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Abstract.    Numerical prediction of dynamic behavior of fully coupled saturated porous media is of great 
importance in many engineering problems. Specifically, static and dynamic response of soils – porous media with 
pores filled with fluid, such as air, water, etc. – can only be modeled properly using fully coupled approaches. 
Modeling and simulation of static and dynamic behavior of soils require significant Verification and Validation 
(V&V) procedures in order to build credibility and increase confidence in numerical results. By definition, 
Verification is essentially a mathematics issue and it provides evidence that the model is solved correctly, while 
Validation, being a physics issue, provides evidence that the right model is solved. This paper focuses on Verification 
procedure for fully coupled modeling and simulation of porous media. Therefore, a complete Solution Verification 
suite has been developed consisting of analytical solutions for both static and dynamic problems of porous media, in 
time domain. Verification for fully coupled modeling and simulation of porous media has been performed through 
comparison of the numerical solutions with the analytical ones. Modeling and simulation is based on the so called, 
u–p–U formulation. Of particular interest are numerical dispersion effects which determine the level of numerical 
accuracy. These effects are investigated in detail, in an effort to suggest a compromise between numerical error and 
computational cost. 
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1. Introduction 
 

One of the main questions raised when results of a numerical analysis are evaluated is: “How 
much can (should) we trust model implementations and how much can (should) we trust numerical 
simulations?” Trust in numerical implementation is gained through a verification process, while, 
trust in results obtained from numerical simulation, is gained through a validation process 
(Oberkampf et al. 2002, Roy and Oberkampf 2011).  
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 Verification is a process of determining that a model implementation accurately 

represents the developer‟s conceptual description and specification. It is essentially a 

mathematics issue and it provides evidence that the model is solved correctly.  

 Validation, on the other hand, is a process of determining the degree to which a model is 

accurate representation of the real world from the perspective of the intended uses of the 

model. It is a physics issue, and it provides evidence that the correct model is solved.  

Verification and Validation (V&V) are the primary means of assessing accuracy in modeling 

and computational simulations in order to build confidence and credibility in numerical predictions. 

Oberkampf et al. (2002) mainly focus on trying to accurately model the “real world”, aiming to 

provide verified and validated computer simulation of the reality. Slightly different approach is 

taken by Oden et al. (2010a,b), where the actual purpose of numerical simulation is to facilitate the 

engineering decision process, rather than to explicitly represent the “real world”. Despite the 

alternative approaches on the objectives of numerical modeling, it is important to note that both 

schools of thought place significant emphasis on the need for validation of numerical predictions 

under uncertainty. In an attempt to describe how V&V provide the connection between reality and 

numerical simulation (computer implementation) in the process of reaching an engineering 

decision, a flow chart has been constructed and shown in Fig. 1. 

It is evident that Verification and Validation procedures have separate but complementary 

objectives by definition: i) the model is solved correctly (Verification) and ii) the correct model is 

solved (Validation). On this basis, they should be dealt as two distinct stages requiring different 

activities in order to achieve them. In particular, two main activities related to verification 

procedure can be described as (Oberkampf et al. 2002):  

 Code Verification which identifies and removes errors in computer coding. It can further 

be separated into: (a) numerical algorithm verification, used to ensure that all the 

numerical algorithms are correctly implemented in the code, and (b) software quality 

assurance, used to ensure that the program system is implemented reliably so that it 

produces repeatable (stable) results with different compilers and on different computer 

architectures.  

 Solution Verification which quantifies numerical errors in computed solutions. Numerical 

accuracy can only be estimated by direct comparison with analytical solutions for a given 

application. Thus, evidence that the model can be solved correctly is provided.  

 

On the other hand, Validation procedure involves numerical simulation of realistic conditions 

and thus, direct comparison with experiments and/or well documented case histories is needed. It 

is common in practice that only validation procedures are performed, considered misleadingly to 

show enough evidence that the numerical code is appropriate to solve correctly realistic numerical 

models, while the verification stage is omitted. Therefore, it should be emphasized that verification 

is the initial necessary step to ensure that numerical solution of the model is accurate while 

validation is the final stage to ascertain the numerical model can represent realistic conditions and 

thus, numerical predictions can be trusted. 

The current study focuses on the Verification stage and particularly, on the solution verification 

procedure, assuming that code verification, which is a strictly programming issue, has been 

successfully performed. The twofold goal of this paper is to: a) provide a complete solution 

verification suite for fully coupled, static and dynamic behavior of porous solid-fluid systems, 

consisting of analytical solutions for porous media in time domain, available in literature, which 

can be used to verify any finite element/finite difference code and b) to use this particular solution 
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verification suite in order to verify the UCD Computational Geomechanics Group‟s 

implementation of 3D u–p–U finite elements (Jeremić et al. 2008), which is available through an 

open source license. The available analytical solutions are provided for idealized problems, based 

on assumptions such as linear elastic behavior and simplified geometries (mostly 1D). Validation 

of coupled behavior using elasto-plastic material models, is the subject of another paper 

Tasiopoulou et al. (2014). 

It is important to note that this paper provides, to our knowledge, the first verification of fully 

coupled (porous solid – pore fluid) modeling and simulation. In the past, there were few published 

papers that used some of the analytical and numerical solutions, used here, for comparison 

purposes. For example a paper by Gajo et al. (1994), published a while ago, focused on comparing 

different methods, namely u–p–U, u–U and u–w and used two closed form solutions for that 

purpose. However, they did not provide details of numerical algorithms used, since they used the 

same algorithm and parameters (whatever they were) comparing different methods (as noted above, 

u–p–U, u–U and u–w). Focus of this paper is entirely on verification of u–p–U method. For this 

purpose all the available closed form solutions (to our knowledge) are used and all the algorithms 

and parameters that we used are fully documented. It can be claimed that the u–p–U formulation 

developed by Zienkiewicz and Shiomi (1984), together with our implementation (presented 

verification, and validation provided by (Tasiopoulou et al. 2014)), is now complete. 

 

 

2. Governing equations of porous media  
 

The response of fully saturated soils under transient loads plays an important role in 

geotechnical engineering. A literature review on the subject of two-phase materials identifies two 

major theories which have been developed during the last century and are currently used, namely 

the Biot theory and the theory of Porous Media. Biot‟s theory is initially based on the work of 

Terzaghi (1923), who proposed a model for one-dimensional consolidation. Theory of Porous 

Media is based on the axioms of continuum theory of mixtures extended by the concept of 

fractions by Bowen (1980, 1982), Ehlers (1993). 

 

 

Fig. 1 Schematic representation of the role of Verification and Validation on numerical modeling (inspired 

from Oberkampf et al. 2002, Roy and Oberkampf 2011, Oden et al. 2010a) 
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Biot (1941) presented a theoretical description of linear elastic porous materials fully saturated 

by a viscous fluid under quasi-static conditions. Extensions of his theory to anisotropic cases 

(Biot 1955) and to poroviscoelasticity (Biot 1956a,b,c) followed. In Biot‟s theory a fully saturated 

material is considered, which consists of two compressible parts: the solid skeleton and the pore 

fluid. Thus, the solid displacements, 𝑢𝑖and the fluid displacements, 𝑈𝑖 , are introduced. The 

equations of motion are formed by stating the balance of momentum, or else the dynamic 

equilibrium, for the solid skeleton and the pore fluid separately. Zienkiewicz and Shiomi (1984) 

presented a slightly different formulation, which is based on the concept of Biot‟s theory; however, 

it is more convenient for numerical solution. Alternatively to the fluid displacements, a relative 

displacement of fluid to the solid, 𝑤𝑖 (the so-called seepage displacement) is used. Moreover, no 

additional mass density, 𝜌𝛼, is introduced for the dynamic interaction between the fluid and the 

skeleton, in contrast to Biot‟s theory.  

