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Abstract.  An analytical model is consider to scrutinize axisymmetric wave propagation in multiferroic hollow 
cylinder with rotating and initial stressed forces, where a piezomagnetic (PM) material layer is bonded to a piezoelectric 
(PE) cylinder together by Linear elastic materials with voids. Both distinct material combos are taken into account. 
Three displacement potential functions are introduced to uncouple the equations of motion, electric and magnetic 
induction. The numerical calculations are carried out for the non-dimensional frequency by fixing wave number and 
thickness. The arrived outputs are plotted as the dispersion curves for different layers. The results obtained in this paper 
can offer significance to the application of PE/PM composite hollow cylinder via LEMV and CFRP layers for the 
acoustic wave and microwave technologies. 
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1. Introduction 
 

Composite materials made out of piezoelectric (PE) and piezomagnetic (PM) stages are equipped 

for moving vitality among electrical and magnetic fields, called the impact of magnetoelectric (ME). 

In PE- PM Composites, ME impact is another item property emerging from the collaboration of two 

distinct stages. Because of the capacity of vitality change among electric and magnetic fields, PE-

PM composites are potential contender for attractive sensors, transducers and microwave gadgets, 

for example, resonators, electric-field-tunable channels, stage shifters and postpone lines. These 

applications are engaged with vibrations and wave proliferations in PE-PM composites, and thus 

their dynamic conduct is of essential worry in configuration just as in execution. As of late, a few 

specialists have considered the spread attributes of enduring waves in PE-PM composites. 

Micromechanics of magnetoelectroelastic composite materials: average field and effective done 

by Li and Dunn (1998). Closed-form solutions for the magnetoelectric coupling coefficients in 

fibrous composites with piezoelectric and piezomagnetic phases formulated by Wu and Huang 
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(2000a). Li (2000b) investigate magnetoelectroelastic multi-inclusion and inhomogeneity problems 

and their applications in composite materials. Aboudi (2001) analyzed micromechanical analysis of 

fully coupled electromagneto- thermo-elastic multiphase composites. Ponnusamy and Selvamani 

(2013, 2012a) discussed about wave propagation in a magneto thermo elastic cylindrical panel and 

dispersion analysis of a generalized magneto thermo elastic cylindrical panel. Sharma and Mohinder 

(2004) studied Rayleigh-Lamb waves in magnetothermoelastic homogeneous isotropic Plate. Effect 

of rotation on Rayleigh-Lamb waves in magneto-thermoelastic media studied by Sharma and Thakur 

(2006a). Exact solution for simply supported and multilayered magneto-electro-elastic plates 

discussed by Pan (2001). Nan (1994) discovered magneto-electric effect in composites of 

piezoelectric and piezomagnetic phases. The general solution of three-dimensional problem in 

magneto-electro-elastic media derived by Wang and Shen (2002). Van Run et al. (1974) formulate 

in situ grown eutectic magnetoelectric composite material Physical-properties. Nan et al. (2008a) 

studied about multiferroic magnetoelectric composites: Historical perspective, status, and future 

directions. Soh and Liu (2006b) analyses interfacial shear horizontal waves in a piezoelectric-

piezomagnetic bi-material. The effects of inhomogeneous initial stress on Love wave propagation 

in layered magneto-electro-elastic structure by Zhang et al. (2008b). Wang (2008c) discussed wave 

band gaps in two dimensional piezoelectric/piezomagnetic phononic crystals. Piliposian et al. 

(2012b) studied about shear wave propagation in periodic phononic/photonic piezoelectric medium. 

Du et al. (2009, 2007) examination about SH surface acoustic wave propagation in a cylindrically 

layered piezomagnetic/piezoelectric structure and Love wave propagation in layered magneto-

electro-elastic structures with initial stress. Effect of initial stresses on dispersion relation of 

transverse waves in a piezoelectric layered cylinder studied by Abo-el-nour et al. (2007). Buchanan 

(2003) discussed free vibration of an infinite magneto-electro elastic cylinder. Ritz et al. (2019b) 

studied the heat and mass transfer in the Eyring-Powell model of fluid propagating peristaltically 

through a rectangular compliant channel. Bhatt et al. (2019c) numerically analysis the heat transfers 

and Hall current impact on peristaltic propulsion of particle-fluid suspension with compliant wall 

properties. Marin et al. (2015) discussed considerations on double porosity structure for micro polar 

bodies. Khan et al. (2019d) studied effects of chemical reaction on third-grade MHD fluid flow 

under the influence of heat and mass transfer with variable reactive index. 

In this paper we form analytical laneway to scrutinize axisymmetric wave propagation in 

multiferroic hollow cylinder with rotating and initial stressed forces, where a piezomagnetic (PM) 

material layer is bonded to a piezoelectric (PE) cylinder together by Linear elastic materials with 

voids. Both distinct material combos are taken into account. Three displacement potential functions 

are introduced to uncouple the equations of motion, electric and magnetic induction. The numerical 

calculations are carried out for the non-dimensional frequency by fixing wave number and thickness 

and are figure out as the dispersion curves for different layers. 

