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Abstract. A numerical model for fluid-structure interactions (abbr. FSI) is presented in the context of
sloshing effects in movable, partially filled tanks to improve understanding of interactions between the
fluid and the dynamics of a tank flexibly attached to a vehicle. The purpose of this model is to counteract
the penalizing impact of the added mass effect on classical partitioned FSI coupling scheme: the proposed
investigation is based on an added mass corrected version of the classical strongly coupled partitioned
scheme presented in (Song et al. 2013). Results show that this corrected version systematically allows
convergence to the coupled solution. In the rare cases where convergence is already obtained, the corrected
version significantly reduces the number of iterations required. Finally, it is shown that the convergence
limit imposed by added mass effect for the non-corrected coupling scheme, is directly dependent on the
aspect ratio of the fluid domain and highly related to the precision order of the temporal discretization
scheme.
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1. Introduction

Among the physical effects resulting from the motion of a fuel tank, sloshing is one of the
most noticeable and (Ibrahim 2005) is still considered as the best reference. This can be defined
as the motion of the free surface of the liquid in a partially filled, moving tank. The sloshing
problem has been investigated in numerous significant studies and in a variety of fields, including
astronautics (Veldman et al. 2007, Chiba et al. 2013), civil engineering (Nagashima and Tsukuda
2013, Keivani et al. 2014), road transport (Wachowski et al. 2010, Raj and et al. 2014, Khezzar
et al. 2009) and naval engineering (Liu and Lin 2009). This paper is essentially concerned by the
numerical investigation of fluid-structure interactions (abbr. FSI) that may appear between the liquid
and the moving and deformable tank and lead to undesirable noises. Numerical simulation of FSI is a
way of identifying the noise resulting from fuel sloshing that can reduce the need for very expensive
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experimental tests, but it requires a specific coupling scheme. In this case, it calls for a partitioned
coupling with a dedicated solver for each of the two physics.

Exchanges take place regularly between the two solvers via a coupling scheme (Felippa et al.
2001, Sy and Murea 2012, Wang et al. 2012, He 2015) that is based on successive solutions produced
by the fluid and structure solvers. The coupling is termed strongly coupled partitioned coupling if
an iterative procedure is used to ensure convergence of the coupled solution. In an industrial context
the biggest advantage of this kind of coupling with regards with the monolothic coupling, is the
modularity of the approach, making the different solvers much easier to implement and allowing
distributed computation.

The major drawback of the standard partitioned FSI coupling scheme is that where higher density
fluids are involved (meaning strong effects of added mass (Idelsohn et al. 2009, Kassiotis et al.
2010)), convergence is no longer guaranteed, and divergence will generally be observed, regardless
of the chosen time step for incompressible flows (Fernández et al. 2005, van Brummelen 2009). The
proposal of a coupling procedure similar to the one exposed in this paper has been proposed and
a mathematical and convergence analysis detailed in (Baek and Karniadakis 2012). The idea is to
introduce fictitious mass, rigidity and damping matrices that may counteract the added mass effect
and better improve the convergence to the solution. However, based on our own experience (Song
et al. 2013), the added mass matrix may not be reduced to the structure mass matrix ponderated
by a density ratio, this point being motivated by strong interactions observed between all the modal
components of the structure: the added mass effect must be clearly expressed by a full matrix based
on physical considerations.

We should point out that the objective of this paper is not here to develop a complete and best-
suited mathematical model for sloshing effects, but to show that the use of a standard FSI scheme
will necessarily encounter a limit for convergence due to added mass effect, and this whatever the
complexity of the employed codes. For this and convinced that simplifying is part of the understanding
process, it has been decided to voluntarily reduce the complexity of both solvers (fluid and structure)
to firstly point out the convergence limit with regards to added mass effect and secondly to show that a
corrected version of the standard partitioned FSI scheme (Song et al. 2013) permits to systematically
ensure convergence. The selected simplified fluid model is here based on a non-stationary potential
approach in 2 dimensions, completed by a condensing free-surface approach to significantly reduce
CPU time. Even if a VOF approach may be considered as more efficient (Kassiotis et al. 2011), the
exposed method (restricted to a linear analysis) combined with a condensation ability (see § 3.2),
permits to drastically reduce the global number of dof in retaining only the ones attached to the free
surface. The flexibility here comes from the mountings attaching the tank to the vehicle, since the
tank itself is assumed to be rigid. Particular attention is given to quantifying the effect of additional
mass on convergence and on the coupling results.

