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Abstract. This article discusses the dynamic response of Bernoulli-Euler straight beam with angular elastic
supports subjected to moving load with variable velocity. A new engineering approach for determination of
the dynamic effect from the moving load on the stressed and strained state of the beam has been developed.
A dynamic coefficient, a ratio of the dynamic to the static deflection of the beam, has been defined on the
base of an infinite geometrical absolutely summable series. Generalization of the R. Willis’ equation has
been carried out: generalized boundary conditions have been introduced; the generalized elastic curve’s
equation on the base of infinite trigonometric series method has been obtained; the forces of inertia from
normal and Coriolis accelerations and reduced beam mass have been taken into account. The influence of
the boundary conditions and kinematic characteristics of the moving load on the dynamic coefficient has
been investigated. As a result, the dynamic stressed and strained state has been obtained as a multiplication
of the static one with the dynamic coefficient. The developed approach has been compared with a finite
element one for a concrete engineering case and thus its authenticity has been proved.

Keywords: Bernoulli-Euler beam; moving load; dynamic stress; dynamic deflection; elastic supports; FE
analysis

1. Introduction

The load moving on a beam causes bending vibrations and as a result of which bigger stresses
arise in the beam in comparison with the case of static action of the same load. Vibrations of this
kind are found in many engineering objects, such as bridges, railroad rails, the principal beams of
bridge cranes, etc. The occurrence of this engineering problem is connected with the construction
and exploitation of railroad installations. The first mathematical model of the elastic curve of
Bernoulli — Euler beam, subjected to a load, moving with a constant horizontal velocity v, is
obtained by Willis (1849) for the case of freely supported beam. The beam mass has been
neglected and the system ‘“beam-moving load” is modeled to such with one degree of freedom,
having a constant mass and changeable elasticity.

The opposite model of behaviour of the elastic curve of a freely supported beam under the
influence of a moving load with a constant velocity is when its mass is neglected, respectively
only the distributed beam mass is taken into account. An analytical solution of this problem is
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obtained by Krilov (1905) for the case of a force, constant in magnitude. An analytical solution for
the case of a harmonic exciting force is proposed by Timoshenko (1922). Based on that,
Timoshenko (1972) suggests an approximated solution to the problem, when the mass of the
moving load is accounted too: initially the task with the beam’s forced vibrations under the
influence of a constant force, equal to the beam’s weight and moving with a constant velocity, is
solved; based on the obtained displacements of the points from the beam elastic curve, an
expression is composed for the load’s force of inertia, which is added to the static weight. However,
such analytical approach is not applicable to beams with other boundary conditions.

Afterwards, three fundamental works devoted to this problem have been published: by Inglis
(1934), Hillerborg (1951) proposed an analytical solution through Fourier’s method of simple
supported beams; by Friba (1999).

During the last few decades many solutions have been made for beam models, subjected to a
moving load, in different engineering applications: beam on elastic foundation — linear-elastic
foundation (Kien and Ha 2011, Chonan 1978, Amiri and Onyango 2010, Awodola 2007),
viscoelastic foundation (Zehsaz et al. 2009, Sun and Luo 2008, Khorramabadi and Nezamabadi
2012), nonlinear elastic foundation (Ding et al. 2012, Hryniewicz 2011), elastic foundation,
modeled through springs with different stiffness (Thambiratnam and Zhuge 1996); freely
supported beam (Yang ef al. 1997, Nikkhoo and Amankhani 2012, Michaltos 2002, Michaltos et al.
1996); inclined beam (Wu 2005); complex beam (Yau 2004); continuous beam (Save and Prager
1963, Zheng et al. 1998, Kerr 1972); beam on elastic supports (Mehril et al. 2009; Piccardo and
Tubino 2012); beam with generalized boundary conditions (Hilal and Mohsen 2000); contilever
beam (Lin and Chang 20006). In view of the model of stressed and strained state, Bernoulli — Euler
beams prevail (Xia et al. 2006, Hilal and Zibden 2000, Javanmard et al. 2013, Liu et al. 2013)
over beams of Timoshenko (Azam ef al. 2013, Chonan 1975).

The analytical approach for solution prevails over the finite element one (Lin and Trethewey
1990, Lin and Trethewey 1993). Some of the models refer to previously stressed through axial
compressive load beams (Omolofe 2013, Zibden and Rackwitz 1995).

