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Abstract.  The surface effect for a forced vibration of a double-nanobeam-system (DNS) coupled by a viscoelastic 
layer under a moving constant load is studied in this paper. The viscoelastic layer that couples the nanobeams to each 
other, is modelled as spring-damper system. The Euler- Bernoulli theory and a simply supported boundary condition 
are considered for both nanobeams. By using the analytical solution, the dynamic displacement is obtained by 
considering the surface elasticity and residual tension effect on each nanobeams. Furthermore, the several significant 
parameters such as the velocity of the moving load, spring constant, damping coefficient and also the surface effect 
have been studied using some plots and examples. Finally, by observing the diagrams it was concluded that as the 
length of the beams reduces, the surface effect has a considerable effect on each of nanobeams especially at Nano scale, 
where it was not achieved by classic theories. 
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1. Introduction 
 

Recently nanomaterials have gained the attention of researcher communities in different fields 

such as physics, chemistry and engineering, due to their specific properties that are resulted by their 

nanoscale dimension (Murmu and Adhikari 2010). They are in the forms of different nanoscale 

structures such as nanoparticles, nanowires and nanotubes which exhibit promising mechanical, 

chemical, electrical, optical and electronic properties (Kim and Lieber 1999,; Liang, et al. 2015, 

Rakrak et al. 2016, Fernandes et al. 2017). Nanomaterials are considered as the basis of various 

nanoscale objects which are also named nanostructures (Fedorov et al. 2007, Choudhary and Kaur 

2015). Nano-resonators, nano-actuators, nano-machins and nano-optomechanical systems are some 

of the commonest types of nanostructures (Eichenfield et al. 2009, El-Borgi et al. 2015, Reddy et 

al. 2016). 

Based on the previous studies, it can be perceived that the material properties at the nano-scale 
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are size dependent and subsequently the small length scale influence should be considered for an 

exact modelling of nano-structure (Pirmohammadi et al. 2014, Hosseini and Rahmani 2016, Ghadiri 

et al. 2018, Bastanfar et al. 2019, Alizadeh Hamidi et al. 2020, Hamidi et al. 2020; Hassannejad et 

al. 2020, Kunbar et al. 2020). To overcome this limitation, several modifications of the classical 

continuum mechanics have been presented to admit size effect in the nanostructures modelling. One 

broadly used size-dependent theory is the nonlocal elasticity theory (Pourseifi et al. 2015). 

Various investigations are conducted to study nano sandwich structures. Liew et al. studied the 

vibration behaviour of multi-layered graphene sheets that were embedded in an elastic matrix using 

a continuum-based plate model. They derived an explicit formula to predict the natural frequencies 

and associated vibration modes of double-layered and triple-layered graphene sheets (Liew et al. 

2006). Murmu et al. developed an analytical method to determine the natural frequencies of the 

nonlocal double beam, which are used in nano-optomechanical system and sensor applications. It 

was revealed that the small scale effect has a significant effect on the transverse vibration of double 

nanobeam system (Murmu and Adhikari 2010). In the other study, which was made by Murmu et 

al. the nonlocal vibration of double-nano-plate system, was considered. It was assumed that two 

nano-plates are bounded by an enclosing elastic medium. They established expression for bending 

vibration of double nano-plate system using the nonlocal elasticity and also introduced an analytical 

model to derive the natural frequencies of nonlocal double-nano-plate System (Murmu and Adhikari 

