Bending analysis of an imperfect advanced composite plates resting on the elastic foundations

Tahar Hassaine Daouadji*1,2, Rabia Benferhat3 and Belkacem Adim1,2

1Département de génie civil, Université Ibn Khaldoun Tiaret, BP 78 Zaaroura, 14000 Tiaret, Algérie
2Laboratoire de Géomatique et Développement Durable, Université Ibn Khaldoun de Tiaret, Algérie
3Laboratoire de Géo-matériaux, Département de Génie Civil, Université de Chlef 02000, Algérie

(Received September 10, 2016, Revised December 17, 2016, Accepted January 25, 2017)

Abstract. A two new high-order shear deformation theory for bending analysis is presented for a simply supported, functionally graded plate with porosities resting on an elastic foundation. This porosities may possibly occur inside the functionally graded materials (FGMs) during their fabrication, while material properties varying to a simple power-law distribution along the thickness direction. Unlike other theories, there are only four unknown functions involved, as compared to five in other shear deformation theories. The theories presented are variationally consistent and strongly similar to the classical plate theory in many aspects. It does not require the shear correction factor, and gives rise to the transverse shear stress variation so that the transverse shear stresses vary parabolically across the thickness to satisfy free surface conditions for the shear stress. It is established that the volume fraction of porosity significantly affect the mechanical behavior of thick functionally graded plates. The validity of the two new theories is shown by comparing the present results with other higher-order theories. The influence of material parameter, the volume fraction of porosity and the thickness ratio on the behavior mechanical P-FGM plate are represented by numerical examples.

Keywords: functionally graded material; higher-order theory; volume fraction of porosity; Winkler-Pasternak elastic foundation

1. Introduction

An ideal material combines the best properties of metals and ceramics-the toughness, electrical conductivity, and machinability of metals, and the low density, high strength, high stiffness, and temperature resistance of ceramics. Graded materials are also required to adhere two different materials in structures subjected to different loading environments (Chakraborty 2003). The functionally graded materials (FGMs) (Koizumi 1993, Suresh 1998), a new generation of advanced inhomogeneous composite materials first proposed for thermal barriers (Koizumi 1997), have been increasingly applied for modern engineering structures in the extremely high temperature environment. Plates supported by elastic foundations have been widely adopted by many researchers to model various engineering problems during the past decades. To describe

*Corresponding author, Professor, E-mail: daouadjitah@yahoo.fr

Copyright © 2016 Techno-Press, Ltd.
http://www.techno-press.com/journals/csm&subpage=7 ISSN: 2383-8477 (Print), 2466-0523 (Online)
the interactions of the plate and foundation as more appropriate as possible, scientists have proposed various kinds of foundation models (Kerr 1964).

The simplest model for the elastic foundation is the Winkler model, which regards the foundation as a series of separated springs without coupling effects between each other, resulting in the disadvantage of discontinuous deflection on the interacted surface of the plate. This was later improved by Pasternak (Pasternak 1954) who took account of the interactions between the separated springs in the Winkler model by introducing a new dependent parameter. From then on, the Pasternak model was widely used to describe the mechanical behavior of structure-foundation interactions (Xiang 1994, Zhou 2004, Ait Amar 2015, Bellifa 2015, Gafour 2015, Baghdadi 2015, Naceri 2012, Mantari 2014). As the application of FGMs increases, new methodologies have to be developed to characterize them, and to design and analyze structural components made of these materials. The literature on the response of FGM plates resting on the elastic foundations to mechanical and other loadings are limited. Zenkour (2010) studied the effect of the Hygro-thermo-mechanical on FGM plates resting on elastic foundations, the elastic coefficients, thermal coefficient and moisture expansion coefficient of the plate are assumed to be graded in the thickness direction. Shen (2010) has analyzed a nonlinear bending for of FGM plates subjected to combined loading and resting on elastic foundations. Pradhan (2009) studied the thermo-mechanical vibration of functionally graded (FG) beams and functionally graded sandwich under variable elastic foundations using differential quadrature method. Meksi et al. (2015) proposed a simple shear deformation theory based on neutral surface position for functionally graded plates resting on Pasternak elastic foundations. However, in FGM fabrication, micro voids or porosities can occur within the materials during the process of sintering. This is because of the large difference in solidification temperatures between materials constituents (Zhu et al. 2001, Abdelhak 2015, Bourada 2015, Hamidi 2015, Boumia 2014, Bouazza 2015, Bensatallah 2016, Zidour 2014, Mahi 2015). Wattanasakulpong et al. (2012) also gave the discussion on porosities happening inside FGM samples fabricated by a multi-step sequential in filtration technique. Therefore, it is important to take into account the porosity effect when designing FGM structures subjected to dynamic loadings.

In this study, a two new refined theory for bending analysis of simply supported FGM plates with considering porosities that may possibly occur inside the functionally graded materials (FGMs) during their fabrication and resting on the elastic foundations are proposed. The plates are made of an isotropic material with material properties varying in the thickness direction only. Numerical examples are presented to illustrate the accuracy and efficiency of the two present theories and the influence of material parameter, the volume fraction of porosity and the thickness ratio on the behavior mechanical FGM plate.