The present article is divided into five sections, the first being this introduction. In the second
section the mathematical models for the example of a partially filled tank (flexibly attached) fully
developed so as to enable a numerical analysis. In a third section, proposed numerical models are
detailed as well as the standard FSI scheme. The fourth section first presents (§ 4.1) the particular
case of a full, closed tank for which the classical FSI scheme systematically fails. The limit value
of the mass ratio between the fluid and the tank for avoidance of the divergence effect is predicted
and numerically validated using a simple finite element approach. The proposed corrected coupling
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scheme based on added mass estimation is then described in detail (§ 4.2). In particular, we show
that the divergence effect is avoided irrespective of the fluid density, and the result is validated with
the same numerical coupling scheme. In the last part of this section (§ 4.3.2) we apply our proposed
approach to cases involving partially filled tanks, where we link the added mass effect to the aspect
ratio of the fluid domain. The fifth and final section concludes the paper with current investigations
and perspectives.

2. Mathematical models for a partially filled tank

This section describes the different models used to investigate the sloshing effect in a partially
filled rectangular tank. The situation is illustrated in Fig. 1(a). Without loss of generality, the
analysis is in two dimensions (2D) (Fig. 1(b)). Indeed, experimental measurements in (Brandely and
Lefrançois 2016) point to 2D fluid flow behavior for axial sloshing in parallelepipedic tanks whose
width b is of the same order as the other two dimensions.

The tank of mass m is assumed to be rigid but flexibly attached to its moving environment (for
example, via a flexible mounting on the vehicle or test bench). This flexibility equates to a spring (of
rigidity k) attached at one end to a fixed element. The tank’s position with respect to its rest position
is denoted u(t), and its velocity denoted u̇(t).

The fluid is a liquid (heavy fluid) and defined by its volumic mass ρ. Viscosity effects are here
neglected. Its free surface elevation is defined by η(x, t).

2.1 Structure model

The tank is governed by the Fundamental Principle of Dynamics (FPD). For a movable tank
located at u(t) with respect to its position at rest, its x-axis projected form may be written as

xy

z

L

b

H
h

(a) 3D view

u(t)

u̇(t) u̇(t)

η(x, t)Γfs

Γb

Γ
1

Γ
2

ρ

~g

x, ~ı

y, ~

Ω

L

k

H

(b) 2D view

Fig. 1 Definition of the moving, partially filled 2D tank with external rigidity
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m
d2u

dt2
+ ku(t) = fp(t), with u(0) = u0 and u̇(0) = 0, (1)

wherem and k respectively denote the empty tank mass and the rigidity associated to the attachment
of the tank to its environment. The fp term, obtained from the integral of the pressure on the two
internal faces Γ1 and Γ2, is the pressure effect acting on the tank

fp(t) = fp,1(t) + fp,2(t) = b

H∫
0

(p2(y, t)− p1(y, t)) dy = −madd,f
d2u

dt2
, (2)

where b is the tank width andmadd,f denotes the fluid added mass term.

2.2 Potential fluid model

Potential fluid flow analysis is based on the assumptions of an incompressible and irrotational
(inviscid) fluid flow. Under these assumptions it is possible (Mottelet 2000) to define a velocity
potential function ψ that explicitly takes the tank motion into account

~∇ψ = ~V + u̇(t)~i = ~∇Φ + u̇(t)~∇ψ0, and thenψ = Φ + u̇(t)ψ0, (3)

where ~V (x, y, t) denotes the local fluid flow velocity and is relative to the tank velocity u̇. The
potential function has been split into two components Φ and ψ0, respectively related to the relative
fluid velocity and to the wall tank velocity u̇. Combining this with the two assumptions yields the
classical Poisson equation

∆ψ = 0 in Ω. (4)

2.2.1 Free surface equation
This results from combining a dynamic condition (pressure) and a kinematic condition (velocity).

The use of the non-stationary form of Bernoulli’s equation on the free surface Γs gives

gη +
1

2

(
~∇ψ
)2

+ ψ̇ = 0 on Γfs,

where η and g respectively denote the free surface elevation and the acceleration of gravity. Neglecting

the nonlinear kinetic term
(
~∇ψ
)2

with regards to the potential one, we easily obtain the dynamic
boundary condition

gη + ψ̇ = 0 ⇒ η = − ψ̇
g

on Γfs. (5)

With this assumption, the validity of this model is voluntarily restricted to a linear behaviour of the
free surface. The equality between the vertical component of the fluid velocity and the time derivative
of η(x, t) leads to the kinematic boundary condition

η̇ = ~∇ψ.~n =
∂ψ

∂n
on Γfs.

Combining the two equations above finally yields the free surface equation

ψ̈ + g
∂ψ

∂n
= 0 on Γfs. (6)
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2.2.2 Boundary conditions on the walls
The two vertical walls Γ1,2 are assumed to rigid but movable at velocity u̇

∂ψ

∂n
= −u̇(t) on Γ1 and

∂ψ

∂n
= u̇(t) on Γ2, (7)

where ~n always denotes a normal exterior vector. The boundary condition for the bottom part is

∂ψ

∂n
= 0 on Γb. (8)

To summarize, the potential fluid flow problem is governed by the complete set of Eqs. (4), (6), (7)
and (8).

