution of the microstructure and volume fraction of the variants induced by stress and 

temperature changes were identified and analyzed in the previous sections. However, it was found 

that the lattice configuration of the temperature-induced monoclinic phase generated by the FS 

potential was inconsistent with results reported in the literature. Fig. 12(a) is an example of such a 

monoclinic lattice, where lines with the same color have the same length. This results in a large 

error in Eq. (5) during the identification of crystal variants. Here, we found that the error can be 

minimized if a new set of reference axes 45° from the original is chosen, and the variants can still 

be identified. In the case of the stress-induced phase transition, the resulting monoclinic lattice had 

good agreement with the experimental data, forming a parallelepiped structure, as shown in Fig. 

12(b). 

The inaccurate position of atoms in the temperature-driven phase transition may be caused by 

the configuration tending to seek the local energy minimum randomly when the shape of the 

simulation box is not strictly confined by the stress. Thus, such behavior is expected to be 

eliminated when stress is applied, resulting in a consistent transformation of lattices. This also 

indicates that the accuracy of the interatomic potential should be further improved to have better 

applicability for modeling the temperature-driven phase transition. 

 

 

4. Conclusions 
 

In the present study, a novel post-processing method for identifying the crystal variant from the 

results of molecular dynamics simulations based on the crystallographic and continuum theory was 

proposed and implemented. The method was then applied to analyze the cubic-to-monoclinic 

phase transformation in the Ni-Ti shape-memory alloy. For the stress-induced phase transition, the 

equilibrium microstructures of the six loading cases were determined. The identified interfaces 

were validated using the well-known compatibility equation. Next, the detailed microstructural 

evolution and the variation of volume fraction of the crystal variants due to different thermal 

boundary conditions were determined. The results showed the microstructures typically adopted an 

evolution path where the crystal variants grow and shrink in pairs. The results also revealed that 

the interatomic potential used in the current work was not sufficient to describe the stress-free 
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monoclinic martensite transition induced by temperature changes. 
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