Fig. 1 Geometry and coordinates of considered FG plate which is resting on elastic foundation
2. Mathematical model and governing equations

2.1 Geometrical configuration

In the present study, a functionally graded simply supported rectangular plate which has the uniform thickness, the length a, and the width b is considered (Fig. 1). It is assumed to be rested on a Winkler-Pasternak type elastic foundation with the Winkler stiffness of k_0 and shear stiffness of k_1.

2.2 Material properties

A FG plate made from a mixture of two material phases, for example, a metal and a ceramic. The material properties of FG plates are assumed to vary continuously through the thickness of the plate. In this investigation, the imperfect plate is assumed to have porosities spreading within the thickness due to defect during production. Consider an imperfect FGM with a porosity volume fraction, α(α<<1), distributed evenly among the metal and ceramic, the modified rule of mixture proposed by Wattanasakulpong and Unghbhakorn (2014) is used as

$$P = P_o(V_m - \alpha) + P_c(V_c - \alpha)$$

(1)

Now, the total volume fraction of the metal and ceramic is: $V_m+V_c=1$, and the power law of volume fraction of the ceramic is described as

$$V_c = \left(\frac{z}{h} + \frac{1}{2}\right)^k$$

(2)

Hence, all properties of the imperfect FGM can be written as

$$P = (P_c - P_m)(\frac{z}{h} + \frac{1}{2})^k + P_m - (P_c + P_m)\frac{\alpha}{2}$$

(3)

It is noted that the positive real number k ($0 \leq P < \infty$) is the power law or volume fraction index, and z is the distance from the mid-plane of the FG plate. The FG plate becomes a fully ceramic plate when k is set to zero and fully metal for large value of k.

Thus, the Young’s modulus (E) and material density (ρ) equations of the imperfect FG plate can be expressed as

$$E(z) = (E_c - E_m)(\frac{z}{h} + \frac{1}{2})^k + E_m - (E_c + E_m)\frac{\alpha}{2}$$

$$\rho(z) = (\rho_c - \rho_m)(\frac{z}{h} + \frac{1}{2})^k + \rho_m - (\rho_c + \rho_m)\frac{\alpha}{2}$$

(4)

However, Poisson’s ratio (ν) is assumed to be constant. The material properties of a perfect FG plate can be obtained when α is set to zero.

2.3 Fundamental formulations

2.3.1 Higher-order plate theory

Basic assumptions for the displacement field of the plate are given as below

$$u(x,y,z) = u_0(x,y) - z \frac{\partial u_0}{\partial z} - \frac{\partial w}{\partial x}$$

$$v(x,y,z) = v_0(x,y) - z \frac{\partial v_0}{\partial z} - \frac{\partial w}{\partial y}$$

$$w(x,y,z) = w_0(x,y)$$

(5)
Where \(u, v, w \) are displacements in the \(x, y, z \) directions, \(u_0, v_0 \) and \(w_0 \) are midplane displacements, and \(\theta_x \) and \(\theta_y \) are the rotations of normal’s to the midplane about the \(y \) and \(x \) axes, respectively. \(\psi(z) \) represents shape function determining the distribution of the transverse shear strains and stresses along the thickness. The displacement field of the classical thin plate theory (CPT) is obtained easily by setting \(\psi(z) = 0 \). The displacement of the first-order shear deformation plate theory (FSDPT) is obtained by setting \(\psi(z) = z \). Also, the displacement of parabolic shear deformation plate theory of Reddy (1984) is obtained by setting

\[
\Psi(z) = z(1 - \frac{4z^2}{3h^2})
\]

(6a)

\[
\Psi(z) = z(1 - \frac{4z^2}{3h^2})
\]

(6b)

In addition, the exponential shear deformation plate theory of Karama (2003) is obtained by setting

\[
\Psi(z) = ze^{-2z^2/h^2}
\]

(6c)

2.3.2 Present refined sinusoidal shear deformation plate theory

Unlike the other theories, the number of unknown functions involved in the two present refined plate theory is only four, as against five in case of other shear deformation theories (Reddy 1984, Karama et al. 2003). The theory presented is variationally consistent, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions.

Basic assumptions

Assumptions of the present refined plate theory are as follows:

- The displacements are small in comparison with the plate thickness and, therefore, strains involved are infinitesimal.
- The transverse displacement \(W \) includes two components of bending \(w_b \) and shear \(w_s \). These components are functions of coordinates \(x, y \), and time \(t \) only.

\[
w(x, y, z) = w_0(x, y) + w_s(x, y)
\]

(7a)

- The transverse normal stress \(\sigma_z \) is negligible in comparison with in-plane stresses \(\sigma_x \) and \(\sigma_y \).
- The displacements \(U \) in \(x \) direction and \(V \) in \(y \) direction consist of extension, bending, and shear components.

\[
U = u_0 + u_b + u_s \quad V = v_0 + v_b + v_s
\]

(7b)