 

 

2. Modelling of problem 
 

Consider a rotating multiferroic PE/LEMV/CFRP/PM transversely isotropic composite hollow 

circular cylinder. Geometry of problem shown in Fig. 1. The basic governing equations of motion, 

electrostatic displacement 𝐷𝑗 and magnetic induction 𝐵𝑗 in cylindrical co-ordinates (r, z) system, 

and the cylinder is assumed to be rotating with uniform angular velocity the absence of  �̅� in the 

absence of volume force are, Ponnusamy and Selvamani (2013) 
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Fig. 1 Geometry of problem 
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rz,r
+ 

l

zz,z
+𝑟−1

l

rz
+ 𝜌 ( Ω̅ × ( Ω̅ × �̅�) + 2( Ω̅ × �̅�,𝑡)) = 𝜌𝑤,𝑡𝑡 .       (2) 

The electric displacement equation  

1

𝑟

𝜕

𝜕𝑟
(𝑟𝐷𝑙

𝑟) +
𝜕𝐷𝑙

𝑧

𝜕𝑧
= 0.                             (3) 

The magnetic induction equation  

1

𝑟

𝜕

𝜕𝑟
(𝑟𝐵𝑟

𝑙) +
𝜕𝐵𝑧

𝑙

𝜕𝑧
= 0.                              (4) 

The stress strain relations are given as follows, Ponnusamy and Selvamani [2013]  


l

rr
= 𝑐11𝑆𝑙

𝑟𝑟 + 𝑐12𝑆𝑙
𝜃𝜃 + 𝑐13𝑆𝑙

𝑧𝑧 − 𝑒31𝐸𝑧
𝑙 − 𝑞31𝐻𝑧

𝑙  , 


l

zz
= 𝑐13𝑆𝑙

𝑟𝑟 + 𝑐13𝑆𝑙
𝜃𝜃 + 𝑐33𝑆𝑙

𝑧𝑧 − 𝑒31𝐸𝑧
𝑙 −  𝑞33𝐻𝑧

𝑙  , 


l

rz
= 𝑐44𝑆𝑙

𝑟𝑧 − 𝑒15𝐸𝑟 − 𝑞15𝐻𝑟 , 

𝐷𝑟 = 𝑒15𝑆𝑙
𝑟𝑧 + 휀11𝐸𝑙

𝑟 + 𝑚11𝐻𝑟 , 

𝐷𝑧 = 𝑒31(𝑆𝑙
𝑟𝑟 + 𝑆𝑙

𝜃𝜃) + 𝑒33𝑆𝑙
𝑧𝑧 + 휀33𝐸𝑙

𝑧 + 𝑚33𝐻𝑧 , 

𝐵𝑟 = 𝑞15𝑆𝑟𝑧 + 𝑚11𝐸𝑟 + 𝜇11𝐻𝑟 , 

𝐵𝑧 + 𝑞31(𝑆𝑟𝑟 + 𝑆𝜃𝜃) + 𝑞33𝑆𝑧𝑧 + 𝑚33𝐸𝑧 + 𝜇33𝐻𝑧 .               (5) 

The strains  𝑆𝑙
𝑖𝑗 are related to the displacements given by  

𝑆𝑙
𝑟𝑟 = 𝑢𝑙

,𝑟 𝑆𝑙
𝜃𝜃 = 𝑟−1(𝑢𝑙 + 𝑣𝑙

,𝜃), 𝑆𝑙
𝑧𝑧 = 𝑤𝑙

,𝑧 𝑆𝑙
𝑟𝜃 = 𝑣𝑙

𝑟 − 𝑟−1(𝑣𝑙 − 𝑢𝑙
,𝜃),  

𝑆𝑙
𝑧𝜃 = 𝑣𝑙

,𝑧 + 𝑟−1𝑤𝑙
,𝜃 , 𝑆𝑙

𝑟𝑧 = 𝑤𝑙
,𝑟 + 𝑢𝑙

,𝑧.                   (6)  

Where u, v and w are the mechanical displacements corresponding to the cylindrical coordinate 

directions r, 𝜃 and z. The relation between the electric field vector 𝐸𝑖 and the electric potential 𝜙 

is given by 
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𝐸𝑟 = −
𝜕𝜙

𝜕𝑟
 , 𝐸𝑧 = −

𝜕𝜙

𝜕𝑧
.                           (7) 

Similarly, the magnetic field 𝐻𝑖 is related to the magnetic potential 𝜓 as 

𝐻𝑟 = −
𝜕𝜓

𝜕𝑟
 , 𝐸𝑧 = −

𝜕𝜓

𝜕𝑧
.                           (8) 

Eqs. (5) to (8) substitute in Eqs. (1) to (4) results in the following three-dimensional equation of 

motion, magnetic and electric conduction. We note that the first two equations under the influence 

of hydrostatical stress become 

𝑐11(𝑢𝑙
,𝑟𝑟 + 𝑟−1𝑢𝑙

,𝑟 + 𝑟−2𝑢𝑙) + 𝑐13𝑤𝑙
,𝑟𝑧 + 𝑐44(𝑢𝑙

,𝑧𝑧 + 𝑤𝑙
,𝑟𝑧) + (𝑒15 + 𝑒31)𝜑,𝑟𝑧

𝑙 − 

 𝑝0(𝑢𝑙
,𝑟𝑟 + 𝑟−1𝑢𝑙

,𝑟 + 𝑟−2𝑢𝑙  + 𝑢𝑙
,𝑧𝑧) + (𝑞15 + 𝑞31)𝜓𝑙

,𝑟𝑧
+ 𝜌( Ω2𝑢 + 2Ω𝑤,𝑡) = 𝜌𝑢,𝑡𝑡 .  (9a) 

