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Abstract.    This article discusses the dynamic response of Bernoulli-Euler straight beam with angular elastic 
supports subjected to moving load with variable velocity. A new engineering approach for determination of 
the dynamic effect from the moving load on the stressed and strained state of the beam has been developed. 
A dynamic coefficient, a ratio of the dynamic to the static deflection of the beam, has been defined on the 
base of an infinite geometrical absolutely summable series. Generalization of the R. Willis’ equation has 
been carried out: generalized boundary conditions have been introduced; the generalized elastic curve’s 
equation on the base of infinite trigonometric series method has been obtained; the forces of inertia from 
normal and Coriolis accelerations and reduced beam mass have been taken into account. The influence of 
the boundary conditions and kinematic characteristics of the moving load on the dynamic coefficient has 
been investigated. As a result, the dynamic stressed and strained state has been obtained as a multiplication 
of the static one with the dynamic coefficient. The developed approach has been compared with a finite 
element one for a concrete engineering case and thus its authenticity has been proved. 
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1. Introduction 
 

The load moving on a beam causes bending vibrations and as a result of which bigger stresses 
arise in the beam in comparison with the case of static action of the same load. Vibrations of this 
kind are found in many engineering objects, such as bridges, railroad rails, the principal beams of 
bridge cranes, etc. The occurrence of this engineering problem is connected with the construction 
and exploitation of railroad installations. The first mathematical model of the elastic curve of 
Bernoulli – Euler beam, subjected to a load, moving with a constant horizontal velocity v , is 
obtained by Willis (1849) for the case of freely supported beam. The beam mass has been 
neglected and the system “beam-moving load” is modeled to such with one degree of freedom, 
having a constant mass and changeable elasticity. 

The opposite model of behaviour of the elastic curve of a freely supported beam under the 
influence of a moving load with a constant velocity is when its mass is neglected, respectively 
only the distributed beam mass is taken into account. An analytical solution of this problem is 
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obtained by Krilov (1905) for the case of a force, constant in magnitude. An analytical solution for 
the case of a harmonic exciting force is proposed by Timoshenko (1922). Based on that, 
Timoshenko (1972) suggests an approximated solution to the problem, when the mass of the 
moving load is accounted too: initially the task with the beam’s forced vibrations under the 
influence of a constant force, equal to the beam’s weight and moving with a constant velocity, is 
solved; based on the obtained displacements of the points from the beam elastic curve, an 
expression is composed for the load’s force of inertia, which is added to the static weight. However, 
such analytical approach is not applicable to beams with other boundary conditions. 

Afterwards, three fundamental works devoted to this problem have been published: by Inglis 
(1934), Hillerborg (1951) proposed an analytical solution through Fourier’s method of simple 
supported beams; by Friba (1999).  

During the last few decades many solutions have been made for beam models, subjected to a 
moving load, in different engineering applications: beam on elastic foundation – linear-elastic 
foundation (Kien and Ha 2011, Chonan 1978, Amiri and Onyango 2010, Awodola 2007), 
viscoelastic foundation (Zehsaz et al. 2009, Sun and Luo 2008, Khorramabadi and Nezamabadi 
2012), nonlinear elastic foundation (Ding et al. 2012, Hryniewicz 2011), elastic foundation, 
modeled through springs with different stiffness (Thambiratnam and Zhuge 1996); freely 
supported beam (Yang et al. 1997, Nikkhoo and Amankhani 2012, Michaltos 2002, Michaltos et al. 
1996); inclined beam (Wu 2005); complex beam (Yau 2004); continuous beam (Save and Prager 
1963, Zheng et al. 1998, Kerr 1972); beam on elastic supports (Mehril et al. 2009; Piccardo and 
Tubino 2012); beam with generalized boundary conditions (Hilal and Mohsen 2000); contilever 
beam (Lin and Chang 2006). In view of the model of stressed and strained state, Bernoulli – Euler 
beams prevail (Xia et al. 2006, Hilal and Zibden 2000, Javanmard et al. 2013, Liu et al. 2013) 
over beams of Timoshenko (Azam et al. 2013, Chonan 1975). 

The analytical approach for solution prevails over the finite element one (Lin and Trethewey 
1990, Lin and Trethewey 1993). Some of the models refer to previously stressed through axial 
compressive load beams (Omolofe 2013, Zibden and Rackwitz 1995). 