The shear components \(u_s \) and \(v_s \) give rise, in conjunction with \(w_s \), to the parabolic variations of shear strains \(\gamma_{xz}, \gamma_{yz} \) and hence to shear stresses \(\tau_{xz}, \tau_{yz} \) through the thickness of the plate in such a way that shear stresses \(\tau_{xz}, \tau_{yz} \) are zero at the top and bottom faces of the plate. Consequently, the expression for \(u_s \) and \(v_s \) can be given as

\[
u_s = -(z - \sin(\frac{\pi z}{h})) \frac{\partial w_s}{\partial x} \quad \nu_s = -(z - \sin(\frac{\pi z}{h})) \frac{\partial w_s}{\partial y}
\]

(7c)

Displacement fields and strains
The assumed displacement field is as follows
\[
\begin{align*}
 u(x, y, z) &= u_0(x, y) - z \frac{\partial w_b}{\partial x} - f(z) \frac{\partial w_s}{\partial x} \\
 v(x, y, z) &= v_0(x, y) - z \frac{\partial w_b}{\partial y} - f(z) \frac{\partial w_s}{\partial y} \\
 w(x, y, z) &= w_b(x, y) + w_s(x, y)
\end{align*}
\] (8)

Where \(u_0 \) and \(v_0 \) are the mid-plane displacements of the plate in the \(x \) and \(y \) direction, respectively; \(w_b \) and \(w_s \) are the bending and shear components of transverse displacement, respectively, while \(f(z) \) represents shape functions determining the distribution of the transverse shear strains and stresses along the thickness and is given as

Theory 01 (Benferhat et al. 2015)
\[
f(z) = z - \sin \left(\frac{\pi z}{h} \right)
\] (9a)

Theory 02 (Daouadij et al. 2012)
\[
f(z) = \frac{3\pi}{2} h \tanh \left(\frac{z}{h} \right) - \frac{3\pi}{2} \zeta \sec k h \left(\frac{1}{2} + \zeta \right)
\] (9b)

It should be noted that unlike the first-order shear deformation theory, this theories does not require shear correction factors. The kinematic relations can be obtained as follows
\[
\begin{align*}
 \varepsilon_x &= \varepsilon_x^0 + z k_x^b + f(z) k_x^s \\
 \varepsilon_y &= \varepsilon_y^0 + z k_y^b + f(z) k_y^s \\
 \gamma_{xy} &= \gamma_{xy}^0 + z k_{xy}^b + f(z) k_{xy}^s \\
 \gamma_{yz} &= g(z) \gamma_{yz}^s \\
 \gamma_{xz} &= g(z) \gamma_{xz}^s \\
 \varepsilon_z &= 0
\end{align*}
\] (10)

Where
\[
\begin{align*}
 \varepsilon_x^0 &= \frac{\partial u_0}{\partial x}, & k_x^b &= -\frac{\partial^2 w_b}{\partial x^2}, & k_x^s &= -\frac{\partial^2 w_s}{\partial x^2} \\
 \varepsilon_y^0 &= \frac{\partial u_0}{\partial y}, & k_y^b &= -\frac{\partial^2 w_b}{\partial y^2}, & k_y^s &= -\frac{\partial^2 w_s}{\partial y^2} \\
 \gamma_{xy}^0 &= \frac{\partial v_0}{\partial y} + \frac{\partial w_b}{\partial x}, & k_{xy}^b &= -\frac{\partial^2 w_b}{\partial x \partial y}, & k_{xy}^s &= -\frac{\partial^2 w_s}{\partial x \partial y} \\
 \gamma_{yz} &= \frac{\partial w_b}{\partial z}, & \gamma_{xz} &= \frac{\partial w_s}{\partial z}
\end{align*}
\] (11)

For elastic and isotropic FGMs, the constitutive relations can be written as
\[
\begin{pmatrix}
 \sigma_x \\
 \sigma_y \\
 \tau_{xy}
\end{pmatrix}
= \begin{pmatrix}
 Q_{11} & Q_{12} & 0 \\
 Q_{12} & Q_{22} & 0 \\
 0 & 0 & Q_{66}
\end{pmatrix}
\begin{pmatrix}
 \varepsilon_x \\
 \varepsilon_y \\
 \gamma_{xy}
\end{pmatrix}
\]

\[
\begin{pmatrix}
 \tau_{yz} \\
 \tau_{xz}
\end{pmatrix}
= \begin{pmatrix}
 Q_{44} & 0 \\
 0 & Q_{55}
\end{pmatrix}
\begin{pmatrix}
 \gamma_{yz} \\
 \gamma_{xz}
\end{pmatrix}
\] (12)

Where \((\sigma_x, \tau_{xy}, \tau_{yz}, \tau_{xz}) \) and \((\varepsilon_x, \varepsilon_y, \gamma_{xy}, \gamma_{yz}, \gamma_{xz}) \) are the stress and strain components, respectively. Stiffness coefficients, \(Q_{ij} \) can be expressed as
\[
Q_{11} = Q_{22} = \frac{E(z)}{1-\nu^2}, \quad Q_{12} = \frac{E(z)\nu}{1-\nu}, \quad Q_{44} = Q_{55} = Q_{66} = \frac{E(z)}{2(1+\nu)}
\] (13)
2.3.3 Governing equations and boundary conditions