3. Numerical models

3.1 Structure model

The time resolution of the left term of the Eq. (1) is here obtained using a Newmark-Wilson finite
difference (Dhatt et al. 2012) scheme. It is based on the following time series expansions on u and u̇

un+1 = un + ∆tu̇n +
∆t2

4
(ün + ün+1), u̇n+1 = u̇n +

∆t

2
(ün + ün+1), (9)

The indexes n and n + 1 correspond to the times t and t + ∆t. We easily deduce the variation
∆u = un+1 − un from(

4m

∆t2
+ k

)
∆u = fnp − kun +m

(
4

∆t
u̇n +

1

4
ün
)
. (10)

It should be pointed out that the fluid load term fp, resulting from fluid pressure integration on the
two internal faces Γ1 and Γ2 of the tank, is here computed at time step n because of the partitioned
nature of the considered coupling scheme.

3.2 Potential fluid model model: condensing the free surface problem

The idea here is to condense the 2D problem by projecting it onto the 1D free surface and in so
doing to reduce significantly the size of the problem to be solved (Morand and Ohayon 1995). Let
ϕ denote the potential function attached to the free surface, such that ϕ = ψ|Γfs

. In the context of
finite element (Dhatt et al. 2012) solving approach, the weak form of Eq. (6) is given by∫

Γfs

δϕ

(
ϕ̈+ g

∂ψ

∂n

)
ds = 0 ∀ δϕ(x), (11)

where δϕ(x) is an arbitrary test function. The key to condensing the problem in this way is to relate
the derivative term to the weak form of Eq. (4) after an integration by parts that naturally lets the
boundary conditions appear (Eqs. (7) and (8))∫∫

Ω

~∇δψ.~∇ψdxdy +

∫
Γ1

δψ u̇(t) ds−
∫
Γ2

δψ u̇(t) ds−
∫

Γfs

δψ
∂ψ

∂n
ds = 0 ∀ δψ(x, y).
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Isolating the last integral term, we can write∫
Γfs

δϕg
∂ψ

∂n
ds =< δψ > ([Kψ]{ψ} − {Fψ}) ,

where {ψ} is the global vector for all degrees of freedom (abbr. dof) corresponding to the 2D-domain.
The splitting of the potential function into two components (see Eq. (3)) can be extended to all dof
such that

{ψ} = {Ψ}+ {ψo}u̇ = [D]{ϕ}+ {ψo}u̇,
where {ϕ} is the global vector for all dof corresponding to the free surface. The condensing matrix
[D] acts as a transfer matrix such that

[Kϕ] = [D]T [Kψ][D] and {Fϕ} = [D]T {Fψ},

and is obtained in only one shot from the resolution of

∆Ψ = 0 in Ω, Ψ = ϕ on Γfs,
∂Ψ

∂n
= 0 on Γb ∪ Γ1 ∪ Γ2.

Finally, the finite element discretization of Eq. (11), based on a linear two-node element, gives
the set of equations

[Mϕ]{ϕ̈}+ [Kϕ]{ϕ} = {Fϕ}. (12)

Because of the condensing approach, [Kϕ] and {Fϕ} are a full matrix and vector. This system is
completed by initial conditions {ϕ} = {ϕ̇} = {0} corresponding to a free surface initially at rest.

In order to illustrate the condensing process, we show in Fig. 2(a) the volume of fluid in a non
rectangular tank that has been condensed to only keep the free surface nodes (Fig. 2(b)).

3.3 Validation cases for the fluid model

3.3.1 Constantly accelerating tank
This example is based on the classical solution for the slope of the free surface in the case of a

constantly accelerating tank. The exact slope is given by θ = −ü/g. We consider the two directions

(a) Initial fluid mesh (b) Mesh Condensed to free surface nodes

Fig. 2 Free surface condensing process to reduce CPU time
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Fig. 3 Free surface slope resulting from a constantly accelerating tank

Table 1 Mesh properties (L = 0.5m, H = 0.225m, b = 1m)

Parameter ∆x [m] Nodes T3 element L2 element Number of dof
Mesh I 0.01 1561 3120 50 51
Mesh II 0.005 5949 11896 100 101

for ü = +0.1 m/s2 and ü = −0.2 m/s2 respectively. Figs. 3(a)-(b) illustrate the two cases. The
circle symbols help to locate the exact position at the two extremities of the free surface.

Mesh properties are summarized in Table 1, where T3 and L2 respectively denote a triangular
3-node element and a linear two-node element. Mesh I is here considered and we recall here that
thanks to the condensing approach exposed in § 3.2, the global size of the problem to solve is here
limited to only 51 dof!