Formulation presented by Zienkiewicz and Shiomi (1984) is the most general one and is used 

in our developments. They did not, however, provide verification of developed formulation that 

will prove that the formulation is implemented accurately and that the examples are solved 

correctly. Detailed solution verification of u–p–U formulation is precisely the goal of this paper.  

Fully coupled (u–p–U) formulation is given below in some detail, and is needed as reference for 

some of the verification solutions given later in the paper. We start from the relationship between 

effective stress, total stress and pore pressure, written as  𝑖 
   𝑖  𝛼 𝑖  𝜌𝛼, where  𝑖 

  is the 

effective stress tensor * ,  𝑖 is total stress tensor,  𝑖  is Kronecker delta,  is the pore fluid 

pressure†and 𝛼is the Biot constant that depends on the geometry of material voids. For the most part, 

in soil mechanics problems, 𝛼    can be assumed, so that the relationship between total and 

effective stress becomes  𝑖 
   𝑖   𝑖  , which corresponds to the classical effective stress 

definition by Terzaghi (1943).  

The material behavior of soil skeleton (porous solid) is fully dependent on the pore fluid 

pressures. The behavior of pore fluid is assumed to be elastic and thus all the material nonlinearity is 

concentrated on the soil skeleton. The soil behavior („mixture‟ of soil skeleton and pore fluid) can 

thus be described using single–phase constitutive analysis approach for skeleton combined with the 

full coupling with pore fluid. The overall equilibrium (momentum balance) equation for the 

soil-fluid “mixture” can be written as  

 0   ij , j i f i iζ ρü ρ ρbw  (1) 

where 𝑢̈𝑖is the acceleration of the solid part,  𝑖 is the body force per unit mass, 𝑤̈𝑖 is the fluid 

acceleration relative to the porous solid. For fully saturated porous media (no air trapped inside), 

density is equal to  1  
f s

ρ nρ n ρ , where n is the porosity, ρs and ρf  are the soil particle and 

fluid density, respectively. For the pore fluid, the equation of momentum balance can be written as 

 0     
f i

i i f i f i

ρ
p R ρ ü ρ b

n

w
 (2) 

where R is the viscous drag force. According to the Darcy‟s seepage law, the viscous drag forces R 

                                                       
* stresses are positive in tension 
† pore pressure is positive in compression 
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between soil matrix and pore fluid can be written as
1


i ij j

R k w , where
ij

k  is the tensor of anisotropic 

intrinsic permeability coefficients. For simple case of isotropic permeability, scalar value of 

permeability k is used, so as 1


i j
R k w . The permeability k used here with dimension of [L3TM−1] is 

different from Darcy permeability (hydraulic conductivity), kD, which has the dimension of velocity, 

i.e., [LT−1]. Their values are related by 
D f

k k / gρ , where g is the gravitational acceleration and ρf is 

the density of the pore fluid. 

The final equation is the mass conservation of the fluid flow expressed by 

 0  i ,i iiε
p

w α
Q

 (3) 

where bulk stiffness of the mixture Q is expressed as  1   
f s

K α n KQ n , and Ks and Kfare the 

bulk moduli of the solid (particles, not the skeleton) and fluid phases, respectively. 

In the above governing equations, convective terms of lower order are omitted. A change of 

variable is performed by introducing an alternative variable Ui, defined as  
i i i

U u w n , that 

represents absolute displacement of the pore fluid. Thus, the basic set of unknowns comprises the 

soil skeleton displacements ui, the fluid pore pressure p, and the fluid displacements Ui. The set of 

the modified governing equations is summarized below 

 

 0)1()1()( ,, 
iisisijij nRunbnpn                (4) 

0,  iififi nRUnbnnp                         (5) 

  
1

   i ,i iinU α n ε p
Q

 (6) 

From the modified Eqs. (4)-(6), we can see that only i
u occurs in the first equation, and only 

i
U

in the second, thus leading to a convenient diagonal form in discretization. 

This theoretical approach describes the interaction of solid skeleton and pore fluid with three 

major equations, governing both dynamic and quasi–static phenomena: i) equilibrium of total 

solid-fluid “mixture” – Eqs. (1) and (4), ii) equilibrium of pore fluid – Eqs. (2) and (5), and iii) mass 

conservation of the fluid flow – Eqs. (3) and (6). The boundary conditions imposed on these 

variables will complete the problem. These equations together with an appropriate constitutive 

relationship describe the behavior of solid skeleton accounting for its full interaction with the pore 

fluid under both quasi-static and dynamic conditions. Herein, the constitutive relationship between 

increments of effective stress and strain of the solid skeleton is given in a general incremental form 

 '
ij ijkl kldζ D dε  (7) 

where   2 
ij i , j j ,i
ε u u is the small strain tensor of the solid skeleton, and Dijkl is the tangent 

stiffness that can be elastic or elasto-plastic. 

The u–p–U formulation considers compressible pore fluid and solid grains. Additionally, due to 

computation of fluid inertia forces, this formulation is applicable to any range of frequency for 
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which the hypothesis of constant permeability is valid (Gajo et al. 1994). Moreover, the u–p–U 

formulation resolves the issues of volumetric locking by including the displacements of both the 

solid skeleton and the pore fluid, and the pore fluid pressure as well. This formulation uses 

(dependent) unknown field of pore fluid pressures to stabilize the solution of the coupled system. 

The pore fluid pressures are connected to (dependent on) displacements of pore fluid, as, with 

known volumetric compressibility of the pore fluid, pressure can be calculated. 

An important advantage of u–p–U formulation over commonly used u–p formulations is that 

velocity proportional viscous damping is introduced directly through the damping tensor which is a 

function of porosity and permeability of the soil skeleton. This viscous damping provides for 

physically based, velocity proportional energy dissipation, stemming from the interaction of pore 

fluid and the porous solid (soil) skeleton. In addition to these advantages, the inclusion of both solid 

skeleton and pore fluid displacements in the field of unknowns allows for independent treatment of 

accelerations of both constituents (skeleton and fluid) which improves accuracy of simulations. 

Some details of the finite element formulation and implementation is given in the appendix for 

reference. 

 

 

3. Solution verification suite  
 

Solution verification of the u–p–U formulation and its implementation is presented in the 

following. Analytical solutions for porous media, found in literature, are used to verify numerical 

solutions obtained by application of the developed code. The analytical solutions in time domain, 

available in literature, have been developed for linear elastic porous media and simplified 

geometries (mostly 1D) and they are divided into two main categories, based on: a) consolidation 

theory, where no inertia effects are taken into account, called quasi-static poroelasticity, and b) 

dynamic version of the two-phase theory, called poroelastodynamics. Characteristics solutions from 

both categories are chosen in the following to verify the u–p–U finite element formulation, as 

developed by Jeremic et al. (2008). 

It should be mentioned that the majority of the analytical solutions are provided for idealized 

examples, such as 1D linear elastic wave propagation, which are not always representative of 

realistic cases in terms of 3D geometry and non–linearity. However, while they would seem to be 

inadequate for Validation purposes, which require realistic experiments and/or well documented 

case histories (see Tasiopoulou et al. (2014) for more details), they successfully serve the 

mathematical objective of Verification, ensuring the accuracy of the numerical solution provided by 

the code. 