The principle of virtual work in the present case yields

\[
\int_{-h/2}^{h/2} \left[\sigma_x \delta \varepsilon_x + \sigma_y \delta \varepsilon_y + \tau_{xy} \delta \gamma_{xy} + \tau_{xz} \delta \gamma_{xz} + \tau_{yz} \delta \gamma_{yz} \right] dz + \int_{\Omega} \left[f_x \delta \varepsilon_x + f_y \delta \varepsilon_y + f_{xy} \delta \gamma_{xy} \right] d\Omega = 0
\]

(14)

Where \(\Omega \) is the top surface and \(q \) is the applied transverse load. By substituting Eqs. (10) and (12) into Eq. (14) and integrating through the thickness of the plate, Eq. (14) can be rewritten as

\[
\int_{\Omega} \left[N_x \delta \varepsilon_{nx} + N_y \delta \varepsilon_{ny} + N_{xy} \delta \gamma_{nx,y} + M_{nx} \delta \kappa_{nx} + M_{ny} \delta \kappa_{ny} + M_{xy} \delta \kappa_{nx,y} + M_{nx} \delta \kappa_{ny} + M_{ny} \delta \kappa_{nx} + M_{xy} \delta \kappa_{xy} \right] d\Omega +
\int_{\Omega} f_x (\delta \varepsilon_{nx} + \delta \varepsilon_{ny}) d\Omega - \int_{\Omega} q (\delta \varepsilon_{nx} + \delta \varepsilon_{ny}) d\Omega = 0
\]

(15)

Where the stress resultants \(N, M, \) and \(S \) are defined by

\[
(N_x, N_y, N_{xy}) = \sum_{m=1}^{3} h_m z \int (\sigma_x, \sigma_y, \tau_{xy}) dz
\]

\[
(M_{nx}, M_{ny}, M_{xy}) = \sum_{m=1}^{3} h_m z \int (\sigma_x, \sigma_y, \tau_{xy}) dz
\]

\[
(M_{nx}, M_{ny}, M_{xy}) = \sum_{m=1}^{3} h_m z \int (\sigma_x, \sigma_y, \tau_{xy}) dz
\]

\[
(S_{nx}, S_{ny}) = \sum_{m=1}^{3} h_m z \int (\varepsilon_{nx}, \varepsilon_{ny}) dz
\]

Substituting Eq. (12) into Eq. (16) and integrating through the thickness of the plate, the stress resultants are given as

\[
\begin{bmatrix} N \\ M^b \\ M^s \end{bmatrix} = \begin{bmatrix} A & B & B' \\ B & D & D' \\ B' & D' & H' \end{bmatrix} \begin{bmatrix} \varepsilon \\ k^b \\ k^s \end{bmatrix} \quad \begin{bmatrix} S_{nx}^b \\ S_{ny}^b \end{bmatrix} = \begin{bmatrix} A_{14} & 0 \\ 0 & A_{25} \end{bmatrix} \begin{bmatrix} \varepsilon_{nx} \\ \varepsilon_{ny} \end{bmatrix}
\]

(17)

Where

\[
N = \{N_x, N_y, N_{xy}\} \quad M^b = \{M_{nx}, M_{ny}, M_{xy}\} \quad M^s = \{M_{nx}, M_{ny}, M_{xy}\}
\]

\[
\varepsilon = \{\varepsilon_x, \varepsilon_y, \varepsilon_{xy}\} \quad k^b = \{k_x^b, k_y^b, k_{xy}^b\} \quad k^s = \{k_x^s, k_y^s, k_{xy}^s\}
\]

\[
A = \begin{bmatrix} A_{11} & A_{12} & 0 \\ A_{12} & A_{22} & 0 \\ 0 & 0 & A_{66} \end{bmatrix} \quad B = \begin{bmatrix} B_{11} & B_{12} & 0 \\ B_{12} & B_{22} & 0 \\ 0 & 0 & B_{66} \end{bmatrix} \quad D = \begin{bmatrix} D_{11} & D_{12} & 0 \\ D_{12} & D_{22} & 0 \\ 0 & 0 & D_{66} \end{bmatrix}
\]

\[
B' = \begin{bmatrix} B_{11}' & B_{12}' & 0 \\ B_{12}' & B_{22}' & 0 \\ 0 & 0 & B_{66}' \end{bmatrix} \quad D' = \begin{bmatrix} D_{11}' & D_{12}' & 0 \\ D_{12}' & D_{22}' & 0 \\ 0 & 0 & D_{66}' \end{bmatrix} \quad H' = \begin{bmatrix} H_{11}' & H_{12}' & 0 \\ H_{12}' & H_{22}' & 0 \\ 0 & 0 & H_{66}' \end{bmatrix}
\]

(18a, b, c, d)

Where \(A_{ij}, B_{ij}, \) etc., are the plate stiffness, defined by

\[
A_{ij} = \frac{1}{h} \int_l \left[\int \frac{1}{1 + \nu \varepsilon} f(x, y, z) f(x, y, z) \right] dz
\]