The FEM solution requires the introduction of a damping matrix (equal to [Kϕ]) in order to
rapidly converge to the stationary solution, limiting oscillations that naturally appear for the transient
phase. A total number of 100 steps are required for a time step ∆t = 10−1s.

3.3.2 Sloshing response of a partially filled tank for a soft braking: comparison with experimental
data

This last example permits to compare the potential model with 3D experiments from A. Bran-
dely (Brandely and Lefrançois 2016) and extracted from a rigid and partially filled tank that undergoes
a soft braking. The experiment is based on a rigid tank placed on an inclined test bench where the
motion results only from gravity effect. A belt is used to stop the tank motion and helps to simulate a
real car breaking effect. More details of the experiments may be found in (Brandely and Lefrançois
2016).

Dimensions of the tank are L = 0.5 m, b = 0.35 m and h = 0.3 m (see Fig. 1(a)). The
acceleration ü(t) along the x−axis is extracted from experiments and injected in the fluid solvers as
a transient boundary condition for the tank walls. This comparison essentially points out the period
of impact resulting from the complete stop of the tank. A viscous CFD simulation based on a VOF
(Volume Of Fluid) approach with Star-CCM+ is also considered for comparison.

Results are given in Fig. 4. The upper graph is the acceleration profile imposed to the tank.
Forces integrated on both walls (according to Eq. (2)) are plotted in the lower part respectively for
the potential model, Star-CCM+ and experiments.
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Fig. 4 Comparison between the potential fluid model and experiments: soft braking of a partially filled tank

Close to the impact, the solution obtained from the potential approach (straight line) is in a very
good agreement with experiments (dashed line), as well as for the force amplitude than the impact
delay. After the complete stop of the tank, we observe a constant amplitude oscillation and a slightly
higher period of oscillation. These results are not suprising and respectively due to the absence
of viscosity in the model and to its linear behaviour. Concerning the CPU time required by both
numerical approaches, it takes about one minute for the potential model (Matlab), whereas it takes
several days for the viscous VOF method (Star-CCM+).

3.4 Strongly coupled partitioned scheme

Eq. (1) is the fluid-structure interaction equation. The partitioned approach consists in allocating
each of the terms to the left and right of the equals sign to its own dedicated solver. The staggered
nature of the coupling scheme means that both terms are successively solved in 4 steps, as illustrated
in Fig. 5.

Indices n and n + 1 correspond to time steps t and t + ∆t respectively. In order to reduce

replacements

Fluid

Tank
Time

Time

(1)

(2)

(3)

(4)

n

∆t

n+ 1

p(Γ1,2)
u, u̇

Fig. 5 Partitioned and staggered coupling scheme
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the discrepancy between a tank motion computed at n + 1 from a pressure given at time n, and
consequently to reinforce the coupling, an enclosed iterative procedure is then added inside the
temporal loop. The general algorithm (Algorithm 1) is based on an iterative loop (i) enclosed in a
time loop (n). Each equation is then modified, with n+ 1 replaced by i+ 1.

Algorithm 1 General partitioned algorithm
Require: u(0), u̇(0)→ ü(0)
1. un ← u(0), u̇n ← u̇(0), ün ← ü(0)

Require: p1(y, 0), p2(y, 0)
2. for n = 1 to nstep do
3. for i = 1 to niter do
4. —————— Dynamic tank part
5. f ip ← p(Γ1,2)
6. ∆u← Eq.(10)
7. u̇i+1 ← Eq.(9)
8. —————— Fluid part
9. ϕi+1 ← Eq.(12)

10. p(Γ1,2)← Eq.(13)
11. end for
12. un+1 = un + ∆u
13. u̇n+1, ün+1 ← Eq.(9)
14. un ← un+1, u̇n ← u̇n+1, ün ← ün+1

15. end for

The coupling scheme is based on data passing, so as to update variables common to the two
physics. The tank transmits its position u and its velocity u̇, whereas the fluid transmits its pressure
field acting on the two vertical walls. This pressure field is obtained using the non-stationary form of
Bernoulli’s equation

p(y, t) = −ρgy − 1

2
ρu̇2 − ρ∂ψ

∂t
on Γ1,2.

We should point out that the derivative for
∂ψ

∂t
is deduced from the material derivative

∂ψ

∂t
=
dψ

dt
−−→Vm.