The models in which the mass of the moving load is not accounted are prevailing. The effect of 
inertia from the passing load is numerically obtained by Yang et al. (1997) through Newmark- 
method, and is afterwards included in the force function of the load. In (Michaltos 2002) are 
accounted the mass and the moment of inertia of the moving load, which is moving with constant 
horizontal acceleration, as well as the effect of inertia from the rotation of the beam’s sections. 
However, the effect of inertia from the load mass directly on the beam transverse vibrations is not 
accounted, but only through the weight force and the force of inertia from the horizontal 
acceleration of the load. 

In the majority of publications the case of the load’s constant velocity is examined. A study of 
the influence of the acceleration has been made by Michaltos (2002) and Hilal and Mohsen (2000). 
The models with constant magnitude of the moving load are prevailing. In (Hilal and Mohsen 
2000) a model with moving force, altering by magnitude by a harmonic law has been made. In 
(Awodola 2007) the moving force changes exponentially by magnitude and a numerical approach 
is applied – the finite difference method. In some of the models a dynamic absorber moving on the 
beam’s axis has been implemented (Samani and Pellicano 2009, Soares et al. 2010).   

Models of more complicated objects have been made – a bridge system, examined in a 
resonance state by Xia et al. (2006), and a vehicle model by Esmailzadeh and Jalili (2003).  
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It is noteworthy that the models of two-supported beams mainly refer to a freely supported 
beam, which has a logical explanation: for this case the frequency equation is most simple and 
therefore the general solution in infinite sums can be obtained (Timoshenko 1972).  

In the engineering practice the technical solutions for fixture of the ends of a beam, subjected to 
bending, lead to a model with elastic angular supports. These supports restrict the rotations of the 
end cross-sections for beam bending, depending on the stiffness of the supports. For instance, in 
some constructional solutions the principal beam of a bridge crane is connected in both its ends for 
the vertical internal faces of the front beams through plates and coupling flanges with fitted bolt 
connections. The elasticity of the angular supports in a vertical plane is a function of the front 
beams torsion stiffness. In terms only of bending, the beam is double statically indeterminate: 
hyperstatic quantities are the elastic moments in the two additional angular supports. 

The researchers’ efforts are directed towards modeling the beam transverse vibrations under the 
influence of a passing load and the emphasis is placed on examining the mathematical model’s 
behaviour. This approach has its irreplaceable advantages, for example in studying the resonance 
states of work, beams on elastic foundation, etc. Simultaneously the obtained solutions are 
complicated enough, so as for the final consumer, i.e., the engineer, not to need computing 
machinery and corresponding software. The finite element solutions have all the advantages and 
disadvantages of the numerical ones. For the engineer in many cases of two-supported beams a 
more simple formula is necessary, which would offer a solution in first approximation. In this 
aspect, a possible approach for solution is a generalization of R. Willis equation. A few arguments 
exist in favor of this idea.  

 In the engineering applications the elastic curve of a two-supported beam corresponds to its 
basic eigentone under free vibrations, and the presumption is that the working regime is outside 
the resonance. Therefore it is advisable for the R.Willis approach to be applied for obtaining the 
dynamic deflection; 

 The practice shows that the bending stresses in a two-supported beam are biggest when the 
load is equally distant from both supports. In the model could be included the beam’s reduced 
mass for this position of the load;  

 Due to the bending of the beam, the load moves on a curve, because of which in the model 
could be included the force of inertia not only from the transverse displacements, but also from the 
normal and Coriolis accelerations. The latter arises due to the rotations of the beam’s sections. 
Moreover, the angle between the vectors of the transfer angular velocity and the load’s relative 

velocity is
090 ;  

 In addition, this approach allows easier investigation of the effect of the load’s horizontal 
acceleration.  

The main aim of the article is through an engineering approach to obtain a simplified 
mathematical model of the dynamic effect, caused by load motion on two-supported 
Bernoulli – Euler beam with elastic angular supports. 

 
 

2. Willis’ formulation 
 
A simple beam with length   and bending stiffness EJ  is considered. A load with weight 

Q  moves on the beam with constant velocity v . The beam mass is ignored. The beam deflection 
w  under the load is proportional to the pressure P  which the load exerts on the beam 
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    
EJ3

xPx
xw

22



 
  (1) 

where 

  








 xw

g

v
1QP

2
, 

x  and  x  are distances from the load to the beam supports; g  is the acceleration of gravity.  
Eq. (1) has first been obtained by Willis (1849) with the presumption for: constant horizontal 

load velocity; massless beam; load’s force of inertia, caused only by the beam vertical 
displacements. A full solution of (1), initially in the form of series, and later in closed form, is 
obtained by Stokes (1849). A numerical approach for solution of (1), based on the method of 
Runge, is first applied by Petrov (1903). Information for the history of the problem and detailed 
data for approximated solutions are given by Clebsch (1883). 