(19)
And
\[(A_{22}, B_{22}, D_{22}, D^t_{22}, H^t_{22}) = (A_{11}, B_{11}, D_{11}, B^t_{11}, D^t_{11}, H^t_{11}) \]

where \(A_{li} = A_{li} = \int_{x} Q_{il} [\theta(z)]^2 \, dz \)

And we obtain the following equation,
\[A_{i1} \frac{\partial^2 u}{\partial x^2} + A_{ba} \frac{\partial^2 u}{\partial y^2} + (A_{12} + A_{ba}) \frac{\partial^2 v}{\partial x \partial y} - B_{1i} \frac{\partial^3 w}{\partial x \partial y^2} - (B_{12} + 2B_{ba}) \frac{\partial^3 w}{\partial x^2 \partial y} = 0 \]

And the action-deflection relation at the bottom surface of the model is expressed as
\[f_e = k_0 w - k_1 \nabla^2 w \]

Since the bottom surface of the plate is subjected to the action of the Winkler-Pasternak elastic foundation, the action-deflection relation at the bottom surface of the model is expressed as
\[f_e = k_0 w - k_1 \nabla^2 w \]

Where \(f_e \) is the density of reaction force of the foundation. If the foundation is modeled as a linear Winkler foundation, the coefficient \(k_1 \) in Eq. (22) is zero.

3. Navier solution for simply supported rectangular plates

Rectangular plates are generally classified in accordance with the used type support.

We are here concerned with the analytical solutions of Eqs. (21a)-(21d) for the simply supported FG plate. The following boundary conditions are imposed at the side edges,
\[\nu(-a/2, y) = w_s(-a/2, y) = w_s(-a/2, y) = \frac{\partial w_s}{\partial y}(-a/2, y) = \frac{\partial w_s}{\partial y}(-a/2, y) = 0 \]

\[\nu(a/2, y) = w_s(a/2, y) = w_s(a/2, y) = \frac{\partial w_s}{\partial y}(a/2, y) = \frac{\partial w_s}{\partial y}(a/2, y) = 0 \]

\[N_s(-a/2, y) = M^s_s(-a/2, y) = N_s(-a/2, y) = M^s_s(a/2, y) = M^s_s(a/2, y) = 0 \]

\[u(x, -b/2) = w_s(x, -b/2) = w_s(x, -b/2) = \frac{\partial w_s}{\partial y}(x, -b/2) = \frac{\partial w_s}{\partial y}(x, -b/2) = 0 \]
To solve this problem, Navier assumed that the transverse mechanical and temperature loads, \(q \) in the form of a double trigonometric series as

\[
q(x, y) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} q_{mn} \sin(\lambda x) \sin(\mu y)
\]

(24)

Where \(\lambda = \pi m / a \) and \(\mu = \pi n / b \) and \(m \) and \(n \) are mode numbers. For the case of a sinusoidal distributed load, we have: \(m = n = 1 \) and \(q_{11} = q_0 \)

\[
q(x, y) = q_0 \sin(\lambda x) \sin(\mu y)
\]

(25)

\(q_0 \) represents the intensity of the load at the plate center. Following the Navier solution procedure, we assume the following solution form for \(u, v, w_b, w_q \) that satisfies the boundary conditions. The displacement functions that satisfy the equations of boundary conditions Eq. (26) are selected as the following Fourier series

\[
\begin{bmatrix}
 u \\
 v \\
 w_b \\
 w_q
\end{bmatrix} = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \begin{bmatrix}
 U_{mn} \cos(\lambda x) \sin(\mu y) \\
 V_{mn} \sin(\lambda x) \cos(\mu y) \\
 W_{bmn} \sin(\lambda x) \sin(\mu y) \\
 W_{snn} \sin(\lambda x) \sin(\mu y)
\end{bmatrix}
\]

(26)

Where \(U_{mn}, V_{mn}, W_{bmn}, \) and \(W_{snn} \) are arbitrary parameters to be determined subjected to the condition that the solution in Eq. (26) satisfies governing Eq. (21). Eq. (26) reduces the governing equations for flexural analysis to the following form

\[
[C][\Delta] = [P]
\]

(27)

Where

\[
\{\Delta\} = \{U_{mn}, V_{mn}, W_{bmn}, W_{snn}\}^T
\]

(28)

\[
\{P\} = \{0, 0, -q_{mn}, -q_{nn}\}^T
\]

(29)

And \((c) \) is the symmetric matrix given by

\[
[C] = \begin{bmatrix}
 a_{11} & a_{12} & a_{13} & a_{14} \\
 a_{12} & a_{22} & a_{23} & a_{24} \\
 a_{13} & a_{23} & a_{33} & a_{34} \\
 a_{14} & a_{24} & a_{34} & a_{44}
\end{bmatrix}
\]

(30)