The models in which the mass of the moving load is not accounted are prevailing. The effect of
inertia from the passing load is numerically obtained by Yang et al. (1997) through Newmark- S

method, and is afterwards included in the force function of the load. In (Michaltos 2002) are
accounted the mass and the moment of inertia of the moving load, which is moving with constant
horizontal acceleration, as well as the effect of inertia from the rotation of the beam’s sections.
However, the effect of inertia from the load mass directly on the beam transverse vibrations is not
accounted, but only through the weight force and the force of inertia from the horizontal
acceleration of the load.

In the majority of publications the case of the load’s constant velocity is examined. A study of
the influence of the acceleration has been made by Michaltos (2002) and Hilal and Mohsen (2000).
The models with constant magnitude of the moving load are prevailing. In (Hilal and Mohsen
2000) a model with moving force, altering by magnitude by a harmonic law has been made. In
(Awodola 2007) the moving force changes exponentially by magnitude and a numerical approach
is applied — the finite difference method. In some of the models a dynamic absorber moving on the
beam’s axis has been implemented (Samani and Pellicano 2009, Soares ef al. 2010).

Models of more complicated objects have been made — a bridge system, examined in a
resonance state by Xia ef al. (2006), and a vehicle model by Esmailzadeh and Jalili (2003).
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It is noteworthy that the models of two-supported beams mainly refer to a freely supported
beam, which has a logical explanation: for this case the frequency equation is most simple and
therefore the general solution in infinite sums can be obtained (Timoshenko 1972).

In the engineering practice the technical solutions for fixture of the ends of a beam, subjected to
bending, lead to a model with elastic angular supports. These supports restrict the rotations of the
end cross-sections for beam bending, depending on the stiffness of the supports. For instance, in
some constructional solutions the principal beam of a bridge crane is connected in both its ends for
the vertical internal faces of the front beams through plates and coupling flanges with fitted bolt
connections. The elasticity of the angular supports in a vertical plane is a function of the front
beams torsion stiffness. In terms only of bending, the beam is double statically indeterminate:
hyperstatic quantities are the elastic moments in the two additional angular supports.

The researchers’ efforts are directed towards modeling the beam transverse vibrations under the
influence of a passing load and the emphasis is placed on examining the mathematical model’s
behaviour. This approach has its irreplaceable advantages, for example in studying the resonance
states of work, beams on elastic foundation, etc. Simultaneously the obtained solutions are
complicated enough, so as for the final consumer, i.e., the engineer, not to need computing
machinery and corresponding software. The finite element solutions have all the advantages and
disadvantages of the numerical ones. For the engineer in many cases of two-supported beams a
more simple formula is necessary, which would offer a solution in first approximation. In this
aspect, a possible approach for solution is a generalization of R. Willis equation. A few arguments
exist in favor of this idea.

¢ In the engineering applications the elastic curve of a two-supported beam corresponds to its
basic eigentone under free vibrations, and the presumption is that the working regime is outside
the resonance. Therefore it is advisable for the R.Willis approach to be applied for obtaining the
dynamic deflection;

o The practice shows that the bending stresses in a two-supported beam are biggest when the
load is equally distant from both supports. In the model could be included the beam’s reduced
mass for this position of the load;

e Due to the bending of the beam, the load moves on a curve, because of which in the model
could be included the force of inertia not only from the transverse displacements, but also from the
normal and Coriolis accelerations. The latter arises due to the rotations of the beam’s sections.
Moreover, the angle between the vectors of the transfer angular velocity and the load’s relative

velocity is 90" ;

e In addition, this approach allows easier investigation of the effect of the load’s horizontal
acceleration.

The main aim of the article is through an engineering approach to obtain a simplified
mathematical model of the dynamic effect, caused by load motion on two-supported
Bernoulli — Euler beam with elastic angular supports.

2. Willis’ formulation

A simple beam with length ¢ and bending stiffness EJ is considered. A load with weight
©Q moves on the beam with constant velocity v. The beam mass is ignored. The beam deflection

w under the load is proportional to the pressure P which the load exerts on the beam
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where

2
P=Q ]—v—w"(x) ,
g
x and (¢-x) are distances from the load to the beam supports; g is the acceleration of gravity.

Eq. (1) has first been obtained by Willis (1849) with the presumption for: constant horizontal
load velocity; massless beam; load’s force of inertia, caused only by the beam vertical
displacements. A full solution of (1), initially in the form of series, and later in closed form, is
obtained by Stokes (1849). A numerical approach for solution of (1), based on the method of
Runge, is first applied by Petrov (1903). Information for the history of the problem and detailed
data for approximated solutions are given by Clebsch (1883).