−→
Vf ,

where
−→
Vm and

−→
Vf respectively denote the local domain velocity and the fluid flow velocity. On both

walls they are equal to u̇. We then have

p(y, t) = −ρgy +
1

2
ρu̇2 − ρdψ

dt
on Γ1,2, (13)

where
dψ

dt
is computed from a finite difference scheme for which the order of accuracy may have an

impact on the convergence properties.
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4. Added mass effect and corrected coupling scheme

4.1 Particular case of a closed full tank

This particular case of a moving closed tank offers an analytical solution that makes explicit the
added mass effect. Moreover, this particular case, illustrated in Fig. 6, represents an extreme case,
namely the validation of an FSI where only the mass effect of the fluid interacts with the dynamics of
the tank.

The fluid we consider is water (ρ = 1000 kg/m3). The exact solution is obtained directly (PFD
form with fluid and tank masses added), but the non-stationary form of Bernoulli’s equation allows
the pressure force acting on the two vertical walls to be determined. Applying it along the streamline
connecting A and B gives

pB − pA + ρ

(
∂ψB
∂t
− ∂ψA

∂t

)
= 0. (14)

Regarding the boundary conditions, the potential function is simply given by

ψ(x) = u̇x+ b, (15)

and then

pB − pA = ρ
d2u

dt2
(xA − xB) = −ρLd

2u

dt2
.

This term is not y-dependent. Consequently and according to Eq. (1), the fluid force term acting on
the tank (Eq. (2)) can be rewritten as

fp = (pB − pA)bH = −madd,f
d2u

dt2
with madd,f = ρbHL = mf (16)

where the fluid added mass term madd,f is, for this particular case, identical to the enclosed fluid
massmf . Injecting it into Eq. (1) yields the classical and predictable mass-spring form

(m+mf )
d2u

dt2
+ ku = 0, with u(0) = uo,
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whose exact solution is

u(t) = uo cos(ωct), with ω2
c =

k

m+mf
, (17)

where ωc denotes the pulsation of the coupled system.

4.1.1 Convergence analysis of the FSI scheme
From Eqs. (1), (13) and (15), the iterative coupling process is then given by

müi+1 + kui+1 = (piB − piA)bH = −mf

(
u̇i − u̇n

∆t

)
. (18)

The term dψ/dt required for the pressure calculation is here discretized according to a first-order
finite difference scheme. Convergence analysis requires it to be rewritten in the form

ui+1 = f(ui) with uo,

forwhich convergence is ensured if f(u) is continuously differentiable, |df/du| < 1 anduo sufficiently
close to the solution. When combined with Eq. (9) taken at iterations i + 1 and i, Eq. (18) can be
rewritten as

ui+1 = − mr

2 + ∆t2ω2/2
ui + . . .

The term mr = mf/m is the mass ratio and ω =
√
k/m denotes the natural pulsation. The time

step ∆t can be rewritten as

T = N ∆t with T =
2π

ω
and then ∆t2ω2 =

4π2

N2
.

where N denotes the sample of the period T . We then identify

f(ui) = G ui + ... with G = − mr

2 + 2π2/N2
. (19)

The convergence is then ensured if∣∣∣∣ dfdu
∣∣∣∣ = |G| < 1 ⇒ mr < 2

(
1 +

π2

N2

)
. (20)

Considering a 2nd or 3rd order of accuracy for dψ/dt, respectively given by

dψ

dt

i
∣∣∣∣
2nd

=
3
2u

i − 2un + 1
2u

n−1

∆t
+∆t2(. . .),

dψ

dt

i
∣∣∣∣
3rd

=
11
6 u

i − 3un + 3
2u

n−1 − 1
3u

n−2

∆t
+∆t3(. . .),

we can easily show that the corresponding critical values for mr are respectively multiplied by 2/3
and 6/11. It is to be remarked that increasing the order of accuracy is extremely penalizing for
convergence.
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Table 2 Parameters for full, closed tank coupling

Parameter uo [m] m [kg] k [N/m] L [m] H [m] mf [kg] ∆t [s] nstep N
Value 0.01 50 104 0.5 0.225 112.5 10−2 10 45

Table 3 Critical mass ratio for convergence versus order of accuracy for time discretization

Order of accuracy for ∂ϕ/∂t 1st 2nd 3rd
Critical value fomr 2.01 1.34 1.1

4.1.2 Numerical validation and sensitivity to the order of accuracy in time
To validate the predicted results for the effect of mass ratio on convergence, FSI calculations were

carried out for the case illustrated in Fig. 6 with different values of mr. Table 2 summarizes the
material properties.

The iterative loop is controlled by the following convergence criterion

εi =
(√

< ∆ü > {∆ü}
)
/ndof < 10−4 with {∆ü} = {ü}i − {ü}i−1,

where ndof denotes the total number of dof. From Eq. (20) and the above remark on orders of
accuracy, Table 3 summarizes the predicted limit value of mr ensuring convergence for orders of
accuracy from 1 to 3.