In which

\[
\begin{align*}
 a_{11} &= -(A_1 \lambda^2 + A_{nn} \mu^2) \\
 a_{12} &= -(\lambda \mu (A_{12} + A_{nn})) \\
 a_{13} &= -\lambda [B_1 \lambda^2 + (B_{12} + 2B_{nn}) \mu^2] \\
 a_{14} &= -\lambda [B_1' \lambda^2 + (B_{12}' + 2B_{nn}') \mu^2]
\end{align*}
\]

(31)
\[a_{22} = -(A_{00}\lambda^2 + A_{22}\mu^2) \]
\[a_{23} = \mu((B_{12} + 2B_{00})\lambda^2 + B_{22}\mu^2) \]
\[a_{24} = -\mu((B_{12} + 2B_{00})\lambda^2 + B_{22}\mu^2) \]
\[a_{33} = D_{11}\lambda^4 + 2(D_{12} + 2D_{00})\lambda^2 \mu^2 + D_{22}\mu^4 + k_0(\lambda^2 + \mu^2) + k_0 \]
\[a_{44} = H_1^2\lambda^4 + 2(H_{12} + 2H_{00})\lambda^2 \mu^2 + H_2^2\mu^4 + A_{00}^2\lambda^2 + A_{22}^2\mu^2 - k_0(\lambda^2 + \mu^2) + k_0 \]

4. Results and discussion

In numerical analysis, dimensionless deflection and stresses of simply supported perfect and imperfect FG Plates resting on the foundations elastic are evaluated. The FG plate is taken to be made of aluminum and alumina with the following material properties:

Ceramic \((P_c):\text{Alumina, Al}_2\text{O}_3;\) \(E_c=380\text{ Gpa};\) \(v=0.3;\) \(\rho=2702\text{ kg/m}^3\)

Metal \((P_m):\text{Aluminum, Al};\) \(E_m=70\text{ Gpa};\) \(v=0.3;\) \(\rho=5700\text{ kg/m}^3\)

And their properties change through the thickness of the plate according to power-law. The bottom surfaces of the FG plate are aluminum rich, whereas the top surfaces of the FG plate are alumina rich.

For convenience, the following dimensionless form is used:

\[\bar{w} = 10 \frac{E_c h^3}{q a^4} \left(\frac{a}{2}, \frac{b}{2} \right), \quad \bar{u} = 100 \frac{E_c h^3}{q a^4} \left(0, \frac{b}{2}, -\frac{h}{2} \right), \quad \bar{v} = 100 \frac{E_c h^3}{q a^4} \left(\frac{a}{2}, 0, -\frac{h}{6} \right), \quad \bar{\sigma}_{x} = \frac{h}{h_0}, \bar{\sigma}_{y} = \frac{h}{h_0}, \bar{\sigma}_{r} = \frac{h}{h_0}, \bar{\tau}_{xy} = \frac{h}{h_0}, \bar{\tau}_{x} = \frac{h}{h_0}, \bar{\tau}_{r} = \frac{h}{h_0}. \]

To validate accuracy of the two refined plate theory, the comparisons between the present results and the available results obtained by Kobayashi \textit{et al} (1989), Lam \textit{et al} (2000), BenyouCEF \textit{et al} (2008), Karama (2003), Zenkour (2006), and Reddy (1984). The two present solutions are realized for a square plate on a Winkler Foundation while Winkler modulus is considered to vary from 1 to 5\(^4\) in Table 1. It is to be noted that the present results of the Deflection compare very well with the other theories solution for perfect FG plate \((\alpha=0)\) and takes larger values for the imperfect FG plate \((\alpha=0.1\) and \(\alpha=0.2).\) This is expected because the imperfect FG plate is the one with the lowest stiffness and the perfect FG plate is the one with the highest stiffness.

Table 1 Effect of volume fraction of porosity on the deflection of a uniformly loaded simply supported homogeneous square plate on a Winkler foundation

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha=0)</td>
<td>(\alpha=0)</td>
<td>(\alpha=0)</td>
<td>(\alpha=0)</td>
<td>(\alpha=0.1)</td>
<td>(\alpha=0.2)</td>
</tr>
<tr>
<td>(\alpha=0)</td>
<td>(\alpha=0)</td>
<td>(\alpha=0)</td>
<td>(\alpha=0)</td>
<td>(\alpha=0.1)</td>
<td>(\alpha=0.2)</td>
</tr>
<tr>
<td>1</td>
<td>4.052</td>
<td>4.053</td>
<td>4.053</td>
<td>4.053803</td>
<td>4.053804</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.308226</td>
<td>4.308228</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.596725</td>
<td>4.596726</td>
</tr>
<tr>
<td>3(^4)</td>
<td>3.347</td>
<td>3.349</td>
<td>3.348</td>
<td>3.348534</td>
<td>3.348535</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.520069</td>
<td>3.520070</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.710100</td>
<td>3.710101</td>
</tr>
<tr>
<td>5(^4)</td>
<td>1.506</td>
<td>1.507</td>
<td>1.506</td>
<td>1.506099</td>
<td>1.506098</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.537886</td>
<td>1.537886</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.570776</td>
<td>1.570776</td>
</tr>
</tbody>
</table>
The center deflections of a uniformly loaded simply supported homogeneous perfect and imperfect square plate resting on elastic foundations with different values of K_0 and K_1 are computed in Table 2. It can be seen that the center deflections of this study show a satisfied agreement with those obtained by Lam et al. (2000) for the perfect FG square plates with various values of K_0 and K_1. In addition the comparisons show that the effect of the porosity on the center deflections of FG plates with two different type of porosity. The results reveal that center deflections results increase as the volume fraction of porosity (α) increases. In Table 3, the effects of volume fraction of porosity, side-to-thickness ratio and elastic foundation parameters on the dimensionless center deflection and stresses of anisotropic square plate with or without the porosity is given. It is clear that with increasing of the side-to-thickness ratio a/h the center deflection w decrease and the stresses increase. However, the center deflection w increase and the stresses decrease with the existence of the porosity ($\alpha=0.1$ and $\alpha=0.2$). As observed in these results there is a very good agreement between the two present new trigonometric shear deformation plate models.