2011). Pouresmaeeli et al. presented an analytical approach for free vibration analysis of all edges 

simply supported double orthotropic nano-plates. It was assumed that the two nano-plates are 

bonded by an internal elastic medium and surrounded by an external elastic foundation. They 

derived the governing equations according to the nonlocal theory (Pouresmaeeli et al. 2012). Murmu 

et al. analysed the vibration of coupled nanobeam system under initial compressive pre-stressed 

condition. Using the nonlocal theory expressions for bending-vibration of pre-stressed double 

nanobeam system is formulated. They also proposed an analytical method to obtain natural 

frequencies of the nonlocal double Nano-beam system. Radic et al. analysed buckling of double 

orthotropic nano-plates using the nonlocal elasticity theory. They assumed that two nano-plates are 

bounded by an internal elastic medium and are surrounded by external elastic foundation (Radić et 

al. 2014). Norouzzadeh et al. (2020) worked on flexural, axial, and shear wave propagation in nano 

FGMs by Eringen’s integral model. Akgöz and Civalek (2017) surveyed the thermal and shear 

deformation effects on the responses of the non-homogeneous microbeam made of FGM. Akgöz 

and Civalek (2015) used the modified strain gradient theory along with the non-classical sinusoidal 

plate model to calculate the bending, buckling, and free vibration of the model. Demir and Civalek 

(2017) established an enhanced Eringen differential model to calculate the bending of the nano/ 

micro Euler-Bernoulli beams for different loadings.  

Yayli (2015) employed gradient theory considering the surface effect to obtain the stability of 

the beams with rotational and translational springs. Yayli (2016) carried out the axial vibration of 

nanorods by hardening the nonlocal approach by different boundary conditions. Yayli (2018) used 

nonlocal elasticity theory to obtain the torsional behavior of the carbon nanotubes embedded in 

elastic medium under the spring boundary conditions. 

Alimirzaei et al. (2019) investigated the nonlinear static, buckling, and vibrational behaviors of 

the viscoelastic micro-composite beam having geometrical imperfection reinforced by different 

distributions of boron nitride, namely UD, FG-V, and FG-X based on the modified strain gradient 

theory and FEM. Darvishand and Zajkani (2019) carried out the plastic buckling behavior of the 

microbeams considering the small scale effect to evaluate the instability of the model, which is under 

boundary conditions, including simply supported, cantilever, and clamped-supported via 
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conventional mechanism-based strain gradient plasticity theory. Chaabane et al. (2019) studied the 

static and dynamic behaviors of the FG beams embedded in an elastic Winkler-Pasternak foundation 

based on the hyperbolic shear deformation theory. Hamed et al. (2019) worked on the bending 

behavior of the FG nanoscale beam model, having different types of porosity based on the Eringen’s 

nonlocal elasticity theory. Gao et al. (2019) devoted their study to the free vibration of the FG 

circular nanotubes based on the nonlocal strain gradient theory considering the higher-order shear 

deformation beam model.  

Aydogdu et al. (2018) worked on the longitudinal vibration of FG nanorods and nanobeams with 

variant nonlocal parameters based on the Ritz approach and stress gradient elasticity theory to assess 

the effect of the boundary condition and geometrical properties. Arda and Aydogdu (2017) 

conducted the axial vibration of carbon nanotubes attached with a damper based on the nonlocal 

stress gradient theory for two types of end conditions. Aydogdu and Arda (2016) employed the 

nonlocal classical elasticity theory to illustrate the forced axial vibration of nanorods. Hosseini et al. 

(2019) established different nonlocal theories via Eringen’s model to investigate the free and forced 

axial vibrational behavior of the nanorod under clamped-clamped and clamped-free boundary 

conditions. Khosravi et al. (2020) employed two linear and harmonic loadings for zigzag SWCNT. 

The responses of the model were compared with other boron nitride and semiconducting nanotubes. 

In the present paper, the surface effect for a forced vibration of a double-nanobeam-system 

coupled by a viscoelastic layer under a moving load is investigated. The viscoelastic layer is 

simulated as spring-damper system. The Euler-Bernoulli theory and a simple boundary condition 

are considered for both nanobeams. The analytical solution for the dynamic behaviour of nanobeams 

is obtained by considering the surface elasticity and residual tension effect.  