 
 

3. Generalization of the R. Willis equation 
 
The dynamic deflection  t,xw  of the beam’s elastic curve (Fig. 1) under the load is presented 

as  

      xytPt,xw   (2) 

where  xy  is deflection under the influence of a force with magnitude equal to 1, and  tP  is 
equivalent dynamic load. The latter includes: normal reaction from the load towards the beam; 
force of inertia from the reduced mass of the beam 

  
 
2

2
red

t

t,xw

g

G




  

and a force from the reduced weight redG  of the beam.  

The normal reaction from the load towards the beam is a sum of: the static weight Q  of the 
load; force of inertia from vertical displacement (deflection) of the beam 

 
 

Fig. 1 Model of the beam elastic curve with moving load 



)t(x

)t(v

)t,x(w

C C

250



 
 
 
 
 
 

A new approach to modeling the dynamic response of Bernoulli-Euler beam under moving load 

 

 
2

2

t

t,xw

g

Q




  

force of inertia from the normal acceleration nora  due to the load motion on a curve line (the 
curvature is negative for the adopted coordinate system depicted in Fig. 1) 

          
 
2

22

nor
x

t,xw

g

Qv
а

g

Q




  

force of inertia from the Coriolis acceleration of the load due to a rotation of the beam 
cross-sections  

  
 

v
tx

t,xw

g

Q
2

2




 . 

For the dynamic deflection  t,xw  follows 

        










2

2 ,
,

t

txw

g

GQ
GQtxw red

red
     xyv

tx

t,xw

g

Q
2

x

t,xw

g

Qv 2

2

22














  (3)  

Let us consider  tvv  . Then after switching the order of differentiation 
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
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
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



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



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


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














     (4) 

On the other hand 

 
   

2
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x

w
tv

x

x

t

w

xtx

t,xw

























 (5) 

After substitution of (4) and (5) in (3) 

        










2

22
red

red
x

t,xw

g

vGQ4
GQt,xw

       xy
x

t,xw

g

tvGQ red










 (6) 

Eq. (6) is a generalization of the R. Willis equation. 
 
 

4. Nature of the engineering approach 
 
We introduce the notion “dynamic coefficient” dk , which shows how many times the static 

load on the beam is increased due to the load motion 

 
 
 xw

t,xw
kd   (7) 

where  xw  is the beam deflection from the static load redGQ   

      xyGQxw red  (8) 
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After substitution of (6) and (8) in (7) 

  
 

     























x

t,xw

g

tv

x

t,xw

gGQ

vGQ4
1k

2

2

red

2
red

d


  (9) 

Eq. (9) is presented as 

 dd 1k   (10) 

where 

        



















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x

t,xw

g

tv

x

t,xw
tC

2

2

d


  (11) 

      
 gGQ

tvGQ4
tC

red

2
red




  (12) 

The determination of dk  is conducted through consecutive approximations 

 In the approximation is set  

       red
1 GQtP   

whence 

            xyGQt,xw red
1   

and after substitution in (11) 

                   red
1

d GQxy
g

tv
xytC 











  

For the dynamic coefficient it follows 

             1k 1
d  

where 10   . 
 In the second iteration is set 

          red
1

d
2 GQktP   

It is found 

                 red
1

d
2

d GQkxy
g

tv
xytC 











  

or 

      1
d

2
d k   

For  2
dk  follows 
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              21
d

2
d

2
d 111k11k    

 In the third iteration is set 

                red
2

d
3 GQktP   

whence 

                       red
2

d
3

d GQkxy
g

tv
xytC 











  

or 

                       22
d

3
d 1k    

For  3
dk follows 

                   323
d 1k    

 In the n th iteration 

                  n32n
d ...1k      

Since always 10   , then dk  is presented as an infinite geometrical absolutely summable 

series. For dk  follows 

              



 1

1
klimk n

d
n

d  (13) 

where 

                     redGQxy
g

tv
xytC 







 


  (14) 

 
5. Application of trigonometric series method for modeling the beam elastic curve 

 
5.1 Generalized model of the beam elastic curve 
 
The trigonometric series method for investigation of beams and plates bending is developed by 

Timoshenko (1972). The expression for the deflection of the beam elastic curve can always be 
presented in the form of infinite trigonometric series.  

