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Abstract.    Paper discusess a dynamic engineering problem of a mass attached to a pendulum sliding along 
a cable. In this problem the pendulum mass and the cable are coupled together in a model described by a 
system of differential algebraic equations (DAE). In the paper we have presented formulation of the system 
of differential equations that models the problem and determination of the initial conditions. The developed 
model is general in a sense of free choice of support location, elastic cable properties, pendulum length and 
inclusion of braking forces. Examples illustrate and validate the model. 
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1. Introduction 
 

Sliding mass problem describes a situation where a mass slides along a cable or a rope. There 
are numerous examples in engineering practice: cable cars, elevators, cranes, various temporary 
structures (e.g., in bridge construction), amusement parks, military applications, etc. After careful 
consideration of the problem it is clear that center of the mass is usually dislocated from the axis of 
the cable. Body can be considered rigid so the coupled system can be modeled as a mass attached 
to a pendulum sliding along the cable. 

At first sliding mass problem resembles moving mass or force problem that authors have 
analyzed before because the resulting system of differential equations could seem similar, see 
Kožar and Torić Malić (2013) and Torić Malić and Kožar (2012). However, there is a substantial 
difference. In the moving mass or force problem dynamic structural equations remain valid and 
only the right hand side changes, i.e. the forcing function takes specific time dependent form. In 
the sliding mass problem there is no equilibrium without the sliding mass, i.e. cable and mass are 
coupled into one system (actually, cable imposes nonlinear constraints onto dynamic equations of 
mass movement). The resulting system of equations describing the interaction between the mass 
and the cable is a differential algebraic system (DAE) of equations (e.g., see Biegler 2000). 

Traditionally, cable problems are usually analyzed using finite elements, e.g., see 
Ibrahimbegovic (1992). Moving mass problem requires special finite elements like the one 
described by Zhou et al. (2004). In that paper the analytical formulation of the sliding mass 
problem is briefly touched as a mean for testing of the special finite element formulation. The 
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problem is briefly touched as a mean for testing of the special finite element formulation. The 

formulation given there is for the inextensible cable with supports on the equal height and in a 

form unsuitable for general differential equation solvers. 

None of the finite element formulations for the mass hanging on a pendulum would realistically 

describe the engineering problem of a sliding body. In this paper we have developed the analytical 

model of a mass attached to a pendulum sliding along the massless rope or cable. Since we would 

like to solve a real engineering problem it is important to take into account cable elastic properties 

(EA). Furthermore, we allow for general placement of supports and addition of various forms of 

braking force. Formulation is suitable for differential equation solvers and equation based 

languages like Modelica (Fritzson 2011). 

Terms „cable‟ and „rope„ are used interchangeably throughout the paper because we would like 

to stress that cable is massless in the model. 

In the paper, first we describe the mathematical model of a sliding mass. Second, we expose on 

determination of initial conditions. After that a mass attached to a sliding pendulum is introduced 

and the required- modifications of the equations are presented. In the sequel relevant examples are 

presented as an illustration and confirmation of the mathematical model. Finally, in the conclusion 

we discuss and summarize the model. 

 

 

2. Sliding mass model 
 

Assumptions for the model: rope/cable is straight, i.e., the self-weight of the cable is neglected. 

This makes model suitable for analysis of light ropes (compared to the weight of the sliding mass) 

and thin steel cables with very small sag. 

We start from the dynamic balance equation of a mass sliding along on the rope. Note that in 

the case of a sliding mass force is constant along the rope (dynamic equilibrium) and in the case of 

a hanging mass forces on the left and on the right of the mass are different (static equilibrium). 

 

 

 
Fig. 1 Sliding mass on the cable and dynamic equilibrium of the sliding mass 
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With nomenclature from Fig. 1 we have 

     (  )      (  )      ̈             (1) 
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where R is resistance force (due to friction, air resistance or braking) and T is cable force. 

This is a system of two second order differential equations with three unknowns: tension force T, 

horizontal position and vertical position f. Angles are easily calculated from geometric relations 
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The third equation is actually an algebraic constraint related to the length of the rope. In the 

case of an inextensible rope/cable we have 

              (3) 

and in the case of an extensible (elastic) rope/cable 

                  (4) 

We now have a system of differential - algebraic equations (DAE). Application of the in-

extensibility conditions leads to a more complicated DAE system of index 3 whose solution is 

sensitive to errors and more important, initial conditions are very difficult to determine because 

additional differential equations with non-physical parameters appear in the system. In this paper 

we are adopting the elastic cable conditions that gives DAE system of index 1. It is more realistic 

and in the limit it can approximate the inextensible cable. An example with more detailed 

explanation of DAE index can be found in Kožar and Ožbolt (2010). 