3. Generalization of the R. Willis equation

The dynamic deflection w(x,7) of the beam’s elastic curve (Fig. 1) under the load is presented
as

wlx, 1) = Ple)y(x) 2

where y(x) is deflection under the influence of a force with magnitude equal to 1, and P(f) is

equivalent dynamic load. The latter includes: normal reaction from the load towards the beam,;
force of inertia from the reduced mass of the beam

_Greg 7 w(x,)
g o
and a force from the reduced weight G, of the beam.
The normal reaction from the load towards the beam is a sum of: the static weight Q of the
load; force of inertia from vertical displacement (deflection) of the beam

C C,
0, <
7 X
x(t)
il /g »
W Ll
\/

Fig. 1 Model of the beam elastic curve with moving load
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force of inertia from the normal acceleration a,, due to the load motion on a curve line (the

nor

curvature is negative for the adopted coordinate system depicted in Fig. 1)

0 oV’ 62w(x,t)
_anor = __—2
g g Ox
force of inertia from the Coriolis acceleration of the load due to a rotation of the beam

cross-sections

2
5 00 w(x,t)v
g Oxot
For the dynamic deflection w(x,z) follows
(0+G, ) *w(x,t) OV w(xt) QO *wx1)
1)= Grea )— = — = -2 3
W('x t) |:(Q+ red) g 812 g axg g oxot v y(X) ( )
Let us consider v=v(¢). Then after switching the order of differentiation
*w ofowax) o owl| . Ow *wox 0w 0w
GW_9I A2V = ()Y WA ()2 aw 4
o Gt( ot axj ot [V(t) ax} gy g 5 =105 0 o2 @
On the other hand
*w(x,t) o [Gw GxJ o’w
== =) 5
e I 2
After substitution of (4) and (5) in (3)
2 A2 .
w(x, I) _ |:(Q + Gred )_ (4Q + Gred )V 0 W(;C’t) _ (Q+ Gred )V(t) aw(x’t) y(x) (6)
g ox g Oox

Eq. (6) is a generalization of the R. Willis equation.

4. Nature of the engineering approach

We introduce the notion “dynamic coefficient” k,, which shows how many times the static
load on the beam is increased due to the load motion

_ w(x,t)
b= (7)

where w(x) is the beam deflection from the static load Q+G,,,

wW(x)=(0+Ge ¥(x) (8)
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After substitution of (6) and (8) in (7)

ioo | Q4G Pwlx) | ile) owlx,1)
- (Q + Gred )g Ox ? g Ox

Eq. (9) is presented as
kd =]+ ay

where

T’ g Ox

o - _{C(t\azw(x,z) ) aw(x,t)}

0+G, V1
- (4(Q n Gred);g( !

The determination of %, is conducted through consecutive approximations
o In the approximation is set

P(I)(t) = Q + Gred
whence

wll )(x,t) =(0+ G V()

and after substitution in (11)
) == )+ Wyor6.)
g

For the dynamic coefficient it follows
kgl) =l+a

where O<a <.
e In the second iteration is set

PO =k +Gy)

It is found
o =i+ Ly ) o6,

or

For k,gz ) follows

€)

(10)

(1

(12)
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kgz):]+a((f):1+0¢k§1):1+a(1+a):1+a+a2

e In the third iteration is set
PO =kN0+G.)

whence

or
a((f) =ak£,2) = a(]+a+a2)

For &) follows

) =1+a+a’ +a’

e In the n—th iteration
K =lvava’ +ad +..+a"

Since always 0<a <1, then k,; is presented as an infinite geometrical absolutely summable
series. For k, follows

ky = lim k&) :]_L (13)
where
a:{c(r)y"(x)%y'(x)}(mG,.ed) (14)

5. Application of trigonometric series method for modeling the beam elastic curve
5.1 Generalized model of the beam elastic curve

The trigonometric series method for investigation of beams and plates bending is developed by
Timoshenko (1972). The expression for the deflection of the beam elastic curve can always be
presented in the form of infinite trigonometric series.