(𝑐44 + 𝑐13)(𝑢𝑙
,𝑟𝑧 + 𝑟−1𝑢𝑙

,𝑧) + 𝑐33(𝑤𝑙
,𝑧𝑧) + 𝑐44(𝑤𝑙

,𝑟𝑟 + 𝑟−1𝑤𝑙
,𝑟) + 𝑒15(𝜑,𝑟𝑟

𝑙 + 𝑟−1𝜑,𝑟)  

+ 𝑒33𝜙,𝑧𝑧  − 𝑝0(𝑤𝑙
,𝑟𝑟 + 𝑟−1𝑤𝑙

,𝑟 + 𝑤𝑙
,𝑧𝑧) + 𝑞33𝜓,𝑧𝑧  + 𝜌( Ω2𝑤 + 2Ω𝑢,𝑡) 

+𝑞15(𝜓,𝑟𝑟 + 𝑟−1𝜓,𝑟) =  𝜌𝑤,𝑡𝑡.                    (9b) 

𝑒15(𝑤,𝑟𝑟
𝑙 + 𝑟−1𝑤,𝑟

𝑙 ) + 휀11(𝜑,𝑟𝑟
𝑙 + 𝑟−1𝜑,𝑟) + (𝑒31 + 𝑒15)(𝑢,𝑟𝑧

𝑙 + 𝑟−1𝑢,𝑧
𝑙 ) + 𝑒33𝑤,𝑧𝑧

𝑙  

−휀33𝜑,𝑧
𝑙 − 𝑚11(𝜓,𝑟𝑟 + 𝑟−1𝜓,𝑟) − 𝑚33𝜓,𝑧𝑧 = 0.               (9c) 

𝑞15(𝑤,𝑟𝑟 + 𝑟−1𝑤,𝑟) + (𝑞31 + 𝑞15)(𝑢,𝑟𝑧 + 𝑟−1𝑢,𝑧) + 𝑞33𝑤,𝑧𝑧 − 𝜇33𝜓,𝑧𝑧 − 𝑚33𝜙,𝑧𝑧 

−𝜇11(𝜓,𝑟𝑟 + 𝑟−1𝜓,𝑟) − 𝑚11(𝜙,𝑟𝑟 + 𝑟−1𝜙,𝑟) = 0.              (9d) 

The solutions of Eq. (9) is considered in the form Nelson and Kathikeyan (2008d) 

𝑢𝑙 = 𝑈𝑙
,𝑟exp {𝑖(𝑘𝑧 + 𝑝𝑡)}, 

𝑤𝑙 = (
𝑖

ℎ
) 𝑊𝑙  exp {𝑖(𝑘𝑧 + 𝑝𝑡)}, 

𝜑𝑙 = (
𝑖𝑐44

𝑎𝑒33
) 𝜙𝑙exp { 𝑖(𝑘𝑧 + 𝑝𝑡)}, 

𝜓𝑙 =
𝑖

𝑎
(

𝑐44

𝑚33
) 𝜓𝑙  exp { 𝑖(𝑘𝑧 + 𝑝𝑡)}. 

Where, 𝑢𝑙 , 𝑤𝑙 , 𝜑𝑙 , 𝑇𝑙   are displacement potentials, k is the wave number, p is the angular 

frequency and 𝑖 = √−1. We introduce the non-dimensional quantities 𝑥 =
𝑟

𝑎
, 휀 = 𝑘𝑎, 𝑐 = 𝜌𝑝 ‘a’ is 

the geometrical parameter of the composite hollow cylinder. 

𝑐1̅1 =
𝑐11

𝑐44
⁄ , 𝑐1̅3 =

𝑐13
𝑐44

⁄ ,𝑐3̅3 =
𝑐33

𝑐44
⁄ , 𝑐6̅6 =

𝑐66
𝑐44

⁄ ,�̅�𝑖𝑗 =
𝑒𝑖𝑗

𝑒33
 ; �̅�𝑖𝑗 =

𝑞𝑖𝑗

𝑞33
 ; 

 �̅�𝑖𝑗 =
𝑚𝑖𝑗𝑐44

𝑒33𝑞33
 ; 휀�̅�𝑗 =

𝜀𝑖𝑗𝑐44

𝑒33
2  ; �̅�𝑖𝑗 =

𝜇𝑖𝑗𝑐44

𝑞33
2  ; 

The above Solutions substitute in Eq. (9) We obtain the following form 

[(𝑐1̅1 − 𝑝0)∇2 − (1 − 𝑝0)휀2 + 휁2 + 𝜒2 + ℶ]𝑈𝑙 − [휀(1 + 𝑐1̅3)]𝑊𝑙 − 휀(�̅�31 + �̅�15)𝜙𝑙 

- 휀(�̅�31 + �̅�15 )𝜓 𝑙= 0,                           (10a)  

[휀(1 + 𝑐1̅3)∇2]𝑈𝑙 + [(1 − 𝑝0)∇2 − (𝑐3̅3 − 𝑝0)휀2 + 휁2 + 𝜒2 + ℶ]𝑊𝑙 + (�̅�15∇2 − 휀2)𝜙𝑙 

+(�̅�15∇2 − 휀)𝜓𝑙 = 0,                           (10b) 