FSI calculations were done in accordance with Algorithm 1 and the number of iterations (mean
value) required for convergence is given in Table 4. Each column corresponds to amass ratio (function
of ρ) and each line to an order of accuracy for dψ/dt. The ’-’ sign denotes a divergence result.

For any order of accuracy, the obtained results are totally in accordance with the predicted critical
values ofmr: higher values systematically lead to divergence.

4.2 Corrected staggered scheme with added mass effect

The correction that we introduce to improve the convergence is similar to that described by
Lefrançois in (Song et al. 2013). It is based on the observation that increasing the inertial term or
decreasing the force term will favor the iterative process. The main idea is to add an inertial term on
both sides of the equation, function of the added mass, such that

madd,eü
i+1 + müi+1 + kui+1 ≈ f ip +madd,eü

i. (21)

where madd,e denotes an estimate for the real added mass term. The contributions of the left- and
right-hand terms are taken at iterations i+ 1 and i respectively. If convergence is reached, üi = üi+1

and the original expression (Eq. (1)) is exactly satisfied.
The convergence analysis of the substitution method applied to Eq. (21) requires the same

approach as in §4.1.1. From the general relations of Newmark’s scheme (Eq. (9)) it is necessary to
isolate

üi+1 =
4

∆t2
ui+1 + . . . , and üi =

4

∆t2
ui + . . .

so as to deduce (
4(madd,e +m) + ∆t2k

)
ui+1 = 4(madd,e −madd,f )ui + . . .
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Table 4 Number of iterations for FSI convergence for the non-corrected staggered coupling scheme

mr 0.225 0.45 0.9 1.08 1.32 1.57 1.91 1.99 2.025
1storder for ∂ϕ/∂t 5 7 11 14 20 33 72 1300 -
2ndorder 6 9 22 38 850 - - - -
3rdorder 7 11 42 550 - - - - -

Table 5 Number of iterations for FSI convergence for the corrected staggered coupling scheme

mr 0.225 0.45 0.9 2.25 4.5 10
1st order for ∂ϕ/∂t 5 6 7 8 8 14
2nd order 4 5 5 6 6 9
3rd order 4 4 5 5 5 6

We then identify a general expression for the amplification coefficient as

G =
1

(1 + π2/N2)

(
madd,e −madd,f

madd,e +m

)
with lim

madd,e→∞
G < 1 ! (22)

N denotes the sample of the coupled period Tc = 2π/ωc with ω2
c = k/(madd,e + m) the coupled

pulsation. It is now interesting to study how much the estimated madd,e is required to ensure
convergence. This expression clearly shows that precisely estimating the added mass term (madd,e)
is a key but not only, to ensure convergence whatever the fluid density considered. It also shows that
an overestimation will suffice. For the particular case where madd,e = 0 (no correction) we recover
the situation exposed in §4.1.1.

The same validation as detailed in § 4.1.2 was carried out for the higher mass ratio values shown
in the first line of Table 5. We naturally considermadd = mf . Convergence is systematically reached
whatever themass ratio, which confirms the beneficial effect of the correction for the coupling scheme.
The FEM solutions perfectly match (not shown here) the predicted coupled solution given by (17)
in terms of pressure, displacement and coupled pulsation ωc. Moreover, the numbers of iterations
required are lower than for the classical case. It has also been observed (see Table 5), that increasing
the order of accuracy for the term ∂ϕ/∂t really helps convergence and may have a real impact in
reducing the number of iterations required.

Even if the added mass term is exactly known, convergence still requires about 5 iterations. The
reason for this is the last term of Eq. (18). Even though it is similar to an acceleration, its time
derivative is quite different (first order) from that retained for the inertial term, which is based on
the Newmark scheme (second order). Because of this the two terms cannot be combined in a single
acceleration term.

4.3 General cases

4.3.1 Added mass estimation
We here consider the case of a flexible structure composed of n dof in order to expose the added

mass estimation for the general cases. The calculation of the added mass matrix [Madd] is based on
the assumptions that the fluid flow is inviscid and that convective effects can be neglected with regard
to the pressure gradient field. This leads to the classical Poisson equation for the pressure p on the
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domain Ω, completed by boundary conditions related to the body parietal accelerations

∆p = 0 ∀ ~x ∈ Ω with ~∇p.~n = ρf ~̈u.~n on ∂Ω1 and ~∇p.~n = 0 on ∂Ω2. (23)

The boundary is dispatched according to movable parts ∂Ω1 and to fixed parts ∂Ω2, and ~n denotes the
normal vector oriented external to the flow. The calculation of [Madd] first requires the computation
of the global (or partial) set of N eigenvectors of the structures denoted {Vi} such that