In order to solve the DAE system it has to be transformed into a system of ordinary differential 

equations (ODE). Two second-order differential equations are transformed into four first-order 

differential equations with the substitution  

  
  

  
  ̇          
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The crucial step is an introduction of the elastic constraint that is written as 

              
  

  
                    (6) 

with EA being the elastic characteristic of the rope/cable and T is cable force. 

After one derivation the elastic constraint becomes the differential equation 

  ̇  
  

 
(  ̇    ̇)                 (7) 

Here we have to express derivatives of rope parts with already defined variables. From 

geometric relations we have 
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          (   )  (   )    

 
   (8) 

After some manipulation it follows 
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In the end we have system of five first-order differential equations 
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This system can be further reduced to four differential equations by substitution of the 

expression for T into the second and the fourth equation. 

 

Note 

Even without that reduction the system can be solved with any differential equation solver, in 

our case with Mathematica (see Mathematica 9 Documentation 2014). The main difference is in 

initial conditions where the system of five equations requires initial force T0. However, T0 has to 

be calculated anyway (see Initial conditions below) as well as T (since it is of interest). In the 

system with five differential equations T is obtained as a part of the result whereas in the four DE 

system it has to be determined from Eq. (6) which requires calculation of L1 and L2 from Eq. (8) 

(otherwise not of direct interest). In the end the difference in calculation effort between the system 

with five and the system with four differential equations is not so pronounced. 

 

 

3. Initial conditions 
 

Determination of initial conditions requires calculation of a0, u0, f0 and v0 (and T0 regardless of 

the system of DE we use). We start with given (assumed) a = a0 and b0 = l - a0 and calculate the 

rest 

         (  )              (11) 

but α1 cannot be determined directly. Instead, we use Eqs. (8) and (6) to obtain 

√      
  √  

  (    )    
   

  
           (12) 

The second initial condition equations is obtained from the equilibrium at time t=0 (see 

Fig.1(b)). At the beginning of the simulation the mass is not moving and vertical acceleration ay=0 

(horizontal acceleration ax ≠ 0 and can be calculated). We have 

        (  )       (  )            (13a) 
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Finally, writing mg=G (mass weight) we get the second initial conditions equation 

    
  

√      
 
   

    

√  
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                  (13b) 

From the system of nonlinear algebraic Eqs. (12) and (13(b)) we get the initial values for f0 and 

T0. There are at most four solutions of the above system of equations with one positive and one 

negative f0 and T0. This can be seen from the graphic representation of the system of equations in 

Fig. 2. 

In Fig. 2(a) the blue line is for Eq. (12) and the red line is for Eq. (13(b)). We see the 

intersections that are present solutions for tension and compression force in the rope. Fig. 2(b) is 

for Eq. (12) for different initial rope lengths L; for shorter L the contour “goes” upward. From Fig. 

2(a) positive f0 and T0 are the solutions of interest (displacement f goes down and rope is in 

tension). From Fig. 2(b). we see that for short initial cable length L there is only one real solution 

to the system of equations. 

Values u and v represent horizontal and vertical mass velocity and initially they are both zero, i.e., 

u0=0 and v0=0. With this initial conditions are completely and uniquely determined. 

 

Note 

In the case of an inextensible rope/cable (EA-> ∞) Eq. (12) is a function only of f0, i.e., instead 

of a system of two nonlinear Eqs. (12) and (13(b)) we have two uncoupled equations. First, Eq. 

(12) is solved for f0 and with f0 known Eq. (13(b)) is solved for T0 or not solved at all if we work 

with the system of four differential equations. One could try this approach even for extensible rope 

assuming that EA is large enough. Indeed, differences in results are negligible but only for rope 

lengths L < √(l
2
+h

2
), i.e., rope does not have any initial tension. For ropes with any initial tension 

initial conditions have to be determined from the system Eqs. (12) and (13(b)) because f0 and T0 

from the uncoupled equations results in divergence of the solution algorithm of the system of 

differential equations. Fig. 2(b) confirms great sensitivity of Eq. (12) to the rope length L. 