((�̅�31 + �̅�15)∇2𝑈𝑙 + (�̅�15∇2 + 휀2)𝑊𝑙 − (휀1̅1∇2 − 휀2휀33)𝜙𝑙 − (�̅�11∇2 − 휀2𝑚33)𝜓𝑙 = 0,  (10c) 

휀(�̅�31 + �̅�15)∇2𝑈𝑙 + (�̅�15∇2 + 휀)𝑊𝑙 − (�̅�11∇2 − 휀2�̅�33)𝜙𝑙 − (�̅�11∇2 − 휀2�̅�33)𝜓𝑙 = 0.  (10d)  

For the existence of non-trivial solution of above Eq. (10) the determinant of the coefficient of 
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the system is set to zero 

|
|

(𝑐1̅1 − 𝑝0)∇2 − 𝑠1 + 𝐴1 −𝐴2 𝐴3 −𝐴4

𝐴2∇2 (1 − 𝑝0)∇2 − 𝑠2 + 𝐴1 𝑒15
2 ∇2 + 𝐴5 �̅�15∇2 − 𝐴6

𝐴3∇2 𝑒15
2 ∇2 − 𝐴5 휀11

2 ∇2 + 𝐴7 �̅�11∇2 − 𝐴8

𝐴4∇2 𝐴6 −𝐴8 �̅�11∇2 − 𝐴9

|
| 

× (𝑈𝑙 , 𝑊𝑙 , 𝜙𝑙 , 𝜓𝑙) = 0                         (11)  

Where  𝐴1 = 휁2 + 𝜒2 + ℶ ,  𝐴2 = 휀(1 + 𝑐1̅3), 𝐴3 =  휀(�̅�31 + �̅�15) , 𝐴4 = 휀(�̅�31 + �̅�15 ) , 𝐴5 = 휀2 , 

𝐴6 = 휀, 𝐴7 = 휀33
2 휀2 𝐴8 = 휀2�̅�33 , 𝐴9 = �̅�33휀2, 𝑠1 = (1 − 𝑝0)휀2 , 𝑠2 = (𝑐3̅3 − 𝑝0)휀2 . 

Evaluating the determinant given in Eq. (11), we obtain a partial differential equation of the form 

(𝐴∇8 + 𝐵∇6 + 𝐶∇4 + 𝐷∇2 + 𝐸)(𝑈𝑙  𝑊𝑙  𝜙𝑙 𝜓𝑙)
𝑇

= 0.            (12) 

Factorizing the relation given in Eq. (12) into biquadratic equation for (𝛼𝑙
𝑗𝑎)

2
, i=1, 2, 3, 4 the 

solutions for the symmetric modes are obtained as  

𝑈𝑙 = ∑[𝐴𝑗𝔍𝑛(𝛼𝑗𝑥) + 𝐵 𝑗ℜ𝑛(𝛼𝑗𝑥)],

4

𝑗=1

 

𝑊𝑙 = ∑ 𝑎𝑙
𝑗 [𝐴𝑗  𝑛

(𝛼𝑗𝑥) + 𝐵𝑗ℜ𝑛(𝛼𝑗𝑥)],

4

𝑗=1

 

𝜙𝑙  = ∑ 𝑏𝑙
𝑗[𝐴𝑗  𝑛

(𝛼𝑗𝑥) + 𝐵𝑗ℜ𝑛(𝛼𝑗𝑥)],

4

𝑗=1

 

 𝜓𝑙  = ∑ 𝑐𝑙
𝑗[𝐴𝑗  𝑛

(𝛼𝑗𝑥) + 𝐵𝑗ℜ𝑛(𝛼𝑗𝑥)],4
𝑗=1                   (13) 

Here (𝛼𝑖
𝑙𝑎𝑥) > 0 , for (𝑖 = 1,2,3,4) are the roots of algebraic equation  

𝐴(𝛼𝑙
𝑗𝑎)

8
+ 𝐵(𝛼𝑙

𝑗𝑎)
6

+ 𝐶(𝛼𝑙
𝑗𝑎)

4
+ 𝐷(𝛼𝑙

𝑗𝑎)
2

+ 𝐸) (𝑈𝑙 , 𝑊𝑙 , 𝜙𝑙 , 𝜓𝑙) = 0. 

The solutions corresponding to the root (𝛼𝑖𝑎)2 = 0  is not considered here, since 𝔍𝑛(0)  is 

zero, except for 𝑛 = 0. The Bessel function 𝔍𝑛 is used when the roots (𝛼𝑖𝑎)2, (𝑖 = 1,2,3,4) are 

real or complex and the modified Bessel function ℜ𝑛 is used when the roots (𝛼𝑖𝑎)2, (𝑖 = 1,2,3,4)  
are imaginary. 

The constants 𝑎𝑙
𝑗 , 𝑏𝑙

𝑗  and 𝑐𝑙
𝑗 defined in Eq. (13) can be calculated from the following 

equations 

[(𝑐1̅1 − 𝑝0) − (1 − 𝑝0)휀2 + 휁2 + 𝜒2 + ℶ] − [휀(1 + 𝑐1̅3)]𝑎𝑗 − 휀(�̅�31 + �̅�15)𝑏𝑗  - 휀(�̅�31 + �̅�15 )𝑐𝑗= 

0, 

[휀(1 + 𝑐1̅3)] + [(1 − 𝑝0)∇2 − (𝑐3̅3 − 𝑝0)휀2 + 휁2 + 𝜒2 + ℶ]𝑎𝑗 + (�̅�15∇2 − 휀2)𝑏𝑗 +

(�̅�15∇2 − 휀)𝑐𝑗 = 0, 

휀((�̅�31 + �̅�15)∇2 + (�̅�15∇2 + 휀2)𝑎𝑗 − (휀1̅1∇2 − 휀2휀33)𝑏𝑗 − (�̅�11∇2 − 휀2𝑚33)𝑐𝑗 = 0, 

휀(�̅�31 + �̅�15) + (�̅�15∇2 + 휀)𝑎𝑗 − (�̅�11∇2 − 휀2�̅�33)𝑏𝑗 − (�̅�11∇2 − 휀2�̅�33)𝑐𝑗 = 0. 