 

3.1 Quasi–static poroelasticity 
 

This section focuses on analytical solutions based on coupled theory of linear porous media 

under quasi– static conditions (Coussy 1995, 2004). Eqs. (1) and (2), which are based on equilibrium 

of total “mixture” and fluid respectively, are reformed in order to apply for quasi–static phenomena 

(inertia terms are omitted).  Thus, Eq. (1) is written as 

 0ij , jζ  (8) 

and Eq. (2), assuming isotropic permeability, is written as 
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 0   i
,i f ip ρ b

k

w
 (9) 

Differentiating Eq. (9) with respect to spatial coordinates, we obtain 

iiii kpw ,,                                 (10) 

Combining Eqs. (10) and (3), the mass conservation equation becomes 

   ,iiαε kp
Q

p
 (11) 

A simple linear constitutive relationship between effective stress and strain is considered 

 
2

2
3

 
    
 

ij v ij ij ijζ K μ ε δ με αpδ  (12) 

where K is the bulk modulus, µ is the shear modulus, and εv is the volumetric strain of porous solid 

skeleton. Combination of Eqs. (8) and (12), and subsequent differentiation with respect to spatial 

coordinates, leads to  4 3 0  
v,ii ,ii

K μ ε αp , which can be solved for εv as 

 
 4 3




v

αp
ε

K μ
 (13) 

Lastly, differentiating εv from Eq. (13) with respect to time and substituting it in Eq. (11) in 

combination with the relationship 
2 uK K α Q (where Ku is the undrained bulk modulus of soil), 

the diffusion equation is derived as 

 , f iip c p  (14) 

where cf is the fluid diffusivity coefficient, defined as 

 
 

 

4 / 3

4 / 3





f

u

K
c kQ

K




 (15) 

Coussy (1995, 2004) has presented analytical solutions for the diffusion Eq. (14) for different 

boundary condition problems which have been used as verification examples and are studied in the 

following. 

 

3.1.1 Vertical Consolidation of a Soil Layer 
Analytical Solution by Coussy (2004) – A soil layer of thickness h in the z direction, composed 

of isotropic, homogeneous and saturated poroelastic material is assumed, as shown in Fig. 2(a). The 

top surface of the soil layer, z = 0, is drained, while its base, z = h, is rigid and impervious. 

Since this is a one-dimensional problem, the only non-zero displacement is the vertical one, uz.  

In particular, the fluid pore pressure, p, as well as the displacement, uz , depend only on z and t. 

Thus, the only non-zero strain component is εzz = ∂uz/∂z. The hydraulic boundary conditions 

require that p = 0 for the soil surface (z = 0) and ∂p/∂z = 0 for the base of the layer (z = h). The 

undeformability of the substratum requires that the vertical soil displacement, uz , is zero (uz = 0 
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for z = h). At time t = 0, the instantaneous vertical constant load w is suddenly applied on the top 

surface z = 0. The equilibrium requires that, for t > 0 and z = 0, σzz = − . Thus, the new fields of 

fluid pressure and displacement, induced by the external loading, remain to be determined. 

Application of the constitutive Eq. (12) gives 

 
 4 / 3

 
 

 

z
zz

z

u p

K

 



 (16) 

The instantaneous response of the porous medium to any external loading is undrained and can 

be expressed in the form: 

    
1

0 0    t p t
M




 (17) 

which, when combined with Eq. (12), leads to 

 









)3/4(
)0,(

)3/4(
)0,(











 

u

zz

z

z

u K
tz

d

K

M
tzp              (18) 

Finally, in case of one-dimensional consolidation, the diffusion Eq. (14), needed to be solved, 

reads: 

2

2

0
z

f

p
c

t

p
t









                                 (19) 

 

 

 

Fig. 2 (a) The geometry of the soil layer of thickness h under uniform constant vertical pressure    
kPa applied at the surface, and (b) the finite element mesh with the appropriate boundary conditions 

and loading at top 
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Satisfying the above mentioned boundary conditions, the fluid pressure can be expressed in the 

form of infinite series 

 











 








 


 



 





 tm

h

zm

mK

M
tzp

mu 4

)12(

2

)12(

)12(

4

)3/4(
),(

22

0

 exp  Sin        (20) 

Each term of the series decreases exponentially with respect to the ratio t/τ, with τ being the 

characteristic consolidation time, defined as 

 
2


f

h

c
                                 (21) 

By substituting Eq. (20) into Eq. (16), the series converges and, after integration term by term, 

we obtain 

 

















 








 

























0

2

22 42

)12(

)12(

8

)3/4()3/4()3/4(

)(
),(

m

u

z

t

h

zm

m

K

h

K

h

K

zh
tzu



















21)(2m
 exp  cos 

            (22) 

Using Eq. (22) and substitute z = 0, the total settlement of the soil layer, s, can be expressed as 

    
 

 
2 2

0 22
0

2 18
exp

2 1 4



  



 
    
   


m

m t
s t s s s

m




              (23) 

where 

 








)3/4()3/4(
0





 

K

h
s

K

h
s

u

  ;                      (24) 

Numerical Analysis – A soil column of u–p–U, 8-node brick, finite elements is used to model 

the horizontal layer. Each element has dimensions 1 m×1 m×1 m, resulting in soil–column mesh, 10 

m high, as illustrated in Fig. 2(b). The elastic material properties, shown in Table 1, are chosen as 

indicative values for the natural soil deposit. A constant uniform vertical pressure of 400 kPa is 

instantaneously applied on the top of the finite element mesh. 

The following boundary conditions are applied to the model, shown in Fig. 2(b): the solid and 

fluid displacements are fixed at the base and the pore pressure is kept zero at the top surface. In 

order to simulate the 1D consolidation problem, the lateral movement of the solid and fluid phase 

is suppressed so that the vertical displacement remains the only non-zero displacement. To remedy 

any artificial oscillation due to spatial and time discretization, numerical damping is introduced 

into the analysis by using γ = 0.6 and β = 0.3025 for the Newmark time integrator (Newmark 1959; 

Argyris and Mlejnek 1991). 

The instantaneous response of the soil skeleton is undrained which leads to sudden increase of 

pore pressure. The boundary condition of perfect drainage at the surface (p = 0) causes an upward 

flow of the pore water, so that pore pressure gradually reduces with time, as depicted by Fig. 3(a). 

The time factor, Tv is defined as Tv = t/τ so that for Tv = 1, the process of consolidation is 
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considered to have been completed, since the rate of dissipation has been practically diminished. 

Fig. 3(b) depicts the distribution of pore pressure with depth for different moments in time, Tv, 

confirming the upward movement of pore water, as the rate of pore pressure dissipation is clearly 

greater for depths closer to the surface. The gradual upward movement of pore water leads to 

increase of the vertical soil displacement with time, as shown in Fig. 4(a). It can be concluded that 

the numerical analysis can effectively demonstrate the process of the dissipation of the pore 

pressure in agreement with the analytical solution by Coussy (2004). Moreover, the numerical 

analysis based on u–p–U formulation permits the calculation of upward fluid movement, Uz, 

plotted with time in Fig. 4(b). The upward displacement of the fluid, Uz, at the end of 

consolidation has been computed as 0.39 m, more than the final downward displacement of the 

soil skeleton (0.33 m). Thus, an accurate estimation of the change in porosity due to settlement of 

the soil and consequent upward drainage of amount of pore fluid can be performed. The amount of 

fluid that escaped is calculated as ∆Vf = nUz = 0.46 × 0.39 m × 1 m × 1 m = 0.1794 m3. The change 

of solid-skeleton volume is equal to ∆Vs = (1 − n)Us = 0.54 × 0.33 m × 1 m × 1 m = 0.1782 m3. If 

the total initial volume of soil is V = 10 m3 and the initial volume of pore fluid is nV = 4.6 m3, the 

final porosity at the end of consolidation is estimated n’ = (4.6 − 0.1794)/(10 − 0.1782) = 0.45, less 

than the initial one, n = 0.46, indicating slight compaction of the soil layer. 