 
 

2. Surface effect theory 
 

The surface effects often play an important role in the mechanical and dynamic behaviour of 

nanostructures because of the increasing ratio between surface area and volume (Miller and Shenoy 

2000, Sharma et al. 2003, Wang and Feng 2007). The surface elasticity is introduced by Gurtin et 

al. (1998) and since then has been utilised to explain various size-dependent scenarios at the 

nanoscale. The obtained results through this theory fit well with atomistic simulations and 

experimental measurements (Miller and Shenoy 2000, Dingreville et al. 2005). The energy which is 

associated by atoms in surface layers is different from the atoms in the bulk of material, which is 

called surface free energy. In most studies, this energy is neglected because it is introduced with a 

few layers of atoms near the surface, but in Nano size this energy cannot be ignored. In Nano scale 

this effect has dominant influence caused by its high ratio of surface to volume which the result is 

the higher elastic modulus and mechanical strength than classical studies. 

The curvature of a bending beam can be approximated by ∂2w/∂x2. The Laplace–Young equation 

in Eq. (1) indicates that for a bending beam ∂2w/∂x2, the distributed transverse loading induced by 

the residual surface tension is 

(1) 
2

0 2

w
f f H

x


= +


 

Where the parameter H is a constant determined by the residual surface tension and the shape of 

cross section. For rectangle and circular cross sections, H is given, by 
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Fig. 1 Schematic of double nanobeam system under moving load 

 

 

(2) 2 oH D= 

Where τ◦ is the residual surface tension under unstrained condition and effective flexural rigidity, 

EI*, for nanobeam is given by 

(3) 
* 4 31

4

sEI ER E R = + 

Es is the surface elastic modulus, which can be determined by atomistic simulations or 

experiments. 

 

 

3. Governing equation for double nanobeam system 
 

the double nanobeam system as illustrated in Fig. 1, the two nanobeams of the double beam 

system are referred to as nanobeam 1 and nanobeam 2. The two nanobeams are coupled by a 

viscoelastic medium. This medium is modeled as distributed spring-damped system. The primary 

nanobeam is assumed to be subjected to a concentrated transverse load f(x,t). A secondary nanobeam 

is connected to the primary nanobeam by a viscoelastic material; where k is the spring constant and 

c is the damping coefficient. In general, two nanobeams may be different where the length, mass 

density per unit axial length and effective bending stiffness of the ith nanobeam are Li, ρiAi, EiIi
* 

(i=1,2) respectively. 

The transverse displacements of the primary and secondary nanobeams are w1(x,t) and w2(x,t), 

respectively. 

The transverse vibration equation of the double nanobeam system are 

( ) ( ) ( )
4 2

* 1 1
1 1 1 2 1 2 1 1 1 14 2

,
w w

E I k w w c w w Aw H f x t
x x


 

+ − + − + − =
 

 (4) 

( ) ( )
4 2

* 2 2
2 2 2 1 2 1 2 2 2 24 2

0
w w

E I k w w c w w A w H
x x


 

+ − + − + − =
 

 (5) 

In this study, it is assumed that the two nanobeams have a same flexural rigidity (EI*) and mass 

per unit length (ρA) and H. 

* * *

1 1 2 2E I E I EI= =  (6) 
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1 1 2 2A A A  = =
 (7) 

1 2H H H= =
 (8) 

Substituting the assumptions Eqs. (6)-(8) in Eq. (4) and Eq. (5) 

( ) ( ) ( )
4 2

* 1 1
1 2 1 2 1 04 2

,
w w

EI k w w c w w Aw H f x t
x x


 

+ − + − + − =
 

 (9) 

( ) ( )
4 2

* 2 2
2 1 2 1 24 2

0
w w

EI k w w c w w Aw H
x x


 

+ − + − + − =
   

(10) 

With a simple manipulation of variable, the transverse vibration equation of the double nanobeam 

system can be uncoupled and general analysis is used to determine the solution. In order to solve 