![Fig. 2 Effect of volume fraction of porosity on the dimensionless center deflection versus side-to-thickness ratio a/h of an FGM square plate on elastic foundations](image)

Table 2 Effect of volume fraction of porosity on the center deflections of a uniformly loaded simply supported homogeneous square plate ($a/h=100$) on Winkler-Pasternak foundation

<table>
<thead>
<tr>
<th>K_0</th>
<th>K_1</th>
<th>Lam (2000)</th>
<th>Present Theory 1</th>
<th>Present Theory 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$D_{w}(0.5a, 0.5a)/qa^3 \times 10^3$</td>
<td>$\alpha=0$</td>
<td>$\alpha=0.1$</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0.763</td>
<td>0.762973</td>
<td>0.7789082</td>
</tr>
<tr>
<td>5</td>
<td>0.115</td>
<td>0.115304</td>
<td>0.1154558</td>
<td>0.1156074</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0.732</td>
<td>0.731729</td>
<td>0.7462183</td>
</tr>
<tr>
<td>5</td>
<td>0.115</td>
<td>0.114524</td>
<td>0.1146730</td>
<td>0.1148219</td>
</tr>
<tr>
<td>1</td>
<td>1.476</td>
<td>1.476523</td>
<td>1.507000</td>
<td>1.538500</td>
</tr>
<tr>
<td>5</td>
<td>0.570</td>
<td>0.570364</td>
<td>0.5743668</td>
<td>0.5783767</td>
</tr>
<tr>
<td>5</td>
<td>0.109</td>
<td>0.109471</td>
<td>0.1096031</td>
<td>0.1097352</td>
</tr>
</tbody>
</table>
Bending analysis of an imperfect advanced composite plates resting on the elastic foundations

Table 3 Effect of side-to-thickness ratio and elastic foundation parameters on the dimensionless deflection and stresses of an isotropic square perfect and imperfect FGM plate

<table>
<thead>
<tr>
<th>a/h</th>
<th>K₀</th>
<th>K₁</th>
<th>Theories</th>
<th>α</th>
<th>w</th>
<th>σₓ</th>
<th>τₓᵧ</th>
<th>τₓ𝑧</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karama (2003)</td>
<td>α=0</td>
<td>0.1638744</td>
<td>1.105538</td>
<td>0.3911440</td>
<td>0.1405294</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zenkour (2006)</td>
<td>α=0</td>
<td>0.1638971</td>
<td>1.104803</td>
<td>0.3911620</td>
<td>0.1362969</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reddy (1984)</td>
<td>α=0</td>
<td>0.1639048</td>
<td>1.104109</td>
<td>0.3912240</td>
<td>0.1320798</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Benferhat 2015)</td>
<td>α=0</td>
<td>0.1638971</td>
<td>1.1048037</td>
<td>0.3911618</td>
<td>0.1362969</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present Theory 1</td>
<td>α=0</td>
<td>0.1645202</td>
<td>1.074615</td>
<td>0.3804734</td>
<td>0.1325727</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α=0.1</td>
<td>0.1753967</td>
<td>1.042309</td>
<td>0.3690352</td>
<td>0.1285871</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α=0.2</td>
<td>0.1753967</td>
<td>1.042309</td>
<td>0.3690352</td>
<td>0.1285871</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present Theory 2</td>
<td>α=0.1</td>
<td>0.1645558</td>
<td>1.074406</td>
<td>0.3804895</td>
<td>0.1314277</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α=0.2</td>
<td>0.1754005</td>
<td>1.042106</td>
<td>0.3690505</td>
<td>0.1274765</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karama (2003)</td>
<td>α=0</td>
<td>0.1591473</td>
<td>5.599530</td>
<td>2.008916</td>
<td>0.1439351</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zenkour (2006)</td>
<td>α=0</td>
<td>0.1591483</td>
<td>5.599378</td>
<td>2.008920</td>
<td>0.1395914</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reddy (1984)</td>
<td>α=0</td>
<td>0.1591486</td>
<td>5.599238</td>
<td>2.008934</td>
<td>0.1352572</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Benferhat 2015)</td>
<td>α=0</td>
<td>0.1591482</td>
<td>5.5993809</td>
<td>2.0089210</td>
<td>0.1395915</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present Theory 1</td>
<td>α=0.1</td>
<td>0.1646725</td>
<td>5.450695</td>
<td>1.955576</td>
<td>0.1358847</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α=0.2</td>
<td>0.1705942</td>
<td>5.291317</td>
<td>1.898395</td>
<td>0.1319115</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α=0 (Daouadji 2012)</td>
<td>0.1591483</td>
<td>5.599337</td>
<td>2.008924</td>
<td>0.1383820</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present Theory 2</td>
<td>α=0.1</td>
<td>0.1646727</td>
<td>5.450653</td>
<td>1.955579</td>
<td>0.1347075</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α=0.2</td>
<td>0.1705944</td>
<td>5.291275</td>
<td>1.898398</td>
<td>0.1307686</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karama (2003)</td>
<td>α=0</td>
<td>0.1589959</td>
<td>11.20366</td>
<td>4.021240</td>
<td>0.1440442</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zenkour (2006)</td>
<td>α=0</td>
<td>0.1589961</td>
<td>11.20359</td>
<td>4.021243</td>
<td>0.1396969</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reddy (1984)</td>
<td>α=0</td>
<td>0.1589962</td>
<td>11.20353</td>
<td>4.021248</td>
<td>0.1353590</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Benferhat 2015)</td>
<td>α=0</td>
<td>0.1589961</td>
<td>11.2035895</td>
<td>4.0212443</td>
<td>0.1396969</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present Theory 1</td>
<td>α=0.1</td>
<td>0.1645193</td>
<td>10.90636</td>
<td>3.914564</td>
<td>0.1359999</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α=0.2</td>
<td>0.1704401</td>
<td>10.58775</td>
<td>3.800205</td>
<td>0.1320181</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α=0 (Daouadji 2012)</td>
<td>0.1589961</td>
<td>11.20356</td>
<td>4.021246</td>
<td>0.1384865</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present Theory 2</td>
<td>α=0.1</td>
<td>0.1645194</td>
<td>10.90634</td>
<td>3.914565</td>
<td>0.1348126</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α=0.2</td>
<td>0.1704402</td>
<td>10.58773</td>
<td>3.800207</td>
<td>0.1308742</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