 

 

 
Table 1 Soil properties used in numerical analysis of quasi–static problems 

Parameter Symbol [Units] 1D consolidation Line Injection 

Gravity acceleration g [m/s2] 9.81 9.81 

Soil Young‟s modulus E [kN/m2] 104 1.2 x 106 

Soil Poisson‟s ratio ν 0.25 0.2 

Solid density ρs [ton/m3] 2.65 2.7 

Fluid density ρf [ton/m3] 1.0 2.7 

Solid bulk modulus Ks [kN/m2] 37 x 106 3.6 x 107 

Fluid bulk modulus Kf [kN/m2] 2.2 x 106 1.0 x 1017 

Porosity n 0.46 0.4 

Biot coefficient α 1.0 1.0 

Darcy permeability kD [m/s] 10-3 3.6 x 10-6 

Soil drained bulk modulus K [kN/m2] 6.67 x 103 6.7 x 105 

Soil undrained bulk modulus Ku [kN/m2] 4 x 106 6.0 x 107 

Fluid diffusivity coefficient cf [m
2/s] 1.2 0.5 
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Fig. 3 Comparison between numerical analysis and analytical solution by Coussy (2004): (a) normalized 

pore pressure at various depths with respect to real time, t, and (b) distribution of normalized pore 

pressure with normalized depth, z/h, for different time factors, Tv 

 
 

 

Fig. 4 (a) Comparison between numerical analysis and analytical solution by Coussy (2004) in terms of time 

histories: (a) solid–skeleton displacements, and (b) fluid displacements, for various depths 
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3.1.2 Line injection of fluid in a reservoir 
Analytical Solution by Coussy (2004) – A reservoir of infinite extent composed of an isotropic, 

homogeneous and saturated poroelastic material is considered. Through a cylindrical well of 

negligible dimensions, fluid mass injection is performed in all directions orthogonal to the well axis 

of symmetry, forming the z axis of coordinates. The flow rate of fluid mass injection is constant and 

equal to q. This is a problem of cylindrical symmetry, requiring the use of cylindrical coordinates 

(r,θ,z). The vectors of relative flow of fluid mass, w, and solid–skeleton displacement, ξ are 

expressed as w = w(r, t)er and ξ = ξ(r, t)er , where er is the unit vector along the radius. 

Solid–skeleton strain components are derived in the form 

 0
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
 ijrr
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Thus, Eqs. (13) and (14) are reformed in cylindrical coordinates 
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Requiring that the fluid flow reduces to zero infinitely far from the well, rw → 0 as r → ∞, the 

fluid mass balance relationship is applied 
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The solution of the set of Eqs. (26)-(28), and (3) for the instantaneous injection of a finite volume 

of fluid, Ω, is given in the following form 
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Numerical Analysis – As a result of axis symmetry of the geometry, the model has been 

developed for π/2 segment, 5 cm thick, with radius equal to 1 m. A cylindrical well is drilled at the 

center of the model, with 1 cm radius, having negligible size when compared to the model radius, 

but still providing well–shaped elements. Due to plane–strain conditions, all the movements for 

solid and fluid phases are suppressed along the vertical axis of symmetry, z. The u and U nodes 

along the outside perimeter are fixed. It should be noted that Ω is the volume of the fluid injected per 

unit of vertical well length, m3/m. In order to generate the volume of 1 cm3/m, the corresponding 

fluid displacement of the nodes along the well has been calculated and applied as a step function at 

the time t = 0 sec. For simplicity, the initial fluid pressure p0 is set to be 0 kPa. The analytical 

solution is studied below using the set of parameters shown in Table 1. 

In the analysis, the pore pressure and the radial displacements are recorded at three points on the 

radius (10 cm, 50 cm, and 85 cm). The analytical and numerical results compare well with each 

other as indicated by Fig. 5. The time step, ∆t, was set equal to 1 sec; thus, the first data point is 

recorded at the time of 1 sec. 
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Fig. 5 Comparison between numerical analysis and analytical solution by Coussy (2004): (a) radial 

displacement, and (b) pore pressure versus time at different distances, R, from the center of the 

model 

 

 

3.2 Poroelastodynamics 
 

One of the significant findings by Biot (1956a,b,c) was the identification of two kinds of 

compressional waves and one shear wave, which has been the starting point for further research on 

the mechanics of dispersive waves through analytical or numerical approaches. Several analytical 

and semi-analytical solutions for dynamic poroelasticity are available in the literature, varying with 

geometry, type of loading, time domain or transformed domain solution, assumptions related to the 

compressibility of the fluid and the formulation used (u–p, u–p–U , u–U). A review of this wide 

range of solutions in dynamic poroelasticity is nicely presented by Schanz (2009). The current paper 

focuses on solutions regarding one-dimensional wave propagation in saturated linear elastic porous 

media due to step and sinusoidal excitations. 
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In order to study the accuracy of u–p–U finite element procedure in representing a dispersive 

wave propagation in saturated soil, numerical dispersion effects should be taken into account. 

Dependence of the wave-velocity on the frequency content of the excitation is the basic concept 

behind the theory of dispersive waves. Thus, when wave propagation is modeled in a numerical 

scheme, numerical features, such as the element size, integration scheme, numerical damping, 

element type etc., should be chosen appropriately, so that the frequency range of the excitation will 

be represented in the model. Otherwise, the wave-velocities developed in the numerical model will 

diverge from the theoretical solution due to an artificial dispersion attributed to numerics and not 

physics (numerical dispersion). 

Various theoretical works concern the effect of numerical dispersion (Deraemaeker and Babuska 

1999, Hughes 1987, Ihlenburg and Babuska 1995, Semblat and Brioist 2000), highlighting spatial 

discretization as one of the most influential numerical features. In particular, the effect of numerical 

dispersion decreases with the increase in wave length, λ, and increases with the increase in mesh size 

∆h, which can lead to the necessity to use fine meshes, even uneconomical ones for small wave 

lengths (Deraemaeker and Babuska 1999). A common rule of thumb for typical finite element 

procedures is to resolve the wavelength by 10 elements (Ihlenburg and Babuska 1995, Hughes 1987); 

thus the element size, ∆h, should be less that 1/10 of the smallest wavelength (λmin) involved in the 

application 

 Δ      
10

 min min
min

max

V
h where

f


  (30) 

where Vmin  is the lowest wave velocity of interest in the simulation and generally, it is a function of 

the elastic modulus of the medium, while fmax is the maximum frequency that is modeled. 

Spatial and temporal discretization are linked in a way requiring that mesh spacing is 

accompanied by an appropriate time interval. As a wave front progresses in space it reaches one 

point after the other. If the time step in the finite element analysis is too large, the wave front can 

appear to reach two consecutive nodes at the same moment. This would violate a fundamental 

property of wave propagation and can lead to instability. In order to ensure that the propagation of 

wave can be modeled properly, the required time step, ∆t, must be limited to 

 
Δ

Δ 
max

h
t

V
 (31) 

where Vmax is the highest wave velocity involved, usually being a function of the undrained elastic 

modulus in case of fully saturated porous media. 

 

3.2.1 Step displacement excitation 
Analytical Solution by Gajo and Mongiovi (1995) – An one-dimensional analytical solution of 

the Biot‟s equations (using u–U field displacements) is provided by Gajo and Mongiovi (1995) for a 

general transient problem in poroelasticity. The analytical solution was obtained using Fourier series 

expansion and it is not based on any assumptions with respect to the inertial, viscous or mechanical 

coupling. Furthermore, it is applicable to any type of boundary-initial value problem. 