Timoshenko (1972) examines in detail the cases of Bernoulli-Euler beam for two cases: (i) —
freely supported beam; (ii) — restrained beam, for which he draws approximated formulas for the
deflection of the beam’s symmetry section for particular cases of loading.

If it is accepted that the solutions, based on integration of the differential equation of the beam
elastic curve are accurate from a mathematical point of view, then the method of series is
approximate since after taking a finite number of series members, the physical equivalent is an
exchange of an elastic system with infinite degrees of freedom with an elastic system with finite
degrees of freedom.

Such approximation of the exact behaviour of the elastic curve could be useful from an
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engineering point of view for the case of Bernoulli-Euler two-supported beam with elastic angular
supports.

A straight beam is studied with elastic angular supports and stiffness c,, restricting the

0>
rotations of the end cross-sections bending. The beam elastic curve lies in the xw plane (Fig. 1).
The deflection w(x) needs to satisfy the conditions w(0)=w(¢)=0, but w(0)=0, w(¢)=0,
w'(0)=0, w'(¢)=0, in which between w/(0) and w'(0), respectively w/(¢) and w'(¢), a
correlation exists: of a concrete angle of the beam end cross-section rotation exists a specifically
set elastic bending moment. The general expression for the deflection w(x) of the elastic curve is

presented in the form

w(x) = An(] —cos 2n
n=1,35...

X R nmnx
+ B, sin— 15
Jr X B (15)
Each of the functions under the sums obviously satisfies the first group of boundary conditions:
w(0)=w(¢)=0

The derivatives to second order of (15) are

n=o00 n=o00
, 27 . 2nmx T nm
w :7 nA, sin 7 +? nB, COST
n=1,3,5,... n=1,35,...
n=oo n=w
, 4’ 2 nme 7l P . N
w'=— n“A, cos -— n“B, sin—
2 n ¢ 2 n ¢
n=1,35,... n=1,3,5,...

The dependence between the 4, coefficients on one side, and the B, coefficients on the
other, is found through the second group of boundary conditions

iy 0) =220 i ()= -2 (16)

The end cross-sections rotations, dependences (16), cause elastic bending moments
M(0)=—Esw;(0); M(¢)=—EJwi(¢) (17)

where EJ is beam bending stiffness and

2_2 2_2
w(0)=22 4 ()= (18)

The elastic moments are defined as

M(0)=c,w, (0); M(¢)=c,wi(0) (19)

After substitution of (16)-(18) in (19), taking into account that M(0) and M(¢) are opposite

and solving toward B,
knrx

B,=—4 20
n 4 n ( )
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where
16EJ
k= 21
Zc(p
In view of (20), the deflection and its derivatives to second order obtain the form
S nm) kr O . N
w(x)= A,| 1-cos +— Z nA, sin— (22)
/ 4 l
n=1,35,.. n=1,3,5,...
A N nme kit O 2 nmx
w="= nA_ sin——+—— n“A, cos— 23
T D rAysin TR Ty, cos ™ (23)
n=13,5 n=13,5,..
2 n=00 3 N=00
w’ :4L2 n’ 4, cos Inm —kLZ nA, sin22 (24)
n=1,3,5,... Z 4 n=1,3,5

The unknown 4, coefficients could for example be determined through the principle of
virtual displacements for equilibrium state of a previously set load.

5.2 Defining the function y = y(x)

According to Eq. (2), if P(¢)=1, then y(x)=w(x). Let a bending force P=1, ata & distance
from the left end, act on the beam. The 4, coefficients are defined by the expression for virtual
work

oU
—— 04, = Pow 25
o4 n P ( )

where
U=U,+U, (26)
is potential energy of the elastic system, U, is potential energy due to the beam bending, U, is

potential energy of the elastic angular supports, d4, is an increase of the 4, coefficient, and Swp

is a virtual displacement of the applied point of the force P.
Forthe U, and U, components (from both supports), it follows

L

_EJ [ a2 _ EJr’ N v N (24, 7K 6,
Ub_TIW (x}ix— £3 [4 Zn An‘i‘k Z En +6—4n An (27)

0 n=1,3,5,... n=13,5,...
Krt O
_ 12 _ 4 42
Us=c,w (0)—c,p —1652 ’1_;57 A,
or, if (21) is taken into account
4 n=00
U, - E‘;’Z” > s} (28)

n=1,3,5,...
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For an increase &4, of the coefficient 4,, the increase of the potential energy U is