 
 

  
(a)  (b)  

Fig. 2 (a) Solution domain of the system of Eqs. (12) and (13(b)), (b) dependance of Eq. (12) on the 

rope length L 
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4. Addition of pendulum 
 

In practice it is rare that we analyze mass sliding along a rope/cable, it is usually a rigid object 

eccentrically attached to the rope/cable. Considering practical application one can conclude that 

the attached object can best be described as a pendulum. In the sequel we will replace the sliding 

mass with a sliding pendulum and obtain a realistic description of a practical situation where a 

realistic object is sliding along a rope/cable. 

In Fig. 3 we see the change from Fig. 1, it is only a pendulum that is added to the system. Only 

one additional unknown is required: pendulum angle θ. 

Mass position has changed and Eq. (1) have to be adapted accordingly. New mass center is now 

          ( )            ( )           (14) 

where LP is pendulum length and θ is pendulum position (angle). Derivative of those two 

coordinates is required in Eq. (1)  
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where „a‟ and „f‟ are from Fig.1. 

Replacement of „a‟ and „f‟ with „aP‟ and „fP‟ results in additional terms that depend only on LP 

and θ. Modified Eq. (10) are now 
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Fig. 3 Coordinates describing pendulum sliding along the rope/cable 
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In the above equations the expression for rope tension „T‟ has been substituted at the 

appropriate places and thus removed from this system of nonlinear differential equations. 

Additional unknown θ requires an additional equation 

   ̈    ̈    ( )    ̈    ( )      ( )            (17) 

which is actually an angular balance equation. The right hand side represents rotating moment due 

to mass weight and due to accelerations in the direction of coordinates „a‟ and „f‟. 

Introducing θ‟ = p and using similar expressions for a‟ and f‟ we have the required differential 

equation for θ 

 ̇  
 ̇    ( )
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2  
 
     ( )

2  
           (18) 

that is nonlinear as the other equations in the system. 

 
 
5. Initial conditions with pendulum 

 

Initial conditions for „a‟ and „f‟ do not change with the presence of pendulum, Eq. (13) remain 

valid. Initial condition for θ0 can be chosen at will (initial angle of the pendulum) and always p0=0 

(initial angular velocity of the pendulum). 

 

 

6. Examples 
 

6.1 Examples of sliding mass 
 

There are two examples differing only in cable length, one with cable longer and the other with 

cable shorter than the straight line between the supports (603.0 m). Note: unlike the shorter one, 

the longer one can also be approximately solved using the inextensible cable theory. 

Geometric properties of the cable (distances between supports) correspond to a real engineering 

structure in adrenalin park in Croatia and are:  

l = 600.0 m   

h = 60.0 m 

and material properties (assuming Φ12 mm 6 x 19 steel IWRC cable) are 

L = 603.2 m and L = 602.8 m    

EA = 6. E6 N, 

and mass m = 150.0 kg. 

Graphical presentation of the initial conditions solution in Fig. 4 demonstrates that for the long 

cable both tension and compression are possible as initial cable force (of course, only the tension 

force is physically admissible). For short cable only tension is possible since cable has to be 

tensioned first to be placed in the position. 

Total analysis time t=60.0 seconds in which time mass reaches the end of the cable and reflects 

back. In reality nobody would like reflecting back from the support but it is useful for the model 

stability analysis to trace the solution that far. Neither damping nor braking forces are considered 

in those examples. 
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(a) longer cables (b) shorter cables 

Fig. 4 Initial conditions for all examples 

 

 

 
(a) longer cable 

 
(b) shorter cable 

Fig. 5 Solutions in time 
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Fig. 5 shows solutions for velocities da/dt, vertical displacements „f‟ and cable forces „T‟ for 

longer and shorter cable respectively. 

Comparison of results from Fig. 5 indicates that higher tension cable (shorter cable) has always 

somewhat smaller vertical displacement and in the reflecting phase slightly smaller forces. It is 

interesting to observe shorter travel time for longer cable that is result of larger speed (127 km/h vs. 

125 km/h). Higher speed results from larger deflection in longer cable which allows for greater 

contribution of gravity. 

We could also plot displacements „a‟ and „f‟ against each other to trace the mass path, see Fig. 