Since each term of the Fourier series represents a frequency component of the excitation signal, 

the analytical solution can describe the behavior of every single frequency component related to the 

problem. Thus, it can illustrate the mechanics of dispersive wave propagation in which higher 
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frequencies propagate with two waves and lower frequencies with only one wave,as a function of 

permeability and travel length. Considering the above, the analytical solution can provide a useful 

comparative tool towards the verification of the existing numerical solutions based on the finite 

element method (Gajo et al. 1994). 

Gajo and Mongiovi (1995) present the response of the porous medium only relative to the first 

arrival of the waves of the first and second kind. Specifically, analytical results are shown for a finite 

soil column subjected to a step displacement boundary condition (Heaviside function) at the surface 

applied both to solid and fluid phases, as shown in Fig. 6(a). This problem can demonstrate better the 

mechanics of dispersive wave propagation, since the step excitation contains waves of all 

frequencies. In the following section (3.2.2), analytical solution is compared with numerical analysis 

for a soil column subjected to a single sine pulse with characteristic predominant frequency of 106 

Hz, producing smoother wavefronts. 

Numerical Analysis – Fine spatial discretization is required due to step boundary condition. 

This kind of excitation contains waves of all frequencies leading to meshes with a large number of 

finite elements, according to Eq. (30), which suggests that the appropriate element size is inversely 

proportional to the maximum frequency introduced to the model. In fact, there is no element size 

that could satisfy the equation; thus, numerical dispersion is inevitable. It can only be diminished 

by increasing the spatial refinement. Evidently, a compromise needs to be made between the 

quantity of numerical error and the computational cost. 

Numerical models with three different values of permeability – resulting in three different 

viscous coupling scenarios (k = 10−8 cm3s/g, k = 10−6 cm3s/g, k = 10−5 cm3s/g) – were solved in 

order to verify the u–p–U formulation in a wide range of drag forces. At the top surface of the 

model, a vertical step displacement of 1.0 × 10−3 cm is applied both to the solid and the fluid 

phases. No lateral flow or displacement is allowed. The base of the model is rigid and impervious, 

as schematically illustrated in Fig. 6(a). 

 

 

 

Fig. 6 (a) A representative soil column subjected to a step vertical displacement equal to 1.0×10-3 cm at the 

surface, and (b) the finite element mesh and the applied boundary conditions used for numeric 

modeling 
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Table 2 Soil Properties for 1D wave propagation due to various boundary conditions and loading 

Parameter 
Symbols 

[Units] 

Step/Sine pulse 

disp. (Gajo and 

Mongiovi 1995) 

Step/Sine loading 

(de Boer et al. 

1993) 

Step vel. 

(Hiremath 

et al. 1988) 

Gravity acceleration g [m/s2] 9.81 9.81 9.81 

Soil Young‟s modulus E [kN/m2] 1.2 x 106 20 x 103 23.2 x 106 

Soil Poisson‟s ratio ν 0.3 0.2 0.17 

Solid density ρs [ton/m3] 2.7 2.0 2.66 

Fluid density ρf [ton/m3] 1.0 1.0 1.0 

Solid bulk modulus Ks [kN/m2] 36 x 106 36 x 106 36 x 106 

Fluid bulk modulus Kf [kN/m2] 2.2 x 106 2.2 x 106 2.2 x 106 

Porosity n 0.4 0.33 0.18 

Biot coefficient α 1.0 1.0 0.677 

 

 

According to Gajo (1995), the two extreme values of wave velocity for longitudinal propagation 

in a porous medium with properties shown in the third column of Table 2, are: Vmin = 610 m/s and 

Vmax = 1819 m/s, corresponding to the case of significantly low viscous coupling, where two 

longitudinal waves exist (one slow and one fast). 

For infinitely large viscous coupling, the velocity of the single longitudinal wave is 1773 m/s. 

The chosen finite element mesh consists of 400 u–p–U brick finite elements of dimensions 0.01 cm 

× 0.01 cm × 0.01 cm, creating a soil column 4 cm high, as illustrated in Fig. 6(b). The maximum 

frequency allowed to be present in a model with the above-mentioned grid spacing is 18.19 × 106 Hz 

for the first longitudinal wave (fast) and 6.1 × 106 Hz for the second one (slow). There is a cut-off of 

greater frequencies imposed by the specific computational mesh. 

The maximum time step is equal to (0.0001 m)/(1819 m/s) = 5.5×10−8 sec, as suggested by Eq. 

(31).The selected temporal integration involves 800 steps of ∆t = 2.0 × 10−8 sec, which allows a 

maximum wave velocity of 5.0 × 105 m/s. 

Fig. 7 shows the comparative results for all three different values of viscous coupling using 

Newmark parameters: γ = 0.6 and β = 0.3025, which introduce numerical damping in the model. In 

general, the numerical results are in good agreement with analytical solution for 1D wave 

propagation in fully saturated, elastic porous media. For example, numerical analysis demonstrates 

that during the propagation of the first wave, the solid and fluid displacement are in phase with each 

other, whereas during the propagation of second wave, the displacements are in opposite phase. In 

case of high viscous coupling, only one longitudinal wave exists, since the relative motion between 

solid and fluid phase is highly constrained. 

However, as expected, the rise time of wave fronts obtained from the numerical analysis is larger 

than the rise time estimated by the analytical solution, due to numerical dispersion, observed also by 

Gajo et al. (1994) and Simon et al. (1984). This discrepancy is smaller for high viscous coupling 

which physically induces a more dispersive response, in contrast to low viscous coupling which 
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produces abrupt wavefronts. This dispersive response in case of large viscous coupling is attributed 

to the physically based, high viscous damping due to coupling of pore fluid and porous solid, which 

can be captured by the u–p–U formulation (see matrices C1, C2, and C3of Eq. (37), in the appendix). 

Furthermore, the rise time of the second wave is even larger; a fact that can be partly attributed to 

the diffusive behavior of the second wave in low–frequency range. In general, the distortion and the 

smearing of the wave fronts is a drawback of all types of numerical solutions, which is linked to the 

limitation of the highest frequency allowed by the computational grid and the numerical damping 

introduced to the model. 

In order to further examine the sensitivity of the numerical solution to characteristic numerical 

features, such as a) spatial refinement and b) numerical damping, an indicative parametric 

investigation was conducted. For this purpose, a finer spatial discretization of ∆h = 0.005 cm was 

selected, accompanied by a smaller time step equal to 10−8 sec. Two different sets of parameters for 

Newmark integrator wereused: i) γ = 0.5 and β = 0.25 corresponding to no numerical damping and ii) 

γ = 0.6 and β = 0.3025, which introduce numerical damping. Fig. 8 shows the numerical response 

versus the analytical solution for two combinations of spatial and temporal refinement when no 

numerical damping is introduced in the model (γ = 0.5 and β = 0.25). High-frequency artificial 

oscillations develop within the model at the first wave arrival with gradually decreasing amplitude 

over time. Evidently, the oscillations are narrower with equal or smaller amplitude in case of the 

finer mesh, while the rise time of abrupt wavefronts diminishes, better approaching the analytical 

solution. 