4 2,2
OU 54, =27 | gt 2 2 K0 4 s, (29)
04, ‘5 3 4
The virtual displacement éw, for &4, increase is
Swp = A, Kl —cos 2”;‘5] + nl:r sin nzﬁ} (30)

After substitution of (29) and (30) in (25), for the 4, coefficients is obtained

P€3(1 —cos 2n€7r§ + nkz sin nmfj

4,= + ! 31)

212 6
2EI ant 1+ 2t 4+ T
3 64

After substitution of (31) in Egs. (22) — (24) and setting P =1, for the function y=y(x) and
its derivatives to second order is obtained

2nné  nkr . naé

3 n=n 1—COS + sin
y(x)= . 3 : 42 2 ‘ (1_C052”mj+
2E]x n=1,3,5,... 4}’14 + ékn4 + iné k !
3 6 (32)
2
3 n=o 1—cCOS nze | mkx sin n7o
N 0k 4 14 sin e
8EJ7Z-3,1:135 4n3+§k3+72'2k2 5 /
64
= 1-cos nre , nkz mn nre 2
)=t L4t gy ";x+
EJn” | 451 4n3+§k3+ﬁk °
64 (33)
2nné  nkx . naé
2 n=x |—cos sin
. 0’k I 4 L cos M™%
2 22
8L/ n=135 an* + 2k + " !
64
n=© ]—cos nﬂé: ko n n”é:
V()= 2/ 14 4 £ cos 2nm
= 5 2,2 B
EJn” | 4 4n2+§k2+ﬁk ! !
64 (34)
2nxé  nkr . naé




A new approach to modeling the dynamic response of Bernoulli-Euler beam under moving load 257

6. Dynamic coefficient study
The most unfavorable loading of the beam is obtained when the load is situated in the beam’s
middle. Moreover the most essential contribution in the sums of Eqs. (32) — (34) have the first

members. After substitution of & :é and n=1, Egs. (32) — (34) get the following form

3
y(x): ié{]]fzk“)(l —cos2—+k7ﬂ-sm—J (35)
2
(x)= %@(sin%zx + %cos%) (36)
p/4
()2 21 K)o 2 _r 7 37
(x)= Tin? cos J 5" J 37
where
2+ﬁ
4

k)=—— 4
filk) Sk 7k’
4+—+

3 64

6.1 The load moves with constant velocity
The study is carried out for the position of the load, when it is in the beam’s middle. Then, after

substitution of x :g in (37)
/ 20
L P k 38
5] ) (39)
where
384+ 727k + 37k’

k)= .
) 768 + 320k + 37°k2

The function f,(k) is a generalization of the beam boundary conditions. For a restrained beam

(k=0): f,(k)= é For freely supported beam (k — 0 ): f,(k)=1.
Taking into account (12) and (38), equation (14) gets the following form
240+G, W ¢
a= = k
W)

(39)

and the dynamic coefficient (13) is
1

k, =
2(4Q+G d)V2 Y4

1- re k

g EJr’ f2( )
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where
Gred = ﬁ redG s

144+ 128k + 37°K°
384+ 967k + 677k

2
1] )
ﬂred - f,{[ y(x)x:£ dx
2

is a reduction coefficient of the beam weight, and G is the beam weight.
Obviously S, non-linearly depends on &, respectively on the stiffness of the angular
. . . 3
connections. For a restrained beam (£ —0): ming,,, = e For a freely supported beam (£ — «):
max f,,4 = é Apparently the way of restriction of the end cross-sections’ rotations does not

essentially affect the reduced weight.

13 : : : 3 3 13 : : . =
I-k=0; 2-k=25 I-L=5m; 2-L=10m j
128 3—k=5 4-k=10 | oo oo 1 1281 3 L=15m; 4—L=20m[ "\ PN
& || k=156-k=25 9 g S5—L=25m; 6-L=30m| | ‘
S "7-k=50;8-k=100 R ; ; — NNV
= £
Siasfl9—k oo Sqasll J=00022m*| i 3 N/ A
Q . . o
£ = 4 €
§ qal|/=00022m’| 3 E .
s [=20m ‘ s,
[a) ; : [a] : :
1.05{{ O=50 kN gl X p R [0 )] Muuu— [ L\
1 H = : : : ] g : - '
0 5 10 15 20 25 30 o 5 10 15 20 25 30
Velocity v, m/s Velocity v, m/s
a. b.
15 : : : : : 1.25 : ‘ ; ; ;
1-J=0.001m*; 2—J=0.002m" | / 1-0=060kN; 2-0=50kN | P
14H3 -0 =0.003m"; 4—J=0.004 m" |- Nf. i _ 12{{3mQ=A0KN; 40 =30kN i
& |[s-7=0005m*; 6-7=0006m* 3 |UZQ=20MN 6-0=10KN
£ 7—J=0.007m*; 8—J=0.008 m* £115H; =g e e
o T T T T o
© ‘ ‘ ‘ ‘ ° 1=20m
Q o ;
= € L1MJ=0.0022m [~ K ot
o g : |
& &