Timoshenko (1972) examines in detail the cases of Bernoulli-Euler beam for two cases: (i) – 
freely supported beam; (ii) – restrained beam, for which he draws approximated formulas for the 
deflection of the beam’s symmetry section for particular cases of loading.  

If it is accepted that the solutions, based on integration of the differential equation of the beam 
elastic curve are accurate from a mathematical point of view, then the method of series is 
approximate since after taking a finite number of series members, the physical equivalent is an 
exchange of an elastic system with infinite degrees of freedom with an elastic system with finite 
degrees of freedom. 

Such approximation of the exact behaviour of the elastic curve could be useful from an 

253



 
 
 
 
 
 

J.T. Maximov 

 

engineering point of view for the case of Bernoulli-Euler two-supported beam with elastic angular 
supports. 

A straight beam is studied with elastic angular supports and stiffness c , restricting the 

rotations of the end cross-sections bending. The beam elastic curve lies in the xw  plane (Fig. 1). 
The deflection  xw  needs to satisfy the conditions     0w0w   , but   00w  ,   0w   , 

  00w  ,   0w   , in which between  0w  and  0w  , respectively  w  and  w  , a 
correlation exists: of a concrete angle of the beam end cross-section rotation exists a specifically 
set elastic bending moment. The general expression for the deflection  xw  of the elastic curve is 
presented in the form 

   














 

n

,...5,3,1n

n

n

...5,3,1n

n
xn

sinB
xn2

cos1Axw



 (15) 

Each of the functions under the sums obviously satisfies the first group of boundary conditions: 

     0w0w     

The derivatives to second order of (15) are 

         
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n
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n

n
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n
xn

cosnB
xn2

sinnA
2

w



  

          







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n

,...5,3,1n

n
2

2

2n

,...5,3,1n

n
2

2

2 xn
sinBn

xn2
cosAn

4
w




  

The dependence between the nA  coefficients on one side, and the nB  coefficients on the 
other, is found through the second group of boundary conditions 

          


n
n

Bn
0w


 ;  


 n

n
Bn

w


  (16) 

The end cross-sections rotations, dependences (16), cause elastic bending moments 

             0wEJ0M n ;     nwEJM   (17) 

where EJ  is beam bending stiffness and 

               n2

22

n A
n4

0w



 ;   n2

22

n A
n4

w





  (18) 

The elastic moments are defined as 

   0wc0M n  ;     nwcM                      (19) 

After substitution of (16)-(18) in (19), taking into account that  0M  and  M  are opposite 

and solving toward nB  

           nn A
4

kn
B


       (20) 
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where 

        
c

EJ16
k


  (21) 

In view of (20), the deflection and its derivatives to second order obtain the form 

   
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
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
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 
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cosAn
4
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2
w


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 (23)  

 









n

,...5,3,1n

n
3

2

3n

,...5,3,1n

n
2

2

2 xn
sinAn

4

kxn2
cosAn

4
w



  (24)  

The unknown nA  coefficients could for example be determined through the principle of 
virtual displacements for equilibrium state of a previously set load. 

 
5.2 Defining the function  xyy   
 
According to Eq. (2), if   1tP  , then    xwxy  . Let a bending force 1P  , at a   distance 

from the left end, act on the beam. The nA  coefficients are defined by the expression for virtual 
work 

       Pn
n

wPA
A

U  



 (25) 

where 

         sb UUU   (26) 

is potential energy of the elastic system, bU  is potential energy due to the beam bending, sU is 

potential energy of the elastic angular supports, nA  is an increase of the nA coefficient, and Pw  
is a virtual displacement of the applied point of the force P . 

For the bU  and sU  components (from both supports), it follows 
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or, if (21) is taken into account 
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For an increase nA  of the coefficient nA , the increase of the potential energy U  is 

       nn
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The virtual displacement Pw  for nA  increase is 

         














 



 n
sin

4

nkn2
cos1Aw nP  (30) 

After substitution of (29) and (30) in (25), for the nА  coefficients is obtained 
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After substitution of (31) in Eqs. (22) – (24) and setting 1P  , for the function  xyy   and 
its derivatives to second order is obtained 
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6. Dynamic coefficient study 
 
The most unfavorable loading of the beam is obtained when the load is situated in the beam’s 

middle. Moreover the most essential contribution in the sums of Eqs. (32) – (34) have the first 

members. After substitution of 
2


  and 1n  , Eqs. (32) – (34) get the following form 
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where 
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6.1 The load moves with constant velocity 
 
The study is carried out for the position of the load, when it is in the beam’s middle. Then, after 

substitution of 
2

x


  in (37) 
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The function  kf2  is a generalization of the beam boundary conditions. For a restrained beam 

( 0k  ):  
2

1
kf2  . For freely supported beam ( k ):   1kf2  . 