Eqs. (9) and (10), a change of variables by considering w(x,t) is employed 

1 2( , ) ( , ) ( , t)w x t w x t w x= +  (11) 

Thus 

1 2( , ) ( , ) ( , t)w x t w x t w x= −  (12) 

Adding Eqs. (9) and (10) and using Eq. (12), would lead to 

4 2
*

04 2
( , )

w w
EI Aw H f x t

x x


 
+ − =

 
 (13) 

Substituting Eq. (12) into Eq. (10) leads to 

4 2
* 2 2

2 2 24 2
2 2

w w
EI kw cw Aw H kw cw

x x


 
+ + + − = +

 
 (14) 

The boundary conditions for nanobeams with two simply supported ends are given as 

1 2(0, ) (0, ) 0w t w t= =  (15) 

1 2( , ) ( , ) 0w L t w L t= =
 (16) 

2 2
* *1 2

2 2

(0, ) (0, )
0

w t w t
EI EI

x x

 
= =

   (17) 

2 2
* *1 2

2 2

( , ) ( , )
0

w L t w L t
EI EI

x x

 
= =

   
(18) 

Note that Eq. (14) is identical to the governing partial differential equation of the forced vibration 

of an Euler-Bernouli nanobeam on a viscoelastic medium and Eq. (13) is that of uncoupled vibration 

equation. 

 
 
4. Solution method 
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In this section, the Eqs. (13) and (14) are uncoupled. Firstly Eq. (13) should be solved for the 

relative displacement w(x,t). Secondly, Eq. (14) should be solved for the displacement of the 

secondary nanobeam w2(x,t). At the end of this section, Eq. (12) leads to the displacement of the 

primary nanobeam w1(x,t). 

 

4.1 Solution of undamped differential equation 
 

Using the normal mode method, the solution of Eq. (13) is assumed to be a linear combination 

of the normal mode of the nanobeam as 

1

( , ) ( ) ( )n n

n

w x t W x t


=

=  (19) 

where ηn(t) are the generalized coordinate and Wn(x) are the normal mode of the simply supported 

nanobeam that are given by 

( ) sin( x)n

n
W x

L


=  (20) 

Substituting Eq. (19) into Eq. (13) and multiplying by Wj(x) and integrating from 0 to L, results 

in 

2( ) ( ) ( )n n n nt t Q t  + =  (21) 

Where 

4 2

*

n

n n
EI H

L L

A

 




   
+   

   =  (22) 

In Eq. (13), term f0(x,t) is the external force which is function of x and t. For the case of constant 

moving point force, one can model the force using Dirac function 

( )0 0 0( , )f x t F x v t= −  (23) 

where F0 is the force magnitude acting on the nanobeam and v0 is constant velocity of the moving 

load. In Eq. (21), Qn(t) is generalized force corresponding to the n th mode given by 

0
0 0 0

0

1
( ) (x) (x t)dx sin( t)

L

n n

n n

F n
Q t W P

g g L


  = − =  (24) 

where 

2

0
( )

2

L

n n

AL
g AW x dx


= =  (25) 

In this study, the initial conditions are assumed to be zero 

1 2 1 2( ,0) ( ,0) ( ,0) ( ,0) 0w x w x w x w x= = = =  (26) 

Substituting initial equation into Eq. (11) leads to 

( ,0) ( ,0) 0w x w x= =  (27) 
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Therefore, ηn(t) can be expressed as 

0
( ) ( ) ( )d

t

n nt Q h t   = −  (28) 

with 

1
( ) sin( )n

n

h t t


=  
(29) 

Substituting Eq. (24) into Eq. (28) and considering Eq. (29), leads to 

0 0

0

2
( ) sin[ (t )]sin

t

n n

n

F n v
t d

AL L


    

 

 
= −  

 
  (30) 

Thus, the solution of Eq. (13) is given by (20) and (30) 