10

Velocity v, m/s 0 .
Velocity v, m/s
C. d.

Fig. 2 Dependence of the dynamic coefficient o on the load velocity
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Fig. 2 shows the dependence of the dynamic coefficient %, from the load’s velocity.
Obviously, at high velocities, k, increases significantly. The stiffness of the elastic angular
supports influences substantially on &, - for instance, at v=30m/s, k,increases with almost

25% for freely supported beam, in comparison with the case of ideally fixed beam (Fig. 2(a)).
With the augmentation of the beam length, all other conditions being equal, &, increases (Fig.

2(b)), and this tendency is more significant at high velocities. With the decrease of the beam
bending stiffness, k, increases significantly (Fig. 2(c)). The unlimited augmentation of the

bending stiffness through an increase of the moment of inertia J leads to a — 0, and from there
to k; — 1 on the right. The increment of the force O, at constant other parameters, leads to an

increase of &, (Fig. 2(d)).

6.2 Influence of the acceleration on the dynamic coefficient

Dependence (14) could be presented as

a=a,+a,
where
2
a, =- (4Q +Grea )V y"(x) (40)
g
a, Z‘WW) @1

are components, accounting the influence, respectively of the load’s velocity and acceleration on
the dynamic coefficient.
As seen from the comparison between (36) and (37), the extremums of y'(x) and y"(x) have

different phases: in the section of symmetry, where the deflection is biggest and the component
«, has extremum (maximum), and the component ¢, becomes 0.

Fig. 3 displays the dependence of the coefficient ¢ and its components «, and ¢, in a

function of the x-coordinate, accounting the position of the load, when the velocity and
acceleration are equal to 1. The maximum value of « is shifted from the section of symmetry

towards the increase of x and it occurs for ngf. If a negative acceleration (a=-1) was
accepted, «, changes its sign, and the maximum value of « stays the same, but is in section
with abscissa x = %f . The acceleration itself influences the dynamic coefficient to the same degree,

as the velocity does. However, that influence of the acceleration does not refer to the section of
symmetry of the beam, i.e., to the critical section. Depending on the law for the load motion, it is
theoretically possible to prove that it is not the section of symmetry of the beam that is critical.

A practical significance has the case, when a = const , i.e.

v=y,+at
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x 1077
E=2x10" Pa
J =0.0022 m?
L=20m

0 =50000 N
G = 20000 N
k=4

i i
0 5 10 15 20
X, m

Fig. 3 Dependence of the coefficient o and its components ¢, and ¢, in a function of the x-coordinate

] 2 3
0.012, —
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0.01 { J=0.0022m*
s L=20m
2 0.008} O=50000N
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R 0.006) 1 _ 4 b
S k=4
=
< 0.004 {------------- : N B, W
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Fig. 4 A comparison between the static and dynamic deflections for different kinematic parameters v, and

a for load motion

where v, is the velocity of the load for x = 0. The transformation

jvdv = a]ﬁ dx
0 0
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is advisable, whence

v=+2ax+ v,f (42)

From (2), (7) and (8) for the dynamic deflection follows

w(x,1)=——(0+ G, y(x) (43)

I-«a
where the component «, of a (look dependence(40)), taking into account (42), gets the
following form

(40 + Gog N2ax +2 (%)
g

v

Fig. 4 shows a comparison between the static and dynamic deflections, dependences (8) and
(43), for different kinematic parameters v, and a for load motion. The section of symmetry of

the beam is critical, and the dynamic effect from load motion in comparison with the static
deflection is under 10%.