 

 

3. Equation of motion for linear elastic materials with voids LEMV 
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The displacement equations of motion and equation of equilibrated inertia for an isotropic LEMV 

are  

( 𝜆 + 2𝜇)(𝑢,𝑟𝑟 + 𝑟−1𝑢,𝑟 − 𝑟−2𝑢) + 𝜇𝑢,𝑧𝑧 + (𝜆 + 𝜇)𝑤,𝑧𝑧 + 𝛽𝐸,𝑟 = 𝜌𝑢𝑡𝑡  , 

(𝜆 + 𝜇)(𝑢,𝑟𝑧 + 𝑟−1𝑢,𝑧) + 𝜇(𝑤,𝑟𝑟 + 𝑟−1𝑤,𝑟) + (𝜆 + 2𝜇)𝑤,𝑧𝑧 + 𝛽𝐸,𝑧 = 𝜌𝑤,𝑡𝑡, 

−𝛽(𝑢,𝑟 + 𝑟−1𝑢) − 𝛽𝑤,𝑧 + 𝛼(𝐸,𝑟𝑟 + 𝑟−1𝐸,𝑟 + 𝜙,𝑧𝑧) − 𝛿𝑘𝐸,𝑡𝑡 − 𝜔𝐸,𝑡 − 𝜉𝐸 = 0.    (14) 

 The stress in the LEMV core materials are  


l

rr
= (𝜆 + 2𝜇)𝑢,𝑟 + 𝜆𝑟−1𝑢 + 𝜆𝑤,𝑧 + 𝛽𝐸, 


l

rz
= 𝜇(𝑢,𝑡 + 𝑤,𝑟). 

The solution for Eq. (14) is taken as  

𝑢 = 𝑈,𝑟𝑒𝑥𝑝𝑖(𝑘𝑧 + 𝑝𝑡), 

𝑤 = (
𝑖

ℎ
)𝑊𝑒𝑥𝑝𝑖(𝑘𝑧 + 𝑝𝑡), 

𝐸 = (
1

ℎ2) 𝐸 𝑒𝑥𝑝𝑖(𝑘𝑧 + 𝑝𝑡).                         (15)  

The above solution in Eq. (14) and dimensionless variables x and 휀,  equation can be simplified 

as  

|

(𝜆 + 2𝜇)∇2 + 𝑀1 −𝑀2 𝑀3

𝑀2∇2 �̅�∇2 + 𝑀4 𝑀5

−𝑀3∇2 𝑀5 𝛼∇2 + 𝑀6

| × (𝑢, 𝑤, 𝐸) = 0             (16)  

Where ∇2=
𝜕2

𝜕𝑥2 +
1

𝑥

𝜕

𝜕𝑥
 

𝑀1 =
𝜌

𝜌1
(𝑐ℎ)2 − �̅�휀2 , 𝑀2 = (�̅� + �̅�)휀 , 𝑀3 = �̅�, 𝑀4 =

𝜌

𝜌1
(𝑐ℎ)2 − (�̅� + �̅�)휀2 ,𝑀5 = �̅�휀 

𝑀6 =
𝜌

𝜌1
(𝑐ℎ)2�̅� − �̅�휀2 − 𝑖�̅�(𝑐ℎ) − 𝜉̅ . 

The Eq. (16) can be specified as 

(∇6 + 𝑃∇4 + 𝑄∇2 + 𝑅)(𝑈, 𝑊, 𝐸) = 0.                     (17) 

Thus the solution of Eq. (17) is as follows, 

𝑈 = ∑[𝐴𝑗𝔍0(𝛼𝑗𝑥) + 𝐵𝑗ℜ0(𝛼𝑗𝑥)],

3

𝑗=1

 

𝑊 = ∑ 𝑑𝑗[𝐴𝑗𝔍0(𝛼𝑗𝑥) + 𝐵𝑗ℜ0(𝛼𝑗𝑥)],

3

𝑗=1

 

𝐸 = ∑ 𝑒𝑗[𝐴𝑗𝔍0(𝛼𝑗𝑥) + 𝐵𝑗ℜ0(𝛼𝑗𝑥)],

3

𝑗=1

 

(𝛼𝑗𝑥)
2
 are the roots of the equation when replacing ∇2= −(𝛼𝑗𝑥)

2
. The arbitrary constant 𝑑𝑗 

and 𝑒𝑗 are obtained from 

𝑀2∇2 + (𝜇 ̅∇2 + 𝑀4)𝑑𝑗 + 𝑀5𝑒𝑗 = 0, 
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−𝑀3∇2 + 𝑀5𝑑𝑗 + (𝛼∇2 + 𝑀6)𝑒𝑗 = 0. 