0
0

02
1 20

sin
2

( , ) sin( t) sin( t)n

n n

n

n nx v
F nL Lw x t v
AL Ln v

L

 



 





=

   
    = − 

   −    


 

(31) 

 

4.2 Solution of damping differential equation 
 

Now w2(x,t) can be obtained from Eq. (14) by substituting Eq. (31) into Eq. (14) yields 

4 2
* 02 2

2 2 24 2
1

2
2 2 sin ( )n

n

Fw w n
EI kw c w Aw H x P t

x x AL L








=

   
+ + + − =  

   
  (32) 

where 

( ) ( )
0

0 0 0

2

2

0

sin sin cos cos

( )

n n

n

n

n

n
v

n n nLk t v t c v t v t
L L L

P t
n

v
L


  

 





 
      

− + −      
     

 =
 

− 
 

 (33) 

Once again, modal analysis is employed to solve Eq. (32) 

2 2 2

1

( , ) ( ) ( )n n

n

w x t W x t


=

=  (34) 

where W2n is the n th normalized normal mode and η2n(t) is the n th generalized coordinate. W2n is 

expressed as 

2 ( ) sinn

n
W x x

L

 
=  

 
 (35) 

Similarly, substituting Eq. (34) into Eq. (32) and multiplying both side of the Eq. (32) by W2i(x), 

then integrating it from x=0 to L leads to 

2 *

2 2 2 2 2( ) 2 ( ) ( )n n n n n n nt t Q t     + + =  (36) 
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where ω2n and ξn denote the undamping natural frequency and damping ratio, respectively which are 

defined as 

2

n

n

c

A


 
=  , 

4 2

*

2

2

n

n n
EI H k

L L

A

 




   
+ +   

   =  (37) 

Now, the generalized force related to the nth mode is obtained as 

* 0
2

0
1

21
( ) ( ) sin ( )

L

n n n

nn

F n
Q t W x x P t dx

g AL L







=

 
=  

 
  (38) 

Substituting Eq. (25) into Eq. (38) and using orthogonality property 

0
( ) ( )dx

L

i j ijW x W x =  (39) 

where δij is the Kronecker delta, leads to 

* 0

2 2

2
( ) ( )n n

F
Q t P t

A L
=  (40) 

For zero initial condition, the generalized coordinate in the n th modes becomes as follows 

( ) ( )( ) ( )2 *

2 2
0

2

1
( ) sinn n

t t

n n n

dn

t e t Q t d
  

    


− −
= − −  (41) 

where ω2dn is the frequency of the damped vibration given by 

2

2 2 1dn n  = −  (42) 

Substituting Eq. (37) into Eq. (38) and applying the integration leads to 

( ) ( )( )( )

2
0 0

1 2
0

2

8

0 3 2 4 5 6 7 2

cos sin2
( )

cos( ) cos sin sin( )

nt

n

dn n n dn

n v n v
a t a te F L Lt

a
v n a t a a t a t a t


 



    

−
    

+ +    
   =  

 + + +
 

 
(43) 

where 

( )

( )

( )

( )( )

( ) ( )

( )

( )

( )

2

2

4 2 2 2 2 22
2 2 02

1 0 2 2 2 22 2 2
2 2 22 2

4 2 2 2 222
2 20 23

2 2 22 2 2 2 2 2 2
2 2 2 2

2

2

22

n

n

n n n dn
t

n dn

n n dnn dn

n n n dnnt

n dn

n dn n dn

v n c
a v n L e

L k c c

v n k c
a e L

kL

a





     
  

    

     
 

     

 + −  +
  = −
  − −+ +   

 + − − − +
  =
  + + +  

( )( )
( ) ( )( )( )

( )

( )( )