{U} =
N∑
i=1

ai{Vi}, such as <Vi>{Vi} = 1 and p =
N∑
i=1

äiPi, (24)

where Pi is the modal component of the pressure field related to the ith eigenvector of the structure.
This, together with Eq. (23), enables the solution of N Poisson equations

∆Pi = 0 ∀ ~x ∈ Ω with ~∇Pi.~n = ρf ~Vi.~n on ∂Ω1. (25)

Finally, the componentMadd(i, j) is deduced from

madd(i, j) =

∮
∂Ω1

Pj ~Vi.~nds such that [madd] = [X]T [Madd][X], (26)

where [madd] is the projection of the addedmassmatrix on the eigenvector base [X] = [{V1} . . . {VN}].
For the considered case (tank) with only one dof, the added mass term is given by a scalar

madd =

∮
∂Ω1

P1~ı.~nds =

∫
Γ2

P1ds−
∫
Γ1

P1ds. (27)

4.3.2 Application to a partially filled tank
We now consider the general case of a tank partially filled with water (ρ = 1000 kg/m3), where

L/H defines the aspect ratio of the fluid domain. FSI calculations based on the non-corrected
coupling scheme were performed with L = 0.5 m and H from 0.05 m to 0.5 m in order to show
the convergence limit. Properties are summarized in Table 2. Convergence histories are plotted in
Fig. 7(a) for the different aspect ratios L/H and for a third order of accuracy for the time derivative.
The total number of steps is 50 and ∆t = 10−2 s.

We clearly see that the number of required iterations dramatically increases for lower aspect
ratios. Convergence ceases to be guaranteed for an aspect ratio L/H < 2.17. Reducing the order of
accuracy (first and second) respectively gives L/H < 1.5 and 1.96.

Fig. 7(b) illustrates the beneficial effect of the corrected coupling scheme on convergence for the
case L/h = 2.17 where the number of iterations required (∼ 4) is several orders lower than in the
non-corrected case (∼ 1500). Calculations with lower aspect ratio values (L/H = 0.5 and 0.25)
systematically converged with 4 ∼ 5 iterations per time step.

The coupling results for L/H = 2.22 are plotted in Fig. 8 for a finer mesh (Mesh II, see
Table 1) over total number of 500 steps, with a time step ∆t = 0.005 s. The first plot (a) illustrates
the normalized tank displacement with two different x-axes: the bottom x-axis corresponding to a
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(b) Comparison with the corrected scheme (L/H = 2.17)

Fig. 7 Effect of added mass correction on convergence (water,m = 50 kg, order 3)

normalization by the natural tank pulsation (ω = 20 rad/s), and the top x-axis to the coupled pulsation
given by Eq. (17) (ωc = 14.01 rad/s). The time axis is normalized so it can be read as a number of
cycles. This plot shows first and foremost that the tank responds with a pulsation close to the coupled
pulsation ωc: a clear sign that the added mass effect pilots the dynamics of the tank, which no longer
responds according to its natural pulsation.

Fig. 8(b) illustrates the sloshing mode participation calculated by projecting the free surface force
term {Fϕ} onto the Eigenmodes [X ] of the set of Eq. (12) such that the participation coefficient of
mode i is given by

αi =< Xi > {Fϕ}.
Because of the initial conditions corresponding to an initial displacement u(0) from its position at
rest, only non-symmetric modes (even numbers) participate in the coupling.

Fig. 8(c) illustrates the time histories of the pressure forces acting on the two internal walls of
the tank. Both curves are normalized according to the pressure force acting at rest on each wall
fp,i(0) = ρgH2/2. The dashed lines show the forced values for the case of a tank at rest. The tank
dynamics may lead to values that are three times the values at rest.

In the absence of a physical damping effect and for a free coupling regime (no forced excitation),
the sum of the total energy of the fluid and the tank remains constant over time and equal to the
energy resulting from the initial conditions. This energy conservation is one of the key elements that
ensure high quality FSI calculations. Fig. 8(d) illustrates the energy exchange between the fluid and
the tank, and in particular the global energy conservation. Plots are normalized with the mechanical
energy Eo resulting from the initial tank displacement u(0).

The set of plots in Fig. 9 are snapshots extracted every 25 steps during the coupling process.
Arrows indicate the amplitudes and directions of the two pressure forces acting on the tank. The time
station tc for each plot corresponds to the time normalized with regards to the coupled pulsation.