6 We see that in the first phase of the sliding mass path along the cable is half of an inclined 

ellipse and that ellipse is flatter for higher tension (shorter cable). 

From Fig. 6 it is evident why there are oscillations in the reflecting phase. At the reflection 

mass circles around the support and starts returning from above and after some time due to gravity 

mass falls down again. That has started oscillations that persist (since there is no damping in the 

model). Numerical experiments revealed that high tension in the cable reduces the oscillations 

considerably (the ellipse is flatter and at reflection the mass circles with smaller radius around the 

support). 

 

 

 
(a) longer cable 

 
(b) shorter cable 

Fig. 6 Mass path in time 
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6.2 Examples of sliding pendulum 
 

Geometric and material properties are the same as in the above examples, only the pendulum is 

added, with length LP = 1.0 m (approximately man hanging from the rope). 

Solutions are presented in Fig. 7 where we see similarity in the first phase of analysis and more 

pronounced oscillations after reflecting. Additional numerical experiments confirmed that in the 

case of smaller LP differences diminish approaching the solution without the pendulum. 

In Fig. 7 two points are traced in time: position on cable where pendulum is attached (here 

would mass be if there was no pendulum) and tip of the pendulum (center of the mass). Maximum 

possible difference between the lines is the pendulum length LP. It is interesting to note that the 

point on the cable (red) oscillates more then the mass on the pendulum (blue) which moves more 

smoothly. 

 

 

 
(a) longer cable 

 
(b) shorter cable 

Fig. 7 Solutions in time with pendulum 
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(a) longer cable 

 
(b) shorter cable 

Fig. 8 Mass path in time, position on the cable (dashed red) and pendulum mass (solid blue) 

 

 

From Fig. 8 we see that the circling of the mass at reflection is almost completely dominated by 

the pendulum length LP. Additional numerical experiments revealed that even very high tension 

does not influence the cable behavior significantly. 

Pendulum angle θ is another interesting result from this model and is presented in Fig. 9. In the 

first phase of analysis (prior to reflecting) the pendulum is only swinging back and forth, 

approximately from -0.7 rad to 0.4 rad. After reflecting and circling about the support it continues 

to make full circles, back and forth on the longer cable and only in one direction (multiple circles) 

on shorter cable. We have to recall that there is neither damping nor braking in this example. 
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(a) longer cable 

 
(b) shorter cable 

Fig.9. Pendulum angle in time 

 

 

7. Conclusions 
 

It has been shown that in the case of a sliding mass, cable and mass are coupled system where 

cable imposes constraints onto the dynamic equations of mass movement. The resulting model is 

described with a system of differential algebraic equations (DAE) of index 3 in the case of an 

inextensible cable. DAE of index 3 is difficult and tedious to solve. This paper analyzes a more 

general case of an extensible cable. It turns out that an elastic constraint imposed in this case has 

an additional benefit that the resulting DAE is of index 1. Thus a more general case has a simpler 

solution. Addition of cable elastic properties even allowed us to remove that additional unknown 

from the system of equations. In the end there is no significant difference in the computational 

effort whether the additional equation is removed from the system or not. In both cases initial 

conditions are determined by solving a system of two nonlinear algebraic equations. 

In case of a sliding body it is more realistic to analyze a mass attached to a pendulum then only 

a mass sliding along a cable. Mathematical model of sliding mass has been extended to 
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accommodate the sliding pendulum. 

Validity of the adopted approach is demonstrated through examples with and without the 

pendulum and with longer (softer) and shorter (stiffer) cable. In the case of sliding mass difference 

in cable stiffness (determined by cable length) influences the solution significantly. In the case 

with pendulum it has been demonstrated that its length is the key parameter of the solution. 

Also, the three dimensional version of the model is under development. 
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Appendix 

 

 

Notation 

 

l horizontal distance between cable supports („span‟) 

h vertical distance between cable supports 

L cable length 

LP pendulum length 

EA cable elastic properties (modulus of elasticity * cable cross section area) 

m  mass of the sliding body 

a horizontal position of mass or pendulum attachment 

f vertical position of mass or pendulum attachment 

aP horizontal position of the center of the mass attached to the pendulum 

fP vertical position of the center of the mass attached to the pendulum 

L1 cable length left of the mass or pendulum attachment 

L2 cable length right of the mass or pendulum attachment 

T  tension in the cable 

θ  angle of the pendulum 
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