( ) ( ) ( ) ( )( )2

22 2 2 2 2

0 2 2 2

22 2 2 2 2 2 2
3 2 0 2 2 2

2

2 2 2 2 2 2 2

2 2 2 2

24 22 2 2 2 4 2 2 2

4 2 0 0 2 2 2 2

5 2

2

2 2 2

3

2

2

n

n n n dn

n dn n n n n dn

v n n dn n dn

t

dn n dn n dn

n n

v n k c

v n L k
L

c

a e v n L v n L

a k



     

        

      

        

 

 + − + +
 
 = − +  + − −  
   + − +

  

= + − + +

= − + ( )( )

( )( )

( ) ( )( )

( )( ) ( ) ( )( )
( ) ( )

( )

( )

( )

2 2 2 2

2 2

2 2 2 2 2

6 2 2 2

2 22 2 2

2 2 0

2

0 22 2 2

7 0 22 2 2 2 2 3 3

2 2 2

2 4

2 2

2

2

8

2

6 2

3

n n dn

n n n n dn

n n n n

n

n n dn

n n n n n

dn n

n dn n

c

a c k

k c v n L

v n k c
a v n L

L k c k c

L k c

A
a

   

     

     
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(44) 

After substituting the normalized normal mode Eq. (36) and generalized coordinate Eq. (43) into 

Eq. (35), the response of the secondary nanobeam is determined, finally the response of the primary 

nanobeam is achieved by Eq. (16). 

 

 

5. Result and discussion 
 

For the sake of validation, our results are compared to a condition with no moving load and 

damping and surface effect. Thus the free vibration of double and single beam with medium elastic 

layer is analysed and shown in Table 1 and the results are compared to Ref (Vu et al. 2000). One 

may clearly notice here that the Non-dimensional fundamental frequency parameters obtained in the 

present investigation are in excellent agreement to the results presented by an analytical solution and 

the results provided by Vu et al. (2000) for all cases that are used for comparison and validates the 

proposed method of solution. First of all, when the three parameters vanish (ξ=0, EI*=0 and F0=0) 

the classical isotropic beam theory is rendered.  

The nondimesional parameter for result can be expressed as 
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Table 1 Dimensionless frequencies for single and double beam 

Mode 

number 

Double beam 
Single beam 

K=10 K=800 

 (Vu et al. 2000) Present (Vu et al. 2000) Present (Vu et al. 2000) Present 

1 10.8355 10.835548 41.1996 41.199625 9.8696 9.8696044 

3 88.9389 88.938947 97.4173 97.417331 88.8264 88.826440 
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Fig. 2 The variation of dimensionless dynamic response of the primary nanobeam ( 𝑊1W1 ) versus 

dimensionless time (𝑡t) for κ=0.1, 1, 10 and 100 and also α=0.1, 0.25 and 0.75 

 

 

where 𝑊1 and 𝑊2 are the dimensionless displacement of the primary and secondary nanobeam 

in relation to w0. w0 is the maximum static deflection per F0 loading for a beam with a simply support 

boundary condition at the middle of the beam and is equal to 
3

0
0

48

F L
w

EI
= . κ and α are the 
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dimensionless stiffness and dimensionless velocity respectively which were dimensionalized in 

relation to v0cr. It should be mentioned that v0cr is a critical velocity and is equal to 0cr

L
v




= . 𝑡 is 

the dimensionless time. U and v are dimensionless surface elasticity modulus and dimensionless 

residual surface tension, respectively. Before representing the results it should be noted that, 

displacement of each beam is considered at x=L/2. Also when 𝑡 = 0, the F0 force is at the beginning 

of the left side of the nanobeam and when 𝑡 = 1, it is at the end of the right side of the nanobeam.  

In this study the amount of U and η is considered to be 0.2 and 0.01 respectively, that indicates 

the influence of surface effect on 𝑊1  and 𝑊2 . Fig. 2 shows the variation of 𝑊1  versus the 

dimensionless amount of time (𝑡) for different amounts of  . In Fig. 2(a1-a4) the variation of 𝑊1 

is depicted for κ=0.1, 1, 10 and 100 respectively that in all the section α is equal to 0.1. Also in Fig. 