By taking the void volume fraction E=0, and the lame’s constants as 𝜆 = 𝑐12, 𝜇 =
𝑐11−𝑐12

2
 in the 

Eq. (14) we got the governing equation for CFRP core material. 

 

 

4. Boundary conditions and frequency equations  
 

The frequency equations can be obtained for the following boundary condition the electrical and 

magnetic boundary conditions for an infinite cylindrical bar are, 

➢ On the traction free inner and outer surface 
l

rr
= 

l

rz
= 𝜙𝑟

𝑙 = 𝐵𝑟
𝑙 = 0 with 𝑙 = 1,3. 

➢ At the interface 
l

rr
= 

𝑟𝑟
; 

l

rz
= 

𝑟𝑧
; 𝜙𝑟

𝑙 = 0; 𝐵𝑟
𝑙 = 0; 𝐷𝑟

𝑙 = 0. 

Substituting the above boundary condition, we obtained as a 22×22 determinant equation  

|(𝑌𝑖𝑗)| = 0 , (𝑖, 𝑗 = 1,2,3, … .22)                        (18)  

At 𝑥 = 𝑥0 Where 𝑗 = 1,2,3,4 

𝑌1𝑗 = 2𝑐6̅6(
𝛼𝑗

1

𝑥0
)𝔍1(𝛼1

𝑗𝑥0) − [(𝛼1
𝑗𝑎)

2
𝑐1̅1 + 휁𝑐1̅3𝑎𝑙

𝑗 + �̅�31휁𝑏𝑙
𝑗 + �̅�31𝑐𝑙

𝑗] 𝔍0(𝛼1
𝑗𝑎𝑥0). 

𝑌2𝑗 = (휁 + 𝑎𝑗
1 + �̅�15𝑏𝑗

1)(𝛼𝑗
1) 𝔍1(𝛼1

𝑗𝑥0). 

𝑌3𝑗 = 𝑏𝑗
1𝔍0(𝛼1

𝑗𝑥0). 

𝑌4𝑗 =
𝑐𝑗

1

𝑥0
𝔍0(𝛼1

𝑗𝑥0) − (𝛼𝑗
1) 𝔍1(𝛼1

𝑗𝑥0). 

In addition, the other nonzero elements 𝑌1,𝑗+4  ,  𝑌2,𝑗+4 𝑌3,𝑗+4  and 𝑌4,𝑗+4  are obtained by 

replacing 𝔍0 by 𝔍1 and  ℜ0 by ℜ1. 

At 𝑥 = 𝑥1 

𝑌5𝑗 = 2𝑐6̅6(
𝛼𝑗

1

𝑥1
)𝔍1(𝛼1

𝑗𝑥1) − [(𝛼1
𝑗𝑎)

2
𝑐1̅1 + 휁𝑐1̅3𝑎𝑙

𝑗 + �̅�31휁𝑏𝑙
𝑗 + �̅�31𝑐𝑙

𝑗] 𝔍0 (𝛼1
𝑗𝑎𝑥1). 

𝑌5,𝑗+8 = −[2�̅� (
𝛼𝑗

𝑥1
) 𝔍1(𝛼𝑥1) + {−(�̅� + �̅�)(𝛼𝑗)

2
+ �̅�31𝑏𝑗 − �̅�휁𝑎𝑗} 𝔍0(𝛼𝑗𝑥1). 

𝑌6𝑗 = (휁 + 𝑎𝑗
1 + �̅�15𝑏𝑗

1)(𝛼𝑗
1)𝔍1(𝛼1

𝑗𝑎𝑥1). 

𝑌6,𝑗+8 = −�̅�(휁 + 𝑎𝑗)(𝛼𝑗)𝔍1(𝛼𝑗𝑥1). 

𝑌7𝑗 = (𝛼𝑗
𝑙)𝔍1(𝛼𝑗

𝑙𝑥1). 

𝑌7,𝑗+8 = −(𝛼𝑗)𝔍1(𝛼𝑙
𝑗𝑥1). 

𝑌8𝑗 = 𝑎𝑗
𝑙𝔍0(𝛼𝑗

𝑙𝑥1). 

𝑌8,𝑗+8 = −𝑎𝑗
𝑙𝔍0(𝛼𝑗

𝑙𝑥1). 

𝑌9𝑗 = 𝑏𝑗
𝑙𝔍0(𝛼𝑗

𝑙𝑥0). 

𝑌10𝑗 = 𝑒𝑗(𝛼𝑗)𝔍0(𝛼𝑗
1𝑥1). 

𝑌11𝑗 =
𝑐𝑗

𝑙

𝑥1
𝔍0(𝛼𝑗

𝑙𝑥1) − (𝛼𝑗
𝑙)𝔍1(𝛼𝑗

𝑙𝑥1). 

and the other nonzero element at the interfaces 𝑥 = 𝑥1 can be obtained on replacing 𝔍0 by 𝔍1 

and ℜ0  by  ℜ1  in the above elements. They are 𝑌𝑖,𝑗+4,𝑌𝑖,𝑗+8,𝑌𝑖,𝑗+11,𝑌𝑖,𝑗+14,(𝑖 = 5,6,7,8)  and 

𝑌9,𝑗+4,𝑌10,𝑗+4,𝑌11,𝑗+4,. At the interface 𝑥 = 𝑥2, nonzero elements along the following rows 𝑌𝑖𝑗  , (𝑖 =
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12,13, … . ,18  and 𝑗 = 8,9, … . ,20) are obtained on replacing 𝑥1 by 𝑥2 and superscript 1 by 2 in 

order. 