Taking into account (12) and (38), equation (14) gets the following form 

             
   kf

EJg

vGQ42
22

2
red


 
    (39) 

and the dynamic coefficient (13) is 
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where 

         GG redred  , 
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is a reduction coefficient of the beam weight, and G  is the beam weight. 
Obviously red  non-linearly depends on k , respectively on the stiffness of the angular 

connections. For a restrained beam ( 0k ): 
8

3
min red . For a freely supported beam ( k ):

2

1
max red  . Apparently the way of restriction of the end cross-sections’ rotations does not 

essentially affect the reduced weight. 
 
 

Fig. 2 Dependence of the dynamic coefficient   on the load velocity 
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Fig. 2 shows the dependence of the dynamic coefficient dk  from the load’s velocity. 

Obviously, at high velocities, dk  increases significantly. The stiffness of the elastic angular 

supports influences substantially on dk  - for instance, at  s/m30v  , dk increases with almost 
25% for freely supported beam, in comparison with the case of ideally fixed beam  (Fig. 2(а)). 
With the augmentation of the beam length, all other conditions being equal, dk  increases (Fig. 
2(b)), and this tendency is more significant at high velocities. With the decrease of the beam 
bending stiffness, dk  increases significantly (Fig. 2(c)). The unlimited augmentation of the 

bending stiffness through an increase of the moment of inertia J  leads to 0 , and from there 
to 1kd   on the right. The increment of the force Q , at constant other parameters, leads to an 

increase of dk (Fig. 2(d)). 

 
6.2 Influence of the acceleration on the dynamic coefficient 
 
Dependence (14) could be presented as 

      av     

where 

           
   xy

g

vGQ4 2
red

v 
  (40) 

           
   xy

g

aGQ red
a 

  (41)  

are components, accounting the influence, respectively of the load’s velocity and acceleration on 
the dynamic coefficient.  

As seen from the comparison between (36) and (37), the extremums of  xy  and  xy   have 
different phases: in the section of symmetry, where the deflection is biggest and the component 

v  has extremum (maximum), and the component a  becomes 0. 

Fig. 3 displays the dependence of the coefficient   and its components v  and a  in a 
function of the x-coordinate, accounting the position of the load, when the velocity and 
acceleration are equal to 1. The maximum value of   is shifted from the section of symmetry 

towards the increase of x  and it occurs for 
8

5
x  . If a negative acceleration  1a   was 

accepted, a  changes its sign, and the maximum value of   stays the same, but is in section 

with abscissa 
8

3
x  . The acceleration itself influences the dynamic coefficient to the same degree, 

as the velocity does. However, that influence of the acceleration does not refer to the section of 
symmetry of the beam, i.e., to the critical section. Depending on the law for the load motion, it is 
theoretically possible to prove that it is not the section of symmetry of the beam that is critical. 

A practical significance has the case, when consta  , i.e. 

     atvv 0    
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Fig. 3 Dependence of the coefficient   and its components v  and a  in a function of the x-coordinate

 
 

 

Fig. 4 A comparison between the static and dynamic deflections for different kinematic parameters 0v  and

a  for load motion 
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is advisable, whence 

     2
0vax2v   (42) 

From (2), (7) and (8) for the dynamic deflection follows 

                 xyGQ
1

1
t,xw red





 (43) 

where the component v  of   (look dependence(40)),  taking into account (42), gets the 
following form 

             
    

g

xyvax2GQ4 2
0red

v
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Fig. 4 shows a comparison between the static and dynamic deflections, dependences (8) and 
(43), for different kinematic parameters 0v  and a  for load motion. The section of symmetry of 
the beam is critical, and the dynamic effect from load motion in comparison with the static 
deflection is under 10%. 