 

 

Fig. 7 Comparison between numerical analysis and analytical solution by Gajo and Mongiovi (1995) for 

three different values of viscous coupling, k: (a) solid displacement versus time from 4–16×10−6 sec, 

(b) solid displacement versus time from 5–6.5×10−6 sec, (c) fluid displacement versus time from 

4-16×10−6 sec, and (d) fluid displacement versus time from 5–6.5×10−6 sec, obtained 1 cm below the 

surface 
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Fig. 8 Analytical solution by Gajo and Mongiovi (1995) versus numerical analysis with no numerical 

damping (γ = 0.5 and β = 0.25) for two different combinations of spatial and temporal discretization: 

i) ∆h = 0.01 cm and ∆t = 2 × 10−8 sec, ii) ∆h = 0.005 cm and ∆t = 10−8 sec, in the case of viscous 

coupling k = 10−5 cm3s/g 

 

 

Fig. 9 shows the comparison of numerical results with analytical solution for the two selected 

meshes when numerical damping is used in the numerical scheme (γ = 0.6 and β = 0.3025). Once 

more, closer convergence with analytical solution is achieved in case of finer mesh. It is interesting 

to notice that the slight oscillations occurring close to the wavefronts in case of coarser mesh, have 

been completely damped out by numerical damping in case of finer spatial discretization. This fact 

leads to the conclusion that numerical damping is, in this case, more effective in damping out 

higher-frequency oscillations which develop in case of finer mesh. 

 

 

 

Fig. 9 Analytical solution by Gajo and Mongiovi (1995) versus numerical analysis with no numerical 

damping (γ = 0.6 and β = 0.3025) for two different combinations of spatial and temporal 

discretization: i) ∆h = 0.01 cm and ∆t = 2x10−8 sec, ii) ∆h = 0.005 cm and ∆t = 10−8 sec, in the case 

of viscous coupling k = 10−5 cm3s/g 
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Fig. 10 Analytical solution by Gajo and Mongiovi (1995) versus numerical analysis for two cases of 

numerical damping: (a) γ = 0.5 and β = 0.25 (no numerical damping) and (b) γ = 0.6 and β = 0.3025 

and for two different combinations of spatial and temporal discretization: i) ∆h = 0.01 cm and ∆t = 

2 × 10−8 sec, ii) ∆h = 0.005 cm and ∆t = 10−8 sec, in case of viscous coupling k = 10−5 cm3s/g. 

Magnified view of the first wavefront 

 

 

Overall, Fig. 10 suggests that the analytical solution is better approached in terms of the rise time 

of wavefronts, when no numerical damping is introduced in the model and finer mesh is used. 

However, numerical damping is needed to damp out the artificial oscillations developed due to the 

discretization of continuum into finite element model in combination with the range of frequencies 

imposed by the excitation. The compromise in choosing the parameters of the numerical features is 

directly related to the desired level of accuracy in capturing the details of response, where both low 

and high frequency waves are present. 

 

3.2.2 Single sine pulse displacement 
In order to investigate the efficiency of u–p–U finite element under more realistic excitations 

with a characteristic predominant frequency, a single sine pulse displacement was imposed to both 

solid and fluid phases at the top of a finite soil column. The characteristic duration of the single sine 

pulse is 10−6 sec, corresponding to a predominant frequency of 106 Hz. The soil properties assigned 

to the model are the same as in the previous example and are shown in the third column of Table 2. 

The minimum wavelength, λmin, is estimated as Vmin/fmax = (610 m/s)/(106 Hz) = 6.1 × 10−4 m. 

According to Eq. (30), the element size is limited to 1/10 of the minimum wavelength, so that it is 

less than 6.1 × 10−5 m. The selected mesh is comprised of 800 u–p–U brick finite elements of 

dimensions 0.005 cm × 0.005 cm × 0.005 cm, creating a soil column 4 cm high. The time step is 

limited to ∆t ≤ ∆h/Vmax = 2.7 × 10−8 sec according to Eq. (31). The chosen temporal discretization 

consists of time intervals equal to ∆t = 2 × 10−8 sec. Numerical models with three different values of 

permeability, resulting in three different viscous coupling cases (k = 10−8 cm3s/g, k = 5 × 10−8 cm3s/g, 

and k = 10−5 cm3s/g), were analyzed. 

Fig. 11 shows the comparative results for all three different values of viscous coupling using 

New- mark parameters:  γ = 0.5 and β = 0.25, introducing no numerical damping. In general, the 
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numerical results converge well with analytical solution, especially for higher values of viscous 

coupling where the response is physically more dispersive. One can observe that the there is a slight 

discrepancy between analytical and numerical response in terms of the rise time at the arrival of the 

pulse, for cases of lower viscous coupling. This fact emphasizes the sensitivity of the response to the 

spatial refinement even under smoother excitations with a predominant characteristic frequency, 

particularly for cases of low viscous coupling. The numerical error can be eliminated with finer 

mesh, as shown in the previous case. However, herein, the effect of numerical dispersion is 

significantly smaller compared to the example of step excitation and it could be suppressed in case 

of completely smooth pulse (e.g., Ricker). Moreover, no need for numerical damping occurred since 

no high frequency artificial oscillations developed as in case of step pulse. 

 

3.2.3 Step loading 
Analytical Solution by de Boer et al. (1993) – An analytical solution for one-dimensional wave 

propagation in fluid-saturated elastic porous media is provided by de Boer et al. (1993), based on 

theory of mixtures (Bowen 1980, 1982, Ehlers 1993). The fluid-saturated porous material is 

assumed to be a two phase system composed of incompressible solid and fluid phases. An exact 

analytical solution is obtained via Laplace transform technique exhibiting only one independent 

compressive wave in both the solid and fluid phases, as a result of the incompressibility constraint. 

The problem configuration consists of an infinitely long column, extracted from the half-space of 

a fluid-saturated porous elastic skeleton material. The motions of both solid and fluid materials are 

constrained to occur only in the vertical direction. Loading is applied to the surface boundary, as a 

function of time, σ(z = 0, t) = f (t). Both solid and fluid displacements, as well as solid skeleton extra 

stress and pore pressure are obtained with respect to time and depth (de Boer et al. 1993). The 

analytical solution has been developed for i) sinusoidal, ii) step (presented here) and iii) impulsive 

loading. 

 

 

 

Fig. 11 Comparison between numerical analysis and analytical solution by Gajo and Mongiovi (1995) in 

terms of solid displacement, obtained 1 m below the surface, for three different values of viscous 

coupling, k 
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Numerical Analysis – Numerical example for the step loading case was used to verify the 

implementation of u–p–U formulation. Step loading excitation contains all frequencies, thus 

requiring a fine spatial discretization. However, this example does not examine the details of 

wavefront; it rather focuses on the long term response describing the consolidation process under 

dynamic loading. Considering the above, the numerical grid used for the simulation of the 1D shock 

wave propagation consists of 1000 u–p–U brick finite elements of dimensions 1 cm × 1 cm × 1 cm 

creating a soil column 10 m high. Since the numerical simulation of a semi-infinite soil column is 

not possible, a soil column of finite depth of 10 m was considered adequate for the current problem 

configuration. No lateral flow or displacement is allowed in the model; thus, only the vertical 

displacement is free. The pore pressure is constrained at the top surface to be equal to the 

atmospheric pressure; thus, modeling drained condition. The base of the model is rigid and 

impervious. 

Table 2 shows the soil properties of the numerical model, which are the same with those used for 

the analytical results presented in the paper by de Boer et al. (1993). The only difference is 

associated with the elastic modulus, which was selected to be 20 MN/m2 for the numerical solution 

instead of 30 MN/m2, as noted by de Boer et al. (1993). The value of Darcy permeability assigned to 

the soil skeleton is equal to 0.01 m/s. The numerical analysis indicates that the analytical results 

presented in the paper correspond to a soil column with elastic modulus equal to 20 MN/m2 instead 

of 30 MN/m2. Moreover, it should be mentioned that the solid and fluid (water) compressibility were 

given realistic values (see the fourth column of Table 2), which practically means that the two 

constituents can be assumed fairly incompressible compared to the soil–skeleton compressibility. 