Similarly, at the outer surface  𝑥 = 𝑥3 , the nonzero elements 𝑌𝑖𝑗  , (𝑖 = 19,20,21,22  and 𝑗 =

14,15, , … . ,22) can be had from the nonzero elements of first four rows by assigning x3 for x0 and 

superscript 2 for 1.  

𝑌19𝑗 = 2𝑐6̅6(
𝛼𝑗

1

𝑥0
)𝔍1(𝛼2

𝑗𝑥3) − [(𝛼2
𝑗𝑎)

2
𝑐1̅1 + 휁𝑐1̅3𝑎𝑙

𝑗 + �̅�31휁𝑏𝑙
𝑗 + �̅�11𝑐𝑙

𝑗] 𝔍0 (𝛼1
𝑗𝑎𝑥3) 

𝑌20𝑗 = (휁 + 𝑎𝑗
2 + �̅�15𝑏𝑗

2)(𝛼𝑗
1) 𝔍1(𝛼2

𝑗𝑥3) 

𝑌21𝑗 = 𝑏𝑗
𝑙𝔍0(𝛼2

𝑗𝑥3) 

𝑌22𝑗 =
𝑐𝑗

2

𝑥0
𝔍0(𝛼1

𝑗𝑥3) − (𝛼𝑗
1) 𝔍1(𝛼1

𝑗𝑥3) 

In the case of without voids in the interface region, the frequency equation is obtained by taking 

𝐸 = 0 in Eq. (18) which reduces to a 20×20 determinant equation. 

 

 

5. Numerical solution  
 

In this problem, the free vibration of transversely isotropic multiferroic cylinder initially stressed 

and rotating motion is considered. The material properties of the electro-magnetic material CoFe2O4 

are given bellow, Buchanan (2003) 

𝑐11 = 218 × 109 𝑁/𝑚2, 𝑐12 = 120 × 109 𝑁/𝑚2 𝑐13 = 120 × 109 𝑁/𝑚2, 𝑐33 =
215 × 109 𝑁/𝑚2, 𝑐44 = 50 × 109 𝑁/𝑚2, 𝑐66 = 49 × 109 𝑁/𝑚2,𝑒15 = 0, 𝑒31 = −2.5 𝐶/𝑚2, 

𝑒33 = 7.5 𝐶/𝑚2, 𝑞15 = 200 𝐶/𝑚2, 𝑞31 = 265 𝐶/𝑚2,𝑞35 = 345 𝐶/𝑚2,휀11 = 0.4 × 10−9 𝐶/
𝑉𝑚 ,휀33 = 5.8 × 10−9 𝐶/𝑉𝑚 ,𝜇11 = −200 × 10−6 𝑁𝑠2/𝐶2, 𝜇33 = 95 × 10−6 𝑁𝑠2/𝐶2, 

𝑚11 = 2.82 × 10−9 𝑁𝑠/𝑉𝐶,𝑚33 = 2.82 × 10−9 𝑁𝑠/𝑉𝐶, and 𝜌 = 7500 𝐾𝑔 𝑚−2 

The material properties of PZT-5A used for the numerical calculation given below, Selvamani 

and Mahesh (2019)  

𝐶11 = 13.9 × 1010 𝑁𝑚−2;  𝐶12 = 7.78 × 1010 𝑁𝑚−2;  𝐶13 = 7.43 × 1010 𝑁𝑚−2; 

𝐶33 = 11.5 × 1010 𝑁𝑚−2;
 

 𝐶44
= 2.56 × 1010 𝑁𝑚−2; 𝐶66 = 3.06 × 1010 𝑁𝑚−2;  𝑇0 = 298;𝛽1 =

1.52 × 106𝑁𝐾−1𝑚−2𝛽3 = 1.53 × 106𝑁𝐾−1𝑚−2
, 𝑐𝑣 = 420𝐽𝑘𝑔−1𝐾−1 𝑝3 = −452 ×

10−6𝐶𝐾−1𝑚−2; 𝑒13 = −6.98𝐶𝑚−2; 𝐾1 = 𝐾3 = 1.5𝑊𝑚−1𝐾−1; 𝑒33 = 13.8𝐶𝑚−2𝑒15 =
13.4𝐶𝑚−2

 ;𝜌 = 7750𝐾𝑔𝑚−2;휀11 = 60.0 × 10−10𝐶2𝑁−1𝑚−2; 

휀33 = 5.47 × 10−10𝐶2𝑁−1𝑚−2. 