 
 

7. Comparison with a finite element solution 
 
The matter of beam vibration with elastic angular supports under the influence of a moving on 

it load does not have a full analytical solution, since the equation, from which the natural 
frequencies are defined, is transcendental and could only be solved numerically. For that reason, 
the comparison is carried out with a finite element (FE) solution. The numerical input data are the 
following: beam length m20 , the beam cross-section is box with overall sizes m6.03.0   

and with walls thickness, respectively m01.0  and m02.0 ; Young’s modulus PaE 11102 , 

density 3/7850 mkg ; the stiffness of the angular supports is radNmc /106046.2 7 , 

respectively 8k ; weight and constant velocity of the moving load, respectively kNQ 50  and 

smv /20 .  
Dynamic implicit analysis using ABAQUS/Standard has been fulfilled. The general direct 

integration method, called the Hilber-Hughes-Taylor operator has been used. The principal 
advantage of this operator is that it is unconditionally stable for linear systems. 

The governing equation of the FE method can be written as 

                        tPtwKtwCtwM    (44) 

where  M ,  C  and  K  are the mass, damping and stiffness matrix respectively;  w ,  w  

and  w  denote acceleration, velocity and displacement vectors;   tP  is the vector of the 
external nodal forces. The latter is defined as 

                      TNi32
T 0tP...tP...tPtP0tP   

where t  is the real time; Ni ...,,2,1 ; N  is the number of the beam FEs, having identical 
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Thus, when N , a lightly passing of the force P  on the beam is assured. Taking into 
account the mass of the passing load,  M  is a variable matrix. In order to alleviate the finite 
element analysis and given the specificity of ABAQUS/Standard, in stead of simulating a variable 
mass of the system “beam – moving load”, it is accepted for  M  to be a constant matrix, and the 
load’s mass is placed in the middle of the beam. Then 

              QtPPmax
Nv

1i
ti  

  

The FE model consists of 2000 linear line FEs type B21. In order to make an accurate 
comparison with the analytical solution, the damping has not been included in the FE solution. 

For a critical point of the section of symmetry is obtained a normal stress MPad
x 065.44max  . 

For a static loading in the section of symmetry with force QP   in the same point, the normal 

stress is MPas
x 23.40max  . The dynamic coefficient is 095.1

max

max


s
x

d
x

dk



.  

With the same numerical values with which a finite element solution has been made, the 
dynamic coefficient (13) has been calculated, where   is defined by (39). It is obtained

1367.1dk . As could be expected, the dynamic coefficient, computed with the proposed method, 
is slightly bigger, since the forces of inertia from the normal and Coriolis accelerations from load 
motion, have been accounted. 

 
 

8. Conclusions 
 
A new engineering approach has been developed for determination of the dynamic effect from 

a passing load on the stressed state of two-supported Bernoulli-Euler beam with elastic angular 
supports. A dynamic coefficient has been defined as a ratio of the dynamic deflection toward the 
static one. A generalization of the R.Willis equation has been made. Generalized boundary 
conditions have been established for this purpose. The forces of inertia of the normal and Coriolis’ 
accelerations of the load have been accounted, as well as the beam mass. It has been studied the 
influence of the boundary conditions and the kinematic characteristics of the moving load on the 
dynamic coefficient dk . It is shown that at contemporary velocities, the dynamic effect is under 
15%. 
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Appendix 
 
 
Notation 
 

a  acceleration of the moving load 

nora  normal acceleration 

nA  coefficients of the trigonometric series 

nB  coefficients of the trigonometric series 

c  angular stiffness 

E  Young’s modulus 

EJ  bending stiffness 

jf  functions of k , 2,1j   

g  acceleration of gravity 

G  beam weight 

redG  reduced beam weight 

i  a serial number of a finite element 

J  axial moment of inertia  

k  coefficient 

dk  dynamic coefficient 

  beam length 

M  bending moment 

n    a serial number of the trigonometric members

N  number of the finite elements 

 tP  equivalent dynamic load 

Q  weight of the moving load 

t  real time 

U  potential energy of the elastic system 

v  velocity of the moving load 

0v  initial velocity of the moving load 

w  beam deflection 

x  axial coordinate 

 xy  deflection due to force equal to 1 

 C  damping matrix 

 K  stiffness matrix 

 M  mass matrix 

 

Greek symbols 

  coefficient 

red  reduction coefficient of the beam weight 

  density 

  normal stress 

  distance from the left beam end 

 

 

Subscripts 

d  dynamic 

n  a serial number 

nor  normal 

red  reduced 

  angular 

0  initial 
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