2(b1-b4) and 2(c1-c4) 𝑊1 is depicted for α=0.25 and α=0.75 respectively. It can be seen from Fig. 

2 that the 𝑊1 depends on the dimensionless amount of time (𝑡) that can increase or decrease its 

amount. Comparing all the sections of Fig. 2 with each others, it is clear that when κ increases from 

0.1 to 100, the maximum dynamic deflection decreases and also when the moving load passes along 

the middle of nanobeam, the maximum dynamic deflection has its maximum amount.  

It worth nothing to mention that in the absence of damping constant, for the negligible amount 

of κ, the coupling between nanobeams is not considerable which is so called “de-coupled”. This 

condition is called “weak elasticity coupling”. For high amounts of κ, there is considerable coupling 

between two nanobeams, which is called “rigid coupling”.  

According to Fig. 2 (b1-b4) when the moving load has passed along approximately 40% of the 

nanobeam, the maximum dynamic deflection of nanobeam has occurred. The maximum dynamic 

deflection of the primary nanobeam tends to occur when the moving load has passed along 60% of 

them beam which is shown in Fig. 2(c1-c4). As it is seen from all the sections of Fig. 2, increasing 

the damping coefficient (ξ) results in reduction of the maximum dynamic deflection which is 

considerable in Fig. 2 (c1) where the α is high and β is very low. In addition, the mentioned 

difference is considerably low in Fig. 2 (a4) because the system is in the rigid coupling mode. 

Fig. 3 shows the variation of dynamic deflection of the secondary nanobeam (𝑊2) versus the 

dimensionless time (𝑡) for different damping coefficients. Fig. 3 (a1-a4) shows the variation of 

dynamic deflection for the dimensionless stiffness κ=0.1, 1, 10 and 100 respectively where in all of 

the sections, α is equal to 0.1. Figs. 3 (b1-b4) and 3 (c1-c4) show the dimensionless velocity for 0.25 

and 0.5, respectively. 

Based on Fig. 3 (b1-b4) the maximum dynamic deflection has occurred when the moving load 

passed along 40% of the nanobeam. Fig. 3 (c1-c4) shows that the maximum dynamic deflection 

tends to occur when the moving load passes along 65% of the nanobeam. By comparing the Fig. 

3(a1), (1b) and (1c), it clear that in the weak elastic condition and when η=0, the dynamic deflection 

of secondary nanobeam is equal to zero. This is due to the transmission of dynamic deflection of the 

primary nanobeam to the secondary one caused by coupling. Comparing all the sections of Fig. 3, it 

can be concluded that as the ξ increases, the dynamic deflection increases where the maximum and 

the minimum of the difference between the mentioned parameters are shown in Fig. 3 (c1) and 3 

(a4), respectively. 

Fig. 4 shows the variation of the maximum dynamic deflection versus the dimensionless stiffness 

parameter from 0 to 1000. W1,max, W2,max and Wmax shows the variation of the maximum dynamic 

deflection of the primary nanobeam, the variation of the maximum dynamic deflection of the 

secondary nanobeam and the relative displacement of the primary and secondary nanobeam,  
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Fig. 3 The variation of dimensionless dynamic response of the secondary nanobeam ( 𝑊2 ) versus 

dimensionless time (𝑡) for κ=0.1, 1, 10 and 100 and also α=0.1, 0.25 and 0.75 

 

 

respectively. It can be seen that as the stiffness parameter increases the W1,max
 
and W2,max decreases 

and increases respectively. As it can be seen from Fig. 4, increasing the κ in the rigid coupling 

condition caused in the convergence of W1,max and W2,max to each other and when κ=0, the difference  
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Fig. 4 The variation of the maximum dynamic deflection versus stiffness parameter. a1(α=0.25, ξ=0.25), 

a2(α=0.25, ξ=0.5), b1(α=0.5, ξ=0.25), b2(α=0.5, ξ=0.5) 