The above mentioned two different material constants are consider inner (CoFe2O4) and outer 

(PZT-5A) layers of multifonic cylinder. In Table.1 the non-dimensional frequency in adhesive layer 

of PE/LEMV/CFRP/PM hollow cylinder for different rotational parameter in tune with wavenumber 

is obtained. As observed, the influence of wave number is clearly noticed from the table values and 

the frequency can be raised by applying high intensity of wave number. Also, the rotational 

parameter softens the non-dimensional frequency quickly in LEMV than in CFRP. The 

nondimensional frequencies in adhesive layer of PE/LEMV/CFRP/PM hollow cylinder for different 

rotational parameter in tune thickness is revealed in Table 2. The rise in thickness values enlarge the 

stiffness of the composite but increasing rotational values again weakens the vibration mode. One 

more fact got out from these values is that the system can get larger dynamical response whenever 

the system is coupled with CFRP. 
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Table 1 Dimensionless frequency for different values of real wave numbers against rotation speed in the 

adhesive layer 

Wave 

Number 

Non dimensional Frequency in adhesive layer 

LEMV CFRP 

Ω=0 Ω=0.5 Ω=1 Ω=0 Ω=0.5 Ω=1 

0.2 0.008 0.0083 0.008 0.8186 0.8000 0.7437 

0.4 0.0132 0.0128 0.0126 0.9586 0.6946 0.6321 

0.6 0.0167 0.1380 0.0130 0.9722 0.7580 0.6710 

0.8 0.0189 0.0154 0.0124 0.5414 0.5525 0.2909 

 0.0169 0.0161 0.0101 0.5654 0.5879 0.6503 

 
Table 2 Dimensionless frequencies for different values of thickness wave numbers against rotation speed in 

the adhesive layer  

Thickness 

of cylinder 

Non dimensional Frequency in adhesive layer 

LEMV CFRP 

Ω=0 Ω=0.5 Ω=1 Ω=0 Ω=0.5 Ω=1 

0.003 0.0061 0.0052 0.0044 0.8186 0.8000 0.7437 

0.004 0.0072 0.0063 0.0054 0.8931 0.8735 0.8140 

0.005 0.0082 0.0073 0.0063 0.9676 0.9470 0.8844 

0.006 0.009 0.0081 0.0072 1.0422 1.0205 0.9547 

0.007 0.0094 0.0084 0.0074 1.1167 1.0990 1.0250 

 

 

Fig. 2 Effect of non-dimensional Frequency over wave number for different values of rotation 

parameter Ω in PE 

 

 

Figs. 2 to 4 are drawn to explore the influence of rotating parameters on the profile of non-

dimensional frequency. In the following figures dimensionless wave number is represented by 

horizontal axis and dimensionless frequency is represented by vertical axis. The variation of 

dimensionless frequency gets decreases monotonically with the increment of rotation parameters. 

Furthermore, non-dimensional frequency follows unique nature for different rotation speeds in 

wave number close to origin otherwise for increasing values of wave number the non-dimensional 

frequency turns a slightly oscillating behavior in PE/PM layers but in LEMV layer try to maintain  
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Fig. 3 Effect of non-dimensional Frequency over wave number for different values of rotation 

parameter Ω in LEMV 

 

 

Fig. 4 Effect of non-dimensional Frequency over wave number for different values of rotation 

parameter Ω in PM layer 

 

 
Fig. 5 Effect of non-dimensional Frequency over wave number for different values of initial stress 

parameter (𝑝0) in PE layer 
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Fig. 6 Effect of non-dimensional Frequency over wave number for different values of initial stress 

parameter (𝑝0) in LEMV layer 

 

 
Fig. 7 Effect of non-dimensional Frequency over wave number for different values of initial stress 

parameter (𝑝0) in PM layer 

 

 

symmetric nature. Finally we observe the influence of rotation in multifonic LEMV hollow cylinder 

is considerable. 

Figs. 5 to 7 are drawn to explore the influence of initial stress on the profile of non-dimensional 

frequency. In the following figures dimensionless wave number is represented by horizontal axis 

and dimensionless frequency is represented by vertical axis. The variation of dimensionless 

frequency observed for different values of initial stress (p0) and without initial stress. Furthermore, 

non-dimensional frequency gradually increasing for different values of initial stress 𝑝0 in wave 

number close to origin otherwise for increasing values of wave number the non-dimensional 

frequency monotonic increasing behavior in all layers of multifonic LEMV hollow cylinder is 

considerable. 

Figs. 8 to 10 are drawn to explore the influence of rotating parameters on the profile of non-

dimensional frequency. In the following figures dimensionless thickness of cylinder is represented  
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Fig. 8 Effect of non-dimensional Frequency over Thickness for different values of rotation 

parameter Ω in PE 
 

 
Fig. 9 Effect of non-dimensional Frequency over Thickness for different values of rotation 

parameter Ω in LEMV Layer 
 

 
Fig. 10 Effect of non-dimensional Frequency over Thickness for different values of rotation 

parameter Ω in PM layer 
 

 

by horizontal axis and dimensionless frequency is represented by vertical axis. The variation of 

dimensionless frequency gets decreases monotonically with the increment of rotation parameters. 

Furthermore, in the absences of rotation the thickness increases simultaneously the Non-dimensional 
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frequency increases. In the presences of rotation, the non-dimensional frequency monotonically 

increases for the increasing values of thickness. 

  

 

6. Conclusions 
 

The present examination researches the wave spread through multiferroic (PE/PM) cylinder 

together by Linear Elastic materials with voids made out of (CoFe2O4) and (PZT-5A). Impacts of 

rotation and initial stress are explored. Some amazing results are as per the following:  

• Wave spread examination in the present work following some numerical models proposes that 

rotation parameter unequivocally decreases the non-dimensional recurrence against the 

wavenumber.  

• Simultaneously the non-dimensional recurrence continuously is expanding against the thickness 

of cylinder in the existences of rotation Parameters.  

• The impacts of initial stress in recurrence against wave number additionally watched and its 

participation is commented.  

• Likewise the glue layer CFRP renders amplified response against these parameters. 
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