theory and other higher order plate theories.

Fig. 2 depicts the variation of the dimensionless center deflection w through side-to-thickness ratio with the variations of the volume fraction exponent (ceramic, $P=2$ and metal) and the volume fraction of the porosity ($\alpha=0.1$ and $\alpha=0.2$). It is seen that the results are the maximum for the metal and for the imperfect plates and the minimum for the ceramic and the perfect plates. This is expected because the imperfect metallic plate is the one with the lowest stiffness and the perfect ceramic plate is the one with the highest stiffness.

Fig. 3 shows the variation of the In-plane longitudinal stress σ_x through the thickness and from
the aspect ratio a/b of a perfect and imperfect FG plates on elastic foundations based on the present plate theory. The volume fraction exponent of the FG plate in taken as $P=2$. It’s clear that the stresses are tensile at the top surface and compressive at the bottom surface and take the minimum values for the imperfect FG plate. Figs. 4 and 5 contains the plots of the transversal shear stress τ_{xz} and the longitudinal tangential stress τ_{xy} through-the-thickness with the different values of the
aspect and side-to-thickness ratio, respectively.

As illustrated in Fig. 4, the distributions of the transversal shear stress τ_{xz} are not parabolic and decreases gradually with increasing of the volume fraction of the porosity and the aspect ratio. Contrary to the in-plane longitudinal normal stress σ_x, the magnitude of the tangential stress τ_{xy} is maximum at points on the bottom and top surfaces of the FGM plate and it can be seen that τ_{xy} take the minimum value for the FG plate with increasing of the volume fraction of the porosity.

5. Conclusions

The effect of the porosity on the bending analysis for the advanced composite plate resting on the elastic foundations is presented. Parametric study in this analysis is being carried out. These parameters include (i) power-law index, (ii) the aspect ratio, (iii) side-to-thickness ratio, (iv) variable Winkler foundation modulus, (v) two-parameter elastic foundation modulus and (vi) the volume fraction of the porosity.

Present results for the perfect FG plate with Winkler and two-parameter elastic foundations based on the two present plate theories do agree with those reported in the literature. The modified rule of mixture covering porosity phases is used to describe and approximate material properties of the imperfect FG plates. The influence of the porosities on the dimensionless center deflection and stresses is then discussed. It’s to be noted that with increasing of the volume fraction of the porosity the dimensionless center deflection increase and the stresses decrease. All comparison studies demonstrate that the present solution is highly efficient for the exact analysis of the bending of FG plates. In conclusion, it can be said that the two proposed theories are accurate and simple in solving the analysis of FG plates on the elastic foundations.

Acknowledgments

The authors thank the referees for their valuable comments.

References

Benferhat, R., Daouadji, T.H. and Mansour, M.S. (2015), “A higher order shear deformation model for
Bending analysis of an imperfect advanced composite plates resting on the elastic foundations