4.3.3 Numerical investigation of the link between the added mass and the aspect ratio L/H
The results given in Fig. 7(a) indicate a strong dependency between the convergence and the

aspect ratio L/H of the fluid domain. A numerical investigation was conducted to analyze how the
two aspects are linked. The added mass prediction was calculated from Eq. (27) for several cases
involving different values for L ∈ [0.02, 2] andH ∈ [0.05, 2] (both in meters). Results are illustrated
as a 3D view in Fig. 10 and values are summarized in Table 6 for L = 0.5 m and H ∈ [0.05, 2]:
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Fig. 8 FSI coupling: m = 50 kg, k = 2 104 N/m, L/H = 2.22
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Fig. 9 Transient sloshing effect (m = 50 kg, k = 2 104 N/m, L/H = 2.22)

The parameter Heq,add represents the equivalent height of water of the added mass term. It can
be seen in Fig. 10 that the added mass term increases for higher values ofH (circle symbols and solid
line) and decreases for higher values of L (square symbols and dashed line).

Combining both curves to show the aspect ratio L/H gives the superposed results illustrated in
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Table 6 Number of iterations for convergence (L = 0.5 m) for standard and corrected FSI scheme

H (m) 0.05 0.1 0.2 0.3 0.4 0.5 1 2
mr 0.5 1 2 3 4 5 10 20
Standard FSI scheme 3 4 20 - - - - -
Corrected FSI scheme 3 4 5 5 6 6 6 6
Heq,add (m) 0.005 0.02 0.08 0.17 0.26 0.36 0.86 1.86
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Fig. 11 Added mass effect in relation to the L/H ratio (m = 50 kg)

Fig. 11(a), indicating that convergence is controlled by L/H! The lower this aspect ratio, the higher
the added mass term, and consequently the greater the difficulty for a non-corrected coupling scheme
to converge.

This is unsurprising, given that low aspect ratio values react as a fluid column strongly interacting
with the walls, whereas higher values have a longer free surface over which energy can be spread,
resulting in less interaction with the walls. To help confirm this interpretation, time histories for
fluid and tank energies (respectively denoted by EFL and ETK) are plotted in Fig. 12(a) and (b)
respectively for L/H = 0.1 (column shape) and 2.2. Kinetic and potential components are plotted
as solid and dashed lines respectively. The most critical case for convergence is for L/H = 0.1 and
it can clearly be seen that the level of energy exchange is lower than in the other case, and that the
potential component for the fluid is quite insignificant in relation to the kinetic component.
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Fig. 12 Energies time histories

Table 7 Limit values of the mass ratio for different temporal disretization schemes

Scheme u̇i üi+1 Limit formr

Newmark Eq. (9) Eq. (9) 2

Implicit
ui − un

∆t

ui+1 − 2un + un−1

∆t2
1

Houbolt
11ui−18un+9un−1−2un−2

6∆t

2ui+1−5un+4un−1−un−2

∆t2
12

11

4.3.4 A mass ratio limit related to the precision order of the time discretization scheme
Fig. 11(b) illustrates the critical mass value for the tank to ensure convergence for a non-corrected

coupling scheme. In order to facilitate the comparison with Fig. 11(a), the y-axis is normalized with
the fluid mass mf . The two curves are similar, except for the amplitude. Combining the two shows
that the limit convergence is observed for an added mass term madd,f equal to twice the tank mass
m, whatever the aspect ratio considered! Higher tank mass values will converge, whereas lower
values will diverge (numerically confirmed). This limit ratio is linked to the convergence criterion
given by Eq. (20). Indeed, replacingmf bymadd,f for a general case, this explicitly stipulates a limit
approximately equal to 2! Even if the criterion is theoretically valuable for a closed, full tank, for
open tanks with small displacements, the potential function ψ remains quite close to the particular
solution given by Eq. (15). This ratio limit of 2 is then the signature of the Newmark-Wilson scheme
used to discretize the tank acceleration. This observation can easily be extended to other classical
time discretization schemes. The mass ratio limits for two other schemes are compared in Table 7
with the predicted value for the Newmark-Wilson scheme.

5. Conclusions

This paper presents a corrected version of a strongly coupled partitioned FSI scheme for studying
the sloshing effect in a partially filled rectangular tank. It proves that in the particular case of a closed,
full tank, the iterative convergence of a classical FSI partitioned scheme ceases to be guaranteed
once the mass ratio (fluid mass divided by tank mass) exceeds a predictable value. This value is
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directly linked to the signature of the scheme used to discretize the tank acceleration. Correcting
the FSI scheme in counteracting the penalizing effect of the added mass, allows convergence to
be ensured whatever the mass ratio. For the general case of lightly filled rectangular tanks, this
scheme significantly reduces the number of iterations required for convergence in low-density cases
that already converge, and ensures convergence in cases where the classical FSI scheme fails to
converge. A sensitivity analysis reveals the direct relation between the convergence property and the
aspect ratio: the lower the aspect ratio, the higher the added mass term, and consequently the greater
the difficulty for a non-corrected coupling scheme to converge. Future work will take account of
complex geometric tank shapes and flexible walls. This study will be completed by a comparison
with experimental data (PIV analysis under progress).
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