7. Comparison with a finite element solution

The matter of beam vibration with elastic angular supports under the influence of a moving on
it load does not have a full analytical solution, since the equation, from which the natural
frequencies are defined, is transcendental and could only be solved numerically. For that reason,
the comparison is carried out with a finite element (FE) solution. The numerical input data are the
following: beam length ¢ =20m, the beam cross-section is box with overall sizes 0.3x0.6 m

and with walls thickness, respectively 0.0lm and 0.02m; Young’s modulus E=2x10" Pa,
density p=7850kg/m’ ; the stiffness of the angular supports is ¢,y =2.6046x10" Nm/ rad ,

respectively & =8 ; weight and constant velocity of the moving load, respectively O =50kN and

v=20m/s .

Dynamic implicit analysis using ABAQUS/Standard has been fulfilled. The general direct
integration method, called the Hilber-Hughes-Taylor operator has been used. The principal
advantage of this operator is that it is unconditionally stable for linear systems.

The governing equation of the FE method can be written as

[ JGie )+ [C ol + K ol )y = (P} (44)

where [M], [C] and [K] are the mass, damping and stiffness matrix respectively; {i}, {i}
and {w} denote acceleration, velocity and displacement vectors; {P(t)} is the vector of the
external nodal forces. The latter is defined as

[P =[0 Po(e) B(0)... B(t)... By (e) o

where ¢ is the real time; i=1,2,...,N; N is the number of the beam FEs, having identical
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lengths; Pi(t):O when te<0, f(i—2)> and te<ﬁ,£>, B(t);to when te(M,ﬁj,
N Nv v Nv Ny

max P, = P(t)L:M .
Nv

Thus, when N — o0, a lightly passing of the force P on the beam is assured. Taking into
account the mass of the passing load, [M] is a variable matrix. In order to alleviate the finite
element analysis and given the specificity of ABAQUS/Standard, in stead of simulating a variable
mass of the system “beam — moving load”, it is accepted for [M] to be a constant matrix, and the
load’s mass is placed in the middle of the beam. Then

max P, = P(t] Wi-1) =0

=
Nv

The FE model consists of 2000 linear line FEs type B21. In order to make an accurate
comparison with the analytical solution, the damping has not been included in the FE solution.

For a critical point of the section of symmetry is obtained a normal stress maxo? = 44.065MPa .

For a static loading in the section of symmetry with force P=Q in the same point, the normal

d
max oy

stress is max o, =40.23MPa . The dynamic coefficient is k, = =1.095.

N
max o,

With the same numerical values with which a finite element solution has been made, the
dynamic coefficient (13) has been calculated, where « is defined by (39). It is obtained
k; =1.1367. As could be expected, the dynamic coefficient, computed with the proposed method,

is slightly bigger, since the forces of inertia from the normal and Coriolis accelerations from load
motion, have been accounted.

8. Conclusions

A new engineering approach has been developed for determination of the dynamic effect from
a passing load on the stressed state of two-supported Bernoulli-Euler beam with elastic angular
supports. A dynamic coefficient has been defined as a ratio of the dynamic deflection toward the
static one. A generalization of the R.Willis equation has been made. Generalized boundary
conditions have been established for this purpose. The forces of inertia of the normal and Coriolis’
accelerations of the load have been accounted, as well as the beam mass. It has been studied the
influence of the boundary conditions and the kinematic characteristics of the moving load on the
dynamic coefficient £, . It is shown that at contemporary velocities, the dynamic effect is under

15%.
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Appendix
Notation
a  acceleration of the moving load
a,,, normal acceleration
A4,  coefficients of the trigonometric series
B,  coefficients of the trigonometric series
¢, angular stiffness
E  Young’s modulus
EJ bending stiffness
JS; functionsof k, j=12
g  acceleration of gravity
G  beam weight
G,.qs reduced beam weight
i a serial number of a finite element
J  axial moment of inertia
coefficient
k;  dynamic coefficient
¢ beam length
M  bending moment
n  aserial number of the trigonometric members
N number of the finite elements

SEt

~

equivalent dynamic load
weight of the moving load
real time

potential energy of the elastic system

v velocity of the moving load

vy  initial velocity of the moving load
w  beam deflection

x  axial coordinate

y(x) deflection due to force equal to 1
[C ] damping matrix

[K ] stiffness matrix

[M ] mass matrix

Greek symbols

a  coefficient

B,.a reduction coefficient of the beam weight
p  density

o normal stress

¢ distance from the left beam end

Subscripts

d  dynamic

n a serial number
nor normal
red

¢  angular

reduced

0 initial