 

 

between W1,max and W2,max is maximum. It worth nothing to mention that by comparing all the 

sections of Fig. 4 it can be concluded that the diagram of Wmax is like a straight line that can be 

analysed in two different procedures. In the first procedure, the Eq. (31) is considered which shows 

that the relative displacement is independent of the stiffness and damping coefficient. Thus Wmax 
is 

similar to a straight line. In the second procedure, by considering the Eq. (11), it is concluded that 

W1,max and W2,max are approximately symmetric in relation to each other  

Fig. 5 shows the variation of maximum deflection versus the dimensionless velocity. Similar to 

Fig. 4, Fig. 5 has illustrated W1,max, W2,max and Wmax for k=1,10, 100 and1000. As it can be seen from 

this figure when κ increases, the maximum deflection increases and continues until 0.6 of 

dimensionless velocity. After that increasing the velocity of moving load causes in reduction of the 

maximum dynamic deflection. One other result that is derived from this figure, the diagram of 

W1,max is higher than the diagram of W2,max and as the κ increases these two diagrams come closer  
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Fig. 5 The variation of the maximum dynamic deflection versus dimensionless velocity for k=1, 10, 100 and 

1000 

 

 

converges to each other. Fig. 5 presents the relation between the velocity of the moving load and the 

maximum dimensionless dynamic deflection at centre of the beam for various values of k. In Fig. 5, 

dimensionless velocity of the moving load ranges from α=0 to α=2 with 0.033 increments, and the 

maximum dimensionless dynamic deflections at the centre of the beams are plotted versus the 

corresponding velocities. In Fig. 5, it is clear that the velocity of the moving load has significant 

effect on the dynamic response of the beam. Note also that the maximum values of the displacements 

increase with increase in the velocity of the moving load until a certain value of the velocity of the 

moving load, and then decrease after this value of the velocity. 

Fig. 6 illustrates the maximum dynamic deflection versus the surface elasticity modulus. it is 

seen from this figure, that as the surface elasticity modulus increases, the dynamic deflection 

decreases. Similar to prior figures the Wmax, W1,max and W2,max are illustrated in this figure. According 

to the properties of introduced material and the dimensionless parameter u, it is concluded that, by 

decreasing the diameter from macro scale to nano one, the maximum dynamic deflection reduces, 

which shows the influence of the surface effect on dynamic displacement. 
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Fig. 6 The variation of dimensionless maximum dynamic deflection versus surface elasticity modulus. 

a1(β=10, ξ=0.25), a2(β=10, ξ=0.5), b1(β=100, ξ=0.25), b2(β=100, ξ=0.5) 

 

 

6. Conclusions 
 

By considering the surface effect, this paper aims to analyse the forced vibration of a double 

nanobeam system that consists of a middle viscoelastic medium and is under a constant moving 

load. The viscoelastic medium was modelled as a spring-damper system. An analytical solution was 

presented for both nanobeams where the results were studied by dimensionalizing its parameters. 

Several diagrams for the dynamic displacement and the maximum dynamic deflection in terms of 

different parameters such as surface, the velocity of load movement, stiffness and damping 

parameter, were depicted. The results revealed that the amount of dynamic deflection for both 

nanobeams can increase or decrease in different times and perspecified parameters. It is also 

concluded that as the stiffness parameter increases, the maximum dynamic deflection of the primary 

and the secondary nanobeam decreases and increases respectively and finally converges to each 

other. Also increasing the dimensionless velocity results in the maximum amount of the maximum 

dynamic deflection in 0.6 of critical velocity. Finally, it is resulted that the classical theories cannot 

account for analysing the Nano scale structures because as the nanobeam diameter decreases from 
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macro scale to Nano scale the maximum dynamic deflection tends to reduce. 
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