At the top surface of the soil column, a step loading of σ(z = 0, t) = 3 kN/m2 is applied to the solid 

part through four nodal loads at the top. The nodal loads are developed as 
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The maximum wave velocity of the soil can be given approximately by equation 
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where M is the constrained modulus of the solid skeleton, α is Biot coefficient, while Q is the bulk 

stiffness of a mixture, defined after Eq. (3). Thus, according to Eq. (31) the time step should be 

5×10−6 sec or less. The selected temporal integration involves 80000 steps of ∆t = 5.0×10−6 sec. The 

Newmark parameters used in the analysis are: γ = 0.7 and β = 0.4. This sets of parameters introduce 

considerable numerical damping to the model which can increase numerical dispersion, but as 

mentioned before, the current study does not focuses on the details of the high frequency 

components which are quickly damped out with time. Figs. 12-14 show the comparison between 

analytical and numerical results. 

In general, the numerical results are in good agreement, with respect to time and depth, with 

those obtained by the analytical solution. During the consolidation process, the solid skeleton settles 

and the fluid escapes out of the solid skeleton while the load is transferred from the pore pressure to 

the solid skeleton stress. The only discrepancy between analytical and numerical results is found in 

the pore pressures which develop an oscillatory trend in case of numerical analysis. The existence of 

oscillatory waves has also been observed and discussed by Zienkiewicz and Shiomi (1984). These 

artificial oscillations, attributed to the combination of numerical features and the nature of dynamic 
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step loading, are damped out over time. Numerical damping would be more efficient in eliminating 

the artificial oscillations if finer mesh was used and thus, higher-frequency oscillations were 

developed. This conclusion, indicating that the efficiency of numerical damping increases as the 

artificial oscillations become narrower, was shown in section 3.2.1 and will be also shown in section 

3.2.5. 

 

 

Fig. 12 Comparison between numerical analysis and analytical solution by de Boer et al. (1993) in terms of 

(a) solid displacements versus time at different depths, (b) fluid displacements versus time at 

different depths, (c) solid displacements versus depth at different times, and (d) fluid displacements 

versus depth at different times 

 

 

Fig. 13 Comparison between numerical analysis and analytical solution by de Boer et al. (1993) in terms of 

(a) solid–skeleton stress versus time at different depths, and (b) solid–skeleton stress versus depth at 

different times 

88



 

 

 

 

 

 

Solution verification procedures for modeling and simulation of fully coupled porous media… 

 

 

Fig. 14 Comparison between numerical analysis and analytical solution by de Boer et al. (1993): (a) pore 

fluid pressure versus time at different depths, (b) pore fluid pressure stress versus depth at time t = 

0.01 sec, (c) pore fluid pressure stress versus depth at time t = 0.05 sec, and (d) pore fluid pressure 

stress versus depth at time t = 0.1 sec 

 

 

3.2.4 Sinusoidal loading 
Numerical example for the sinusoidal loading case was also used to verify implementation of 

u–p–U formulation.  The frequency of the excitation is equal to 75 rad/s and the load is given by the 

function   3 1 cos 75 t 3 × (1 − cos(75 × t)). Table 2 shows the soil properties of the numerical 

model, which are the same as in the previous section. The value of Darcy permeability assigned to 

the soil skeleton is again equal to 0.01 m/s. 

The minimum wave velocity that can be present in the model can be approximately estimated by 

equation 

 
 

128?
1

 


min

s

M
V m s

n 
 (34) 

corresponding to a dry solid skeleton. Thus, the minimum wavelength can be estimated by Eq. (30) 

as 10.7 m leading to a maximum element size of 1.07 m. The numerical grid used for the simulation 
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of the 1– D shock wave propagation consists of 100 u–p–U brick finite elements of dimensions 10 

cm×10 cm×10 cm creating a soil column 10 m high. The maximum time-step required is estimated 

by Eq. (31) equal to 4 × 10−6 sec approximately for the selected element size. The Newmark 

parameters were selected to be: γ = 0.6 and β = 0.3025, in order to introduce numerical damping. At 

the top surface of the soil column, the sinusoidal loading is applied to the solid part through four 

nodal loads at the top. 

Fig. 15 depicts the time-histories of solid and fluid displacements, as well as pore pressure and 

ef- fective stress as obtained by both numerical analysis and analytical solution. Numerical analysis 

captures the response of fully saturated soil under sinusoidal loading in a satisfactory manner. In 

particularly, the solid displacement gradually accumulates downwards while the fluid is squeezed 

out of the skeleton. However, there are moments of partial recovery, when the load on the surface 

decreases, which renders the pore pressure values negative close to surface, as the fluid is absorbed 

inwards (suction). The effective stress seems to be more sensitive to loading close to the surface 

following the shape of the excitation, whereas the effect tends to diminish for greater depths due to 

solid-fluid interaction. 

 

 

 

Fig. 15 Comparison between numerical analysis and analytical solution by de Boer et al. (1993) in terms of 

(a) solid displacements, (b) fluid displacements, (c) pore pressure and (d) solid skeleton stress versus 

time for different depths 
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3.2.5 Step velocity excitation 
Semi–Analytical Solution by Hiremath et al. (1988) – Hiremath et al. (1988) present a 

semi–analytical solution of Biot‟s equations of motion for one-dimensional wave propagation in a 

fluid-saturated linear elastic isotropic medium (soil) using Laplace transformation followed by 

numerical inversion. This study is considered to be an extension of the exact transient solution 

presented by Garg et al. (1974) for two limiting cases of infinitely small and infinitely large viscous 

coupling. In both cases, a soil column offinite dimension (50 cm) subjected to velocity boundary 

conditions at the surface was analyzed, allowing for reflection of waves at the boundaries. 

One of the most important observations, made by both Garg et al. (1974) and Hiremath et al. 

(1988), is that in case of strong viscous coupling (high drag), the material behaves as a single 

continuum with internal dissipation and the two wave fronts tend to become a single one. 

In particular, Hiremath et al. (1988) examined two cases allowing for small and large viscous 

coupling. Moreover, two different types of excitations were applied at the boundary surface in terms 

of solid and fluid velocity. In the first case, a unit step boundary condition was applied at the top 

surface for both solid and fluid phases (to be studied below). In the second case, the fluid velocity 

applied at the boundary is slightly different from the applied solid velocity, and it is increasing 

gradually to unity over a short time scale. The results obtained from the numerical inversion allowed 

for six reflections of the fast compressional wave of first kind and two reflections of the secondary 

slow longitudinal wave. 

Numerical Analysis – Models for two extreme values of viscous coupling: a) large (k = 0.148 × 

10−8 cm3s/g) and b) low (k = 0.148 × 10−2 cm3s/g) are developed and simulated. At the top surface of 

the soil column, a step velocity of 1.0 × 10−2 m/s is applied both to the solid and the fluid phase. 

Only the vertical translational degrees of freedom are free so that no lateral flow or displacement is 

allowed. The base of the model is rigid and impervious. A step excitation introduces all frequencies 

in the model, requiring a very small element size (theoretically, based on Eq. (30), the element size 

should really be infinitely small, in order to accommodate all introduced frequencies). The selected 

finite element mesh consists of 100 u–p–U brick finite elements of dimensions 0.005 m × 0.005 m × 

0.005 m creating a soil column 50 cm high, as suggested by Hiremath et al. (1988). Table 2 shows 

the soil properties used for this model. The solid skeleton is so rigid that the wave of the first kind 

propagates with a velocity close to 3500 m/s according to equation Eq. (33). The required time step 

is estimated by Eq. (31) and is equal to ∆t = 1.4 × 10−6 sec. The selected temporal integration 

involves 1972 steps of ∆t = 5.0 × 10−7 sec. The Newmark set of parameters was selected as γ = 0.6 

and β = 0.3025, introducing numerical damping in the model. 

Figs. 16 and 17 show the comparison between numerical and analytical results for both extreme 

cases of viscous coupling. Overall, the finite element solution reproduces correctly the trends of 

wave propagation in both limiting cases of viscous coupling. In particular, numerical analysis 

demonstrates well that for the case of strong viscous coupling, solid and fluid velocities are in phase 

with each other. 

In order to improve the accuracy of the numerical solution, a finer spatial and temporal 

discretization was used, with ∆h = 0.001 m and ∆t = 2 × 10−7 sec, while Newmark parameters 

remained the same. Fig. 18 depicts the analytical solution versus the numerical results obtained from 

both meshes. Evidently, the finer mesh achieves a greater accuracy, suppresses oscillations, and 

gives a more similar response to the analytical solution, as expected. It is interesting to notice that 

when numerical damping is used, all artificial oscillations are suppressed in case of finer mesh, 

while they persist in case of coarser mesh, as illustrated in Fig. 19. 
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Fig. 16 Comparison between numerical analysis and analytical solution Hiremath et al. (1988) for the case 

of strong viscous coupling (k = 0.148 × 10−8 cm3s/g) in terms of time histories of: (a) solid velocity 

at 10 cm below the surface, (b) solid velocity at 30 cm below the surface, (c) fluid velocity at 10 cm 

below the surface and and (d) fluid velocity at 30 cm below the surface 

 

 

Fig. 17 Comparison between numerical analysis and analytical solution Hiremath et al. (1988) for the case 

of strong viscous coupling (k = 0.148 × 10−2 cm3s/g) in terms of time histories of: (a) solid velocity 

at 10 cm below the surface, (b) solid velocity at 30 cm below the surface, (c) fluid velocity at 10 cm 

below the surface and and (d) fluid velocity at 30 cm below the surface 
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Fig. 18 Analytical solution by Hiremath et al. (1988) versus numerical analysis, for two different 

combinations of spatial/temporal discretization, in case of weak viscous coupling (k = 0.148 × 10−2 

cm3s/g): (a) solid velocity at 10 cm below the surface and (b) fluid velocity at 10 cm below the 

surface, with time. Numerical damping was introduced in the analysis (γ = 0.6 and β = 0.3025) 

 

 

 

Fig. 19 Analytical solution by Hiremath et al. (1988) versus numerical analysis, for two different 

combinations of spatial/temporal discretization and numerical damping, in case of weak viscous 

coupling (k = 0.148 × 10−2 cm3s/g) and in terms of fluid velocity time histories at 10 cm below the 

surface 

 

 

4. Conclusions  
 

A solution verification suite for modeling and simulation of fully coupled behavior of saturated 

porous media, using u-p-U formulation, has been presented in this paper. Analytical solutions for 

both static and dynamic examples have been included in this suite. Detailed comparison between 

numerical and analytical solutions shows close matching, while common numerical discretization 

effects are captured and controlled. In particular, artificially–introduced (by discretization) 
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higher-frequency effects have been observed, as in most numerical simulations. These numerical 

dispersion effects have been investigated focusing on the influence of numerical features such as 

spatial and temporal refinement, as well as numerical damping on the obtained response. It is 

illustrated that the finer meshes better approach the analytical solutions, as expected; however, such 

finer meshes produce even higher frequency (artificial) oscillations. It is also shown that such 

oscillations produced by finer meshes c can be more efficiently damped out numerically than those 

produced by coarser discretization. 

Presented solution verification suite can be used by any modeling and simulation effort that deals 

with the response of fully saturated porous media. In this particular case, presented solution 

verification results provide evidence that the fully coupled models for saturated porous media, from 

the UCD Computational Geomechanics Group numerical libraries, are solved correctly for both 

static and dynamic cases. 

It is important to observe that any numerical method develop to model and simulation behavior 

of solids/structures and fluids needs to be verified (and validated if quality experimental data is 

available). Only after such verification (and validation) process has been successfully completed, a 

method can be claimed to be complete. The main aim of this paper, with presented verification of the 

u-p-U formulation, is to contribute to such approach to numerical modeling and simulations. 
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Appendix A. Finite Element Formulation 

 

Standard finite element discretization (Zienkiewicz and Taylor 1991a,b), using shape functions, 

is used to describe each of the unknown fields (u–p–U ) in terms of nodal values (solid 

displacements, Kiu , pore fluid pressures, Kp and pore fluid displacements, KiU ) 

 Ki
U
KiK

p
KKi

u
Ki UNUPNpuNu      ,                     (35) 

where 
u
KN

,  
p
KN

 and 
U
KN

  are (in this case same) shape functions for solid displacement, pore 

pressure and fluid displacement, respectively. Each node of the (u–p–U) element thus features seven 

degrees of freedoms in three dimensions (three for solid displacements, one for pore fluid pressures, 

and three or pore fluid displacements). It should be noted that it is possible to use same shape 

functions for both displacement and pore pressure unknown field as the u–p–U formulation with 

compressible fluid allows that without volumetric locking. 

By using finite element discretization and after some tensor algebra and manipulations, the weak 

form of governing equations can be obtained from the strong form described by Eqs. (4)-(6) 
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where the left hand side components are 
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while the right hand side are 
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where V  is the volume, and At and Ap  are the domain boundaries with traction and the pore fluid 

pressure defined, respectively. 

It is very important to note that the velocity proportional viscous damping was introduced 

directly through the damping tensor with components  1 KijL
C ,  2 KijL

C and  3 KijL
C , which are 

functions of porosity and permeability of the skeleton. This damping provides for physically based, 

velocity proportional energy dissipation due to interaction of pore fluid and the solid (soil) skeleton. 

It is also emphasized that presented formulation and implementation do not (need to) use Rayleigh 

damping. 

 

 

Appendix B. Time Integration 
 

In order to develop integration of dynamic finite element equation in the time domain, Eq. (36) is 

rewritten in a residual matrix form (Argyris and Mlejnek 1991) 

  
¨

0     R M x Cx K x F x f  (39) 

where  
T

x u , p,U   represent a vector od generalized unknown variables. Eq. (39) represents the 

general non-linear form for which the usual tangent stiffness K is obtained from 
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In the specific case of u–p–U formulation of interest here one can write matrix form 
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where 

   , ,   
ep ep u ep u

K m imjn L n
KijL

V

K N E N dVK  (43) 

The above set of residual (nonlinear) dynamic equations is solved using the Newmark procedure 

(Newmark 1959). This time integration method has two parameters, β and γ, and is described by the 
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following two equations 

 1 2 11

2

   
        

  

n n n n nx x t x t x x   (44) 

  1 11       
n n n nx x t x x   (45) 

which give the relations between the current time step n to the next time step n + 1. The method is 

generally an implicit method, except when both β and γ are zero. If the parameters β and γ satisfy the 

following conditions: 

2)
2

1
(

4

1
,      

2

1
                          (46) 

the time integration method is unconditionally stable. Any γ value greater than 0.5 will introduce 

numerical damping. Well-known members of the Newmark time integration method family include: 

trapezoidal rule or average acceleration method for β = 1/4 and γ = 1/2, linear acceleration method 

for β = 1/6 and γ = 1/2, and (explicit) central difference method for β = 0 and γ = 1/2.  If and only if 

γ = 1/2, it is second order accurate (Hughes 1987). 
